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Abstract.  A numerical procedure is presented that provides ultimate curvature and moment domains for 
composite rectangular and circular cross-sections of reinforced concrete columns with or without an 
embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the 
concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased 
structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel 
section. A dimensionless formula is proposed that can be used for any section with similar normalized 
geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section 
(resistance load and moments) is calculated separately so that the influence of each geometric or mechanical 
parameter on the bearing capacity can be investigated separately. 
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1. Introduction 

 
In framed composite or reinforced-concrete (RC) structures where columns are subjected to 

biaxial eccentric loading, the ultimate bearing capacity of the cross-sections is critical to the total 
strength of the structure. Technical codes (Eurocode 2 2005, ACI 318 2008) are useful for the 
analysis and design of common RC rectangular and circular members with symmetric distributions 
of longitudinal reinforcement because they assume that the bending moment components act 
separately along the principal axes. Simplifying the assumptions used in technical codes for 
stress-strain diagrams of materials can reduce the accuracy of the analysis. To achieve a precise 
analysis expressing the real state of stress, both axial loading and biaxial bending must be 
considered. 

Numerous methods have been proposed to reduce these deficiencies and increase the accuracy 
of the analysis. Rotter (1985) presented an inelastic analysis of a composite section subjected to 
axial loading and biaxial bending based on Green’s theorems. This method allowed for exact 
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determination of stress resultants where the stress-strain relation of the materials was integrable for 
a given set of deformations and the section boundary was rectilinear. Rodriguez and Aristizabal- 
Ochoa (1999) used the Gauss integral method for equilibrium, a nonlinear stress-strain relationship 
for concrete, and a multi-linear elastoplastic relationship for reinforcement bars to evaluate the 
theoretical ultimate strength of RC short columns subjected to axial loading and biaxial bending. 

Chen et al. (2001) presented an iterative Quasi-Newton procedure based on the Regula-Falsi 
numerical scheme. They evaluated the stress resultants for concrete by integrating the concrete 
stress-strain curve over the compression zone and using the fiber element method for the stress 
resultants of the encased structural steel and reinforcement. The procedure provided an efficient 
and accurate analysis for short composite columns of arbitrary cross-sections. 

Bonet et al. (2004) presented an integration procedure to analyze arbitrary RC sections 
subjected to axial forces and biaxial bending. The method was used for a general stress field for 
sections where the stress field was uniform in at least one direction. Bonet et al. (2006) also 
presented a comparative study to design RC sections under biaxial bending based on different 
integration methods for stress. A numerical procedure for analyzing composite and RC sections of 
arbitrary polygonal shapes was presented by Sousa and Muniz (2007). Their method applied an 
analytical integration of a cross section. 

Charalampakis and Koumousis (2008) presented a method based on analytically basic surface 
integrals that provided the ultimate strength of arbitrary composite sections under axial loading 
and biaxial bending. In this method, the geometry of a cross-section was described by curvilinear 
trapezoids having straight or curved edges. Fossetti and Papia (2012) proposed a numerical 
procedure for analysis of RC rectangular sections with symmetrical longitudinal reinforcement 
bars subjected to axial loading and biaxial bending. 

The present study proposes a new iterative procedure to analyze rectangular and circular 
cross-sections of steel-reinforced concrete composite columns under axial loading and biaxial 
bending. It uses a basic surface integral algorithm for encased structural steel and the fiber method 
for concrete and reinforcements. The sections are symmetric with respect to the principal axes and 
the ultimate curvature and moment domains are obtained. A dimensionless formula is adopted for 
sections having the same normalized geometric and mechanical parameters where one analysis 
result can be used. This simplifies and decreases the computational cost over dimensional values. 
 
 
2. Section geometry and reinforcement arrangement of rectangular section 

 
The expressions and the procedure presented in the following section and proposed in the limit 

state of rectangular section and the material constitutive laws of concrete and reinforcement are 
those expressed by Fossetti and Papia (2012) which are used in this study. 

The x, y Cartesian system is the orientation of the principal axes at the centroid of a section. 
The rectangular section under study has a width b and height h. The distribution of the longitudinal 
reinforcement bars is symmetric with respect to the principal axes and consisted of (Fig. 1): 

 
● 4 bars of equal diameter at each corner of the section having a total area Arc, 
● nb bars of equal diameter at the top and bottom of the section parallel to b and between the 

corner bars having a total area Arb, and 
● nh bars of equal diameter at the left and right sides of the section parallel to h and between 

the corner bars having a total area Arh. 
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Fig. 1 Ultimate state of composite rectangular section under axial loading and biaxial bending 
 
 

The dimensionless parameters for the distribution of reinforcement are 
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where fyr is the yielding stress of the reinforcement bars, f ′c is the cylindrical strength of the 
concrete and b × h is the area of the concrete core. The reinforcement ratio for the section (ACI 
318 2008, Eurocode 2 2005) is expressed as 
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The distance between the centroid of the reinforcement bars and the closest section surface in 

directions b and h is denoted by c. The dimensionless parameters denoting the section geometry 
are the ratios 
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and for the steel section are 
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where bf is the flange width, hw is the web height, tf is the flange thickness, and tw is the web 
thickness of the structural steel as shown in Fig. 1. 
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3. Limit state of rectangular section 
 

The basic assumptions used in this method are: 
 

● Concrete tensile strength is neglected and plane sections remain planar (strain compatibility) 
● Limit state of the section is assumed and the outermost concrete compression fiber equals 

the ultimate strain of the concrete at the end of the post-peak branch describing the softening 
behavior (εcu) 

 
Fig. 1 shows a limit state for a rectangular section under axial loading and biaxial bending. The 

location of the neutral axis is determined by angle v and distance xc (the distance from the neutral 
axis to the point of maximum shortening strain). Dividing xc by b provides the dimensionless value 
 

b

x
x c

c                                (5) 

 

Other section dimensions are normalized with respect to b and all strains with respect to εco 

(concrete strain corresponding to f ′c). The normalized parameters are denoted by superscripts (−) 
for length and distance and (~) for strain and curvature. 

The normalized center-to-center distance of the reinforcing bars in directions b and h are 
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φu is a curvature normalized with respect to εco as 
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where 
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εcu denotes the ultimate strain of the concrete. By considering N as the average compressive 
axial force, the normalized ratio is 
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The resistance moment and domain of the ultimate curvature can be obtained in dimensionless 
form for any angle v within range 0 ≤ v ≤ π / 2. Thus, the normalized ultimate moments along the 
principal axes are 
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and the dimensionless curvature components are 
 

vv uuyuux sin~~cos~~                          (11) 
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4. Material constitutive laws 
 
4.1 Confined concrete 
 
The concrete strain at any point (εc) is normalized with respect to εco. Consequently, the 

dimensionless stress of concrete is defined as 
 

ccc
c

c H
f

f
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
~0)~(                         (12) 

 

where H is a function of .~
c  Eq. (12) can be expressed by one function (Sargin 1971, Mander et 

al. 1988) or two analytical expressions (Saatcioglu and Razvi 1992, Vallenas et al. 1997). One 
expression denotes the ascending branch from zero to f ′c (0 ≤ c

~
 ≤ 1) and the other denotes the 

post-peak branch (1 ≤ c
~

 ≤ μc) in the stress-strain diagram of the concrete as shown in Fig. 2. 
Adopting analytical expressions (Saatcioglu et al. 1995, Campione et al. 2010) yields 
 

 1~0)~~2()~( 2  ccccH                      (13a) 
 

cccccH   ~0)