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Dimensionless analysis of composite rectangular
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Abstract. A numerical procedure is presented that provides ultimate curvature and moment domains for
composite rectangular and circular cross-sections of reinforced concrete columns with or without an
embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the
concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased
structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel
section. A dimensionless formula is proposed that can be used for any section with similar normalized
geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section
(resistance load and moments) is calculated separately so that the influence of each geometric or mechanical
parameter on the bearing capacity can be investigated separately.

Keywords: biaxial bending; composite columns; dimensionless formulation; rectangular and circular
cross-sections; ultimate strength analysis

1. Introduction

In framed composite or reinforced-concrete (RC) structures where columns are subjected to
biaxial eccentric loading, the ultimate bearing capacity of the cross-sections is critical to the total
strength of the structure. Technical codes (Eurocode 2 2005, ACI 318 2008) are useful for the
analysis and design of common RC rectangular and circular members with symmetric distributions
of longitudinal reinforcement because they assume that the bending moment components act
separately along the principal axes. Simplifying the assumptions used in technical codes for
stress-strain diagrams of materials can reduce the accuracy of the analysis. To achieve a precise
analysis expressing the real state of stress, both axial loading and biaxial bending must be
considered.

Numerous methods have been proposed to reduce these deficiencies and increase the accuracy
of the analysis. Rotter (1985) presented an inelastic analysis of a composite section subjected to
axial loading and biaxial bending based on Green’s theorems. This method allowed for exact
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determination of stress resultants where the stress-strain relation of the materials was integrable for
a given set of deformations and the section boundary was rectilinear. Rodriguez and Aristizabal-
Ochoa (1999) used the Gauss integral method for equilibrium, a nonlinear stress-strain relationship
for concrete, and a multi-linear elastoplastic relationship for reinforcement bars to evaluate the
theoretical ultimate strength of RC short columns subjected to axial loading and biaxial bending.

Chen et al. (2001) presented an iterative Quasi-Newton procedure based on the Regula-Falsi
numerical scheme. They evaluated the stress resultants for concrete by integrating the concrete
stress-strain curve over the compression zone and using the fiber element method for the stress
resultants of the encased structural steel and reinforcement. The procedure provided an efficient
and accurate analysis for short composite columns of arbitrary cross-sections.

Bonet et al. (2004) presented an integration procedure to analyze arbitrary RC sections
subjected to axial forces and biaxial bending. The method was used for a general stress field for
sections where the stress field was uniform in at least one direction. Bonet et al. (2006) also
presented a comparative study to design RC sections under biaxial bending based on different
integration methods for stress. A numerical procedure for analyzing composite and RC sections of
arbitrary polygonal shapes was presented by Sousa and Muniz (2007). Their method applied an
analytical integration of a cross section.

Charalampakis and Koumousis (2008) presented a method based on analytically basic surface
integrals that provided the ultimate strength of arbitrary composite sections under axial loading
and biaxial bending. In this method, the geometry of a cross-section was described by curvilinear
trapezoids having straight or curved edges. Fossetti and Papia (2012) proposed a numerical
procedure for analysis of RC rectangular sections with symmetrical longitudinal reinforcement
bars subjected to axial loading and biaxial bending.

The present study proposes a new iterative procedure to analyze rectangular and circular
cross-sections of steel-reinforced concrete composite columns under axial loading and biaxial
bending. It uses a basic surface integral algorithm for encased structural steel and the fiber method
for concrete and reinforcements. The sections are symmetric with respect to the principal axes and
the ultimate curvature and moment domains are obtained. A dimensionless formula is adopted for
sections having the same normalized geometric and mechanical parameters where one analysis
result can be used. This simplifies and decreases the computational cost over dimensional values.

2. Section geometry and reinforcement arrangement of rectangular section

The expressions and the procedure presented in the following section and proposed in the limit
state of rectangular section and the material constitutive laws of concrete and reinforcement are
those expressed by Fossetti and Papia (2012) which are used in this study.

The x, y Cartesian system is the orientation of the principal axes at the centroid of a section.
The rectangular section under study has a width b and height /. The distribution of the longitudinal
reinforcement bars is symmetric with respect to the principal axes and consisted of (Fig. 1):

e 4 bars of equal diameter at each corner of the section having a total area 4,.,

® 1, bars of equal diameter at the top and bottom of the section parallel to b and between the
corner bars having a total area 4,,, and

e 1 bars of equal diameter at the left and right sides of the section parallel to 4 and between
the corner bars having a total area 4,;.
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Fig. 1 Ultimate state of composite rectangular section under axial loading and biaxial bending

The dimensionless parameters for the distribution of reinforcement are

A, I 4, f 4, fn

a)rc :__y, a)rb :_b_y, rh z_h_y, (1)
bh f! bh f! bh f!

where f,, is the yielding stress of the reinforcement bars, f7 is the cylindrical strength of the

concrete and b X /4 is the area of the concrete core. The reinforcement ratio for the section (ACI
318 2008, Eurocode 2 2005) is expressed as

Pr= |:a)rc + 2(a)rb + a)rh) J‘}:C’ ] (2)

wr

The distance between the centroid of the reinforcement bars and the closest section surface in
directions b and 4 is denoted by c¢. The dimensionless parameters denoting the section geometry
are the ratios

c h
A== =— 3
5 g 5 3)
and for the steel section are
b t
b b b b

where by is the flange width, 4, is the web height, # is the flange thickness, and ¢, is the web
thickness of the structural steel as shown in Fig. 1.
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3. Limit state of rectangular section

The basic assumptions used in this method are:

e Concrete tensile strength is neglected and plane sections remain planar (strain compatibility)

e Limit state of the section is assumed and the outermost concrete compression fiber equals
the ultimate strain of the concrete at the end of the post-peak branch describing the softening
behavior (e.,)

Fig. 1 shows a limit state for a rectangular section under axial loading and biaxial bending. The
location of the neutral axis is determined by angle v and distance x, (the distance from the neutral
axis to the point of maximum shortening strain). Dividing x. by b provides the dimensionless value

¥ = (5)

Other section dimensions are normalized with respect to b and all strains with respect to &,
(concrete strain corresponding to 7). The normalized parameters are denoted by superscripts (—)
for length and distance and (~) for strain and curvature.

The normalized center-to-center distance of the reinforcing bars in directions b and 4 are

— 1-24 — -22
1224 p_¢ ©)
n, +1 n, +1
@, 1s a curvature normalized with respect to &, as
~ b &, b .
gCU 800 xC xC
where
gcu
M == ®)
&£

&, denotes the ultimate strain of the concrete. By considering N as the average compressive
axial force, the normalized ratio is

n=-——r 9)

The resistance moment and domain of the ultimate curvature can be obtained in dimensionless
form for any angle v within range 0 < v < /2. Thus, the normalized ultimate moments along the
principal axes are

M
My = %;}, "o = (10)

and the dimensionless curvature components are

@y =P, COSV P,y =@, SNV (11)
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4. Material constitutive laws
4.1 Confined concrete

The concrete strain at any point (¢.) is normalized with respect to &,. Consequently, the
dimensionless stress of concrete is defined as

Lﬁ:H(EC) 0<Z <u, (12)

/e

where H is a function of £,. Eq. (12) can be expressed by one function (Sargin 1971, Mander et
al. 1988) or two analytical expressions (Saatcioglu and Razvi 1992, Vallenas et al. 1997). One
expression denotes the ascending branch from zero to /7. (0 < &, < 1) and the other denotes the
post-peak branch (1 < & < u.) in the stress-strain diagram of the concrete as shown in Fig. 2.
Adopting analytical expressions (Saatcioglu et al. 1995, Campione ef al. 2010) yields

IA
™Y
IA

H(E)=Q8 -85 0 1 (13a)

c

H(E)=1+n(6,-1)  0<E,

IA

n (13b)

where 7. is the softening modulus of post-peak branch normalized with 7. / ., and o depends on
the confinement effects. If the transverse reinforcement has a good effect on the confinement, a, 7.
and u. can be considered to be 0.7, -0.1 and 3.0, respectively (Fossetti and Papia 2012). Otherwise,
these values should be obtained analytically.

4.2 Steel reinforcement
The stress-strain relationship of reinforcement is considered to be linear up to the yielding point
(f,») corresponding to + ¢,,. After that, it is replaced up to rupture strain (£ ¢,.) by a linear branch

having a constant slope equal to the hardening modulus E), as shown in Fig. 3. Based on these
assumptions, the dimensionless stress of reinforcement is

(Eq.13b)

SO ]
1 K, 8

8

Fig. 2 The normalized stress-strain diagram of concrete
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Fig. 3 The normalized stress-strain diagram of steel

O _ 5 fri<y (14a)
fyr vr Eyr
. £
L =smn{ r}1+77h = -1 I<l—<u (14b)
yr Eyr Eyr Eyr
where
E &,
77h == M, = —= (15)
E, &,

In Eq. (15), E;, is the average hardening modulus and E; is the modulus of elasticity. In addition,
Eq. (14b) can be expressed as an accurate expression (Chang and Mander 1994) instead of a
bilinear relationship. Since all the strains are normalized with respect to &.,, another expression is
required to relate the characteristic strain values of concrete and reinforcement. The latter is
defined by

5 = (16)

Note that the compressive stresses and shortening strains are considered to be positive values
and tensile stresses and elongations are assumed to be negative for all materials.

4.3 Structural steel
The x, axis is considered to be parallel to the neutral axis; therefore, the rotated x,y, Cartesian

system can be defined at the centroid of the section. All the coordinates in the xy Cartesian system
can be expressed in the rotated x,), Cartesian system by the rotational transformation

X, cosy —sinv) x
Yy sinv  cosv )| y
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where angle v is assumed to be positive in the clockwise direction. The normalized strain at any
point on a steel section can be expressed as a function of distance from the x,, axis

E:Y(-)_)H)ZEO—"_&M'J_/H (18)

where &, is the normalized strain at the origin and y, is the normalized distance from the x, axis.
The value of &, is derived from Fig. 1 as

g,=tey (19)
X,

where
yozd,', _d. c,3 (20)

d,,, and d, .3 are the normalized distances of corner bar 3 from the neutral and x, axes,
respectively. As shown in Eq. (17), the x, y coordinates can be transformed into x,, y, coordinates.
This can be done for any value of v. It is assumed that any segment on the stress-strain diagram of
steel is expressed by a cubic polynomial expression. Therefore, the normalized stress-strain
relation at any point of the steel section is

3
G, =Y (a,8)) (21)
i=0

where the coefficient g; is known from the properties of the steel and specified by arbitrary points
on the stress-strain diagram. Substituting Eq. (18) into Eq. (21) obtains

3
G, =Y (b.7) (22)
i=0

where

- = ~2 ~3
b =a,+a.c,+a,& +a,s,

b = 3.a3.§~03.(zu + 2.a2~.50.(5u +a,.9, 23)
b, =3.a,.2,.0" +a,.p}

by = a2-¢~’u3

5. Contribution of materials to the bearing capacity of rectangular section
5.1 Contribution of concrete core

The compressed region in the concrete is divided into N, strips parallel to the neutral axis. All
the strips have the same normalized height

=

h=—¢ (24)

=
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and are numbered from 1 to k with the first strip being the farthest fiber of the compressed
concrete from the neutral axis. Fig. 4 shows the typical division and numbering of the strips. The
concrete contribution to the stress is measured at mid-height of the strips at its centroid (Gy). The
kth strip has the normalized length /, and the normalized height is

e, =(k-0.5)h (25)

The area of each strip is e, . normalized with respect to b°. The normalized distances of the
strips from the neutral axis are expressed by

d,, =X -¢ =x—(k-0.5h (26)
These normalized distances are presented in Table 1 where [, is equal to

[, =sinv+&cosy 27)

Four cases are considered in Fig. 5:

e Case l:Fig.3(a) if e, <sinv & e <&cosv
e Case2:Fig.3(b) if e, 2sinv & e, <&cosv
e Case3:Fig.3(c) if e, <sinv & e, >&cosv
e Case4:Fig.3(d) if e 2sinv & ¢, =2&cosy

The contribution of the concrete core to the strength of the section (the normalized axial load)
and the ultimate moments along the x and y axes are

7 N.\‘l —
n = N :%ZIk ff;" (28a)

M, . M

uc,j uc

N _
= = =—> l,.d, ;
YA - B

<

m

(J=x) (28b)

The expression f.,/f% in Eq. (28) is calculated using Eq. (12). The strain at any point on the
concrete can be stated as

c.k = dn,k '¢u (29)
5.2 Contribution of reinforcement

The normalized distances of the reinforcement bars are defined by cz% « Where

® q: coordinate axes (n, x, y, X, ¥,)

e 1 type of reinforcement; corners (c¢), top of section in direction b (bu), bottom of section in
direction b (bl), left side of section in direction % (h/), right side of section in direction 4 (/)

e k: number of bars; 1, 2,..., 4 for corner bars, 1, 2,..., n, fort=bu,and t=bl, 1, 2,..., n;, for ¢
=hrand t= hl
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Fig. 5 Possible cases of position for mid-height segment of kth strip of compressed concrete in
rectangular section
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Table 1 Expressions of /,, Jx’k and c?y, , for kth strip in compressed concrete

case I3 d., d,,
1 2e, /sin(2v) 0.5(£ 1, sinv) 0.5(&—1, cosv)
2 1/cosv O.5(§+l_k sinv)—e, /cosv 0
3 ¢/siny 0 0.5(1+1, cosv)—eg, /sinv
4 2(1, —e,)/sin(2v) ~0.5(& 1, sinv) —0.5(& ~1, cosv)

The stress (o,) and strain (¢,) of the kth bar for type ¢ are denoted as o, and ¢, 4, respectively.
Fig. 6 shows the type and number of bars and Fig. 7 shows the normalized distances of the corner
bars from the neutral axis. In Fig. 7, the latter is expressed as

=X, — A(sinv +cosv) Jn,c,Z = 47 —(1-2A)sinv (30)
d, ,—(&=2A)cosv d, =E —(E=24)cosv

&l &l

and the normalized distances of the corner bars from the x and y axes are

2 =0.5(£-24)
4 =0.5(1-22)

Q~I &I

dooy=d, ., ==-05¢-22)
d . ,-d.

G
o3 =—0.5(1-22)

=d,
c?

Normalized distances for other types of reinforcement are shown in Table 2. For a specific
value of angle v, if X, is known, the dimensionless curvature can be obtained from Eq. (7) and the
normalized strain of the kth bar of type ¢ as

ek P g (32)
Then, o,,/f, can be calculated using Eq. (14). The contribution of reinforcement is

N 0, < O, ek b Orpuk | Grplk 5 rhrk Orlk
n, = VVZLE ok o Dy, z 4 Lk Dy 2 (33a)

¢ k=1 Ry k= yr ”h k=1 yr

4
Mur Jj Muc,j a)rc Gr,c k _,
mWJ:bZh/: b3 = 42 jsc:k
fc ‘§ k=1 fyr
1y
Dy O puk 5 Orplk 7 .
=y dipus+—dpy | (=1 (33b)
n, k=1 fyr fyr
)
@, Ok r ik
+ z i d;px b
ny, k=1 fyr yr
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Fig. 7 Normalized distances of corner bars from the », x, and y axes in rectangular section

Table 2 Normalized distances of kth bar for type ¢ from the n, x and y axes

337

type d,.. d, . i
t=bu d,, . —kL,sinv 0.5(&—24) d,. —kL,
t=bl d,.,—kL,sinv —0.5(¢ - 27) d,. —kL,
t=hr d,, —kL,cosv d,, —kL, 0.5(1 —24)

t=hl d,, ,—kL,cosv d.. —kL, —0.5(1 — 22)
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5.3 Contribution of structural steel

The contribution of steel is calculated using basic surface integrals. In this method, the steel
section is described by 16 nodes and is divided by a line parallel to the neutral axis that passes
through a node (Fig. 8(a)). In this way, the steel section is divided into » curvilinear trapezoids
where the top and bottom edges are lines parallel to the neutral axis, although the left and right
edges can be either a straight line or a circular arc. This procedure is repeated for each value of
angle v. The basic surface integral of trapezoid j is described in the x,), coordinate system by

J — q,,m
L=l . Gy, (34)

where g and m are specific integers.

Charalampakis and Koumousis (2008) described the 16-node steel section that includes the
roots (connecting flange to web). To simplify and decrease the computation cost, the roots of the
steel are ignored and the section is described by 12 nodes (Fig. 8(b)). Consequently, all trapezoids
have straight linear edges; otherwise, the trapezoids may consist of convex or concave edges,
which make the integrals more complex. As shown in Fig. 8(b), nodal coordinates are initially
expressed in an xy Cartesian system, and then transformed into a rotated x,y, Cartesian system
using Eq. (17). Table 3 shows the normalized coordinate of nodes in the xy system.

Table 3 Normalized coordinate of nodes in steel section

Node 1 2 3 45 6 7 8 9 10 11 12
: 7 v s S vy vy v s S WV
2 2 2 2 2 2 2 2 2 2 2 2
5 D2 D+2r D D D D D+l D+2f D D D D
2 2 2 2 2 2 2 2 2 2 2 2

y

Jal | —1
) 1 7 8

(a) 16 nodes (b) 12 nodes

Fig. 8 Decomposition of steel section into curvilinear trapezoids
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Eq. (21) can be used for each segment of the stress-strain diagram (Fig. 9) for a trapezoid in a
specific segment of the steel stress-strain diagram. For example, a cubic segment is formed by four
points and a linear segment by two points. If a trapezoid includes a transition between segments of
the stress-strain diagram, it is divided into two by a line parallel to the neutral axis. Consequently,
all trapezoids are covered by a single segment. Integration of the stress field over the area of the
trapezoids develops the normalized axial load and moments of each trapezoid along the x, and y,

axes
N 3 ~ 3 ~ B 3 '
ny = bhﬂ' - .[ ~[‘rapezoid j(zbi Y ]dA - ;bi .[ J.trapezoid j(y” )dA = Z(bi 'I(jo’i)) (353)

i=0 i=0

j Ml{s‘,x 3 b TIAYTY )dA
mlo = = -V
us,x, bzhfc' I»[rapezoidj i:O( iYn )yn (35b)
O3 —il A J
- Zizo (bl J. ~[‘rapezoid j(yn )dAj - Zi:O (bl ‘I(O’HI))
M) :
j — us,y, — b.,_[ X dA
mus,y,, bZhJFC' .[.[mpezoidj[i:o( Y )xn] (35 )
C

3
I X IR EALTZNE) VORI

3
i=0

The expressions 1j,,1,., and I;, are described in Appendix. By summing the stress

resultants of all trapezoids, the overall axial load and bending moments are

n
ng=Yn (36a)
Jj=1
n n
— J — J
mus,xn - Z mus,xn mus,}’n - ZmuS,,Vn (3 6b)
Jj=1 J=1
stress A
L e I (e a
parabolic —---
>
strain

Fig. 9 Stress-strain diagram of steel
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Eq. (36a) is the total normalized axial load of the steel section. The ultimate moments along the
x and y axes are obtained by the inverse rotational transformation of Eq. (17)

My _ co.sv sinv | m, 37)
My, —sinv  cosv )| m,
6. Section geometry and reinforcement of RC circular section

The circular section has diameter D. The distribution of the longitudinal reinforcement bars is
symmetric to the principal axes and comprises ni bars of the same diameter and a total area A4,.
The distance between the centroid of the reinforcement bars and the closest concrete surface is
defined by c. In this section, all lengths and distances are normalized with respect to D. The
dimensionless parameter corresponding to the distribution of reinforcement is

o, A S _ A{ Sor (38)
A, fl aD*/4 f!

where A. is the area of the concrete core. The ratio of reinforcement in the cross-section is
expressed by

p=o, L (9)
Sor
and the dimensionless parameter denoting the section geometry is
c
A=— 40
5 (40)

7. Limit state of circular section

Fig. 10 shows a limit state for a circular section under axial loading and biaxial bending. The
value of x, is normalized with respect to D

x === 41
=D (41)
and the normalized curvature is
~ uD gcu D C
gCO gCU xC xC

The stress-strain relation of materials is the same as for Section 4; thus, the normalized axial
load and components of moment are expressed as

n=—— m, =—2* m, = (43)



Dimensionless analysis of composite rectangular and circular RC columns 341

8. Contribution of materials to the bearing capacity of circular section
8.1 Contribution of concrete core

The division and numbering of the strips are shown in Fig. 11. The dimensionless parameters
of the strips are described as

i :]’\C]_c g, =(k-05)h I, =2(, —e2)* (44)

st

Fig. 11 Strip model of compressed concrete region in circular section
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and the normalized distances of the strips from the n, x and y axes are shown in Table 4. The
contribution of the concrete is described as

N,
_ Nc 7 Yl_f‘ck
nc_DZfl_h k fl
c k=1 c .
N (J=xy) (45)
MuLj =7 T fck
mucj_ 3;:h2kd1k [
Dfe S 1

Table 4 Normalized distances of kth strip from the », x and y axes in compressed concrete

Strip d,, d., d,,
k x —kh (0.5-¢,)cosv (0.5-¢,)sinv

8.2 Contribution of reinforcement

Fig. 12 shows the numbering of the bars. Bars placed on the x and y axes are classified as type
p. Other bars are described in four zones as types a to d. Table 5 shows the normalized distances
of the type p bars and Table 6 shows the normalized distances of the other types. The normalized
distance between the neutral axis and the x, axes is described by

Py

Fig. 12 Type and numbering of reinforcement bars in circular section
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Table 5 Normalized distances of bars for type p from the x and y axes

Type of reinforcement X,k y.pok

D1 05-4 0

D2 0 -(0.5-2)
D3 -(0.5-2) 0

D4 0 05-2

Table 6 Normalized distances of kth bar for types a to d from the x and y axes

Type of reinforcement Ay pi d,p
a S, S(n, —k+1)
b S, = S(n, —k+1)
¢ -5, = S(n,—k+1)
d -5, S(ny—k+1)
F=0.5-%, (46)

The coordinates of the bars are transformed by Eq. (17) into an x,y, system. Note that the x
coordinate of the bars is d,, , and the y coordinate is d,, ;. The normalized distances of the bars
from the neutral axis are expressed as

dyi=d, o —T (47)

where d .« 1s the y, coordinate of the kth type ¢ bar. The contribution of the reinforcement bars is

n
Nr . O-Vat,k
n,.= D2 S =a,.
fe

k=1 fyr
n
m _ Mur,j - ZR
ur,j — - Y
J D3fcf pe=

(J=x») (48)
Gr) 9 g .
fz k dj’k,
vr

If the RC circular section includes an encased structural steel section, the ultimate bearing
capacity of the contribution of the steel section is calculated as in Section 5.3.
9. Analysis

It is now possible to construct the m,, — m,, and (ﬁuy —¢,, curves for specific values of n and v.
The numerical procedure comprises three levels:
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(1) The range of 0 < v < x/2 is divided into the appropriate number of angles v so each value
of v provides one point of the m,, — m,, and ¢,, — @, curves

(2) For each value of v, the value of X, is obtained by imposing equilibrium between assigned
force (n) and ultimate load (n,), i.e., n =n,

(3) When the value of x, is determined, the other parameters can be obtained and it is
possible to calculate m,,, m,,, ¢, and (p?uy

For item (2) in the preceding list, increasing the value of X, increases n,. Therefore, for the first
iteration, a very low value of x, can be considered; for example A (sinv + cosv) (Fig. 7) for the
rectangular section and A for the circular section. The value of n,is obtained by summing Egs.
(28a)-(33a)-(36a)

n,=n,+n,+n, (49)
The normalized ultimate moments in item (3) are

m,_=m,_._+m, _+m m, =m, . +m,__ +m (50)

ux uc,x ur,x us,x > uy uc,y ur,y us,y

which are the results of summing Egs. (28b)-(33b)-(37). The components of the dimensionless
curvature are

S G, = (1)
Xe

As in Section 3, the analysis assumes the limit state of a section and the ultimate strain of the
compressed concrete at the farthest fiber from the neutral axis reaches ¢.,. Nevertheless, if rupture
of the reinforcement at the farthest tensile fiber occurs when the maximum strain value of the
compressed concrete is lower than &, the procedure should be revised as follows:

e For a specific value of angle v, corner bar 3 in Fig. 7 (rectangular section) is subjected to
maximum tensile strain ¢,, with the normalized value

(Er = _/urar,c (52)
e For each value of X_, the normalized curvature is
~ fur 'ar,c
¢u == (53)
dn,c,3
where Jn,cﬁ is the normalized (negative) distance of corner bar 3 from the neutral axis.
e The maximum strain for the compressed concrete is lower than x. and equals
Eemax = Pue (34)

All previous expressions are modified by substituting £ for u,.

c,max
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This modification is for a rectangular section. For a circular section, the procedure is revised

for the type p; reinforcing bar in Fig. 12. Thus, d, ., in Eq. (53) is substituted for d, ,, to obtain
the normalized curvature.

10. Validation and effectiveness of proposed formulation

To provide validation and effectiveness of the proposed method, a concrete encased steel
column analyzed by Chen and Lin (2006), namely SRC2, is considered as shown in Fig. 13(a). To
demonstrate the effectiveness of the normalized formulation, another cross-section with the same
normalized parameters is adopted as shown in Fig. 13(b). Considering the concrete core described
by the centroid line of the transverse reinforcement, the following normalized parameters are
obtained for the cross-section in Fig. 13(a): b = h = 280—-2(18+4) = 236 mm, hence: £ = h/b =1
and A=c/b=(4+8)/236 = 0.05. The contribution of longitudinal reinforcement bars is considered
symmetric which is fairy equal to the original cross-section analyzed by Chen and Lin (2006).
Consequently: L, =L, =(1-2x0.051)/3 = 0.299, where n; = n, = 2. For H-shape steel section: ¥/
=150/236 =0.636, D =130/236 =0.551, T=10/236 = 0.042 and S = 7/236 = 0.030.

The value of f°, is 28.1 MPa for unconfined concrete. By assuming the factor 1.24 for confined
concrete for SRC2, f', is obtained 34.8 MPa. The values of f,, and f,, are considered equal to 350
MPa and 296 MPa, respectively. For simplicity, the stress-strain relationship of H-shape steel
section is considered linear up to the yielding point, and a direct line for post-peak branch. The
longitudinal reinforcement ratios with ¢, = 16 mm are A4,./bh = 0.014 and A4,./bh = A4,,/bh = 0.007.
Accordingly, w,. = 0.144 and w,, = @,,= 0.072.

For the cross-section in Fig. 13(b), the normalized geometric parameters are: b = h = 250 —
2(19 +3) =206 mm, =1, 1= (3 +7)/206=0.048 and L, =L, =(1-2x0.048)/3 = 0.301. The
values of W, D, T and S are approximately equal to those for cross-section in Fig. 13(a). The
longitudinal reinforcement ratios according to ¢, = 14 mm are 4,./bh = 0.014 and 4,,/bh = A,,/bh =
0.007, therefore, the values of w,., ®,, and w,;, are equal to those of the cross-section in Fig. 13(a).
If the latter turn out not to be equal, the values of /. and f;, can be considered different from those
of cross-section in Fig. 13(a) to obtain a same normalized geometric and mechanical parameters.
The only difference between two cross-sections is the value of parameter 4 which can be
considered as a mean value equal to A = 0.050. Hence, both cross-sections can be considered to
belong to the same class of composite sections with the equal expected values for dimensionless
ultimate curvature and bending moment.

Assuming that the transverse reinforcement has a good effect on the confinement, The
following values for the stress-strain relationship of concrete (Eq. (13)) are considered: o = 0.7, 7,
= —0.1, u. = 3.0 and those for reinforcement (Eq. (14)) are considered: #, = 0.01 and . = 20. By
adopting the values of 1/200 and 0.45 for /4 and 0., respectively, the interaction curves for
various axial loads using the proposed formulation can be obtained as shown in Fig. 14(a). The
moment domains for N = 1000 kPa are provided by a graphical interface program called
myBiaxial, which has already been presented by Charalampakis and Koumousis (2008), and the
results are compared with the results of the proposed method as shown in Fig 14(b). The axial load
response provided by Charalampakis and Koumousis (2008) itself, follows the experimental curve
provided by Chen and Lin (2006) fairy well.
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Fig. 13 Concrete encased steel composite section (Distances in mm)
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Fig. 14 Interaction curves for class of concrete encased steel composite section

11. Conclusions

This study determined the ultimate curvature and moment domains for RC columns with or
without an encased steel section. The cross-sections were rectangular or circular with
symmetrically longitudinal reinforcement bars under biaxial loading. The study showed that the
dimensionless formulation decreased the amount of computation required by the computer
analysis programs. In addition, one result could be used for sections with the same normalized
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parameters. An exact stress-strain relationship was used for the contribution of the materials to
improve the accuracy of analysis; this allowed the use of nonlinear static and nonlinear dynamic
analysis. This approach decreased the difficulty of nonlinear biaxial bending analysis by adopting
an iterative procedure and defining the exact polynomial expressions for the stress-strain
relationship of the steel and concrete.
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Appendix: Basic surface integrals

As shown in Fig. 13, expressions L4 and L,; are described as

(x, —x;) (x3 —x,)
14 =—4 1 3= 32 V3a > V12
(V3a = V12) (V3 —y12)
Thus, the basic surface integral of trapezoid j is
. Y [ pX2+Lys(Y=y12)
V,,,=j’(j X ’"dx)d
& Y2 \ ¥+ Ly (y=y12) ( Y ) Y

Consequently

1

j m m 1 m— m
l(jo,m) :m(lfzs _L14)(J’34+2 _J/12+2) +m(x2 =Ly yiy =X — Ly yin) (3 ! _J’12+1)

1
A= E(L%S - L%4)’
B =(xy = Lyy.y1p)-Loy — (X = Liy-ypp) Ly,

1
C= E((xz ~Lyy-yip)* = (%~ L14-J’12)2)7

) 1 1 1
Ly =——= A5 =) +——= B4 = ™)+ ——C.(05"
m+3 n+2 n+l
(X45 Y34) (X3, Y34)
(X4, Y12) (X3, Y12)

Fig. 15 Trapezoid





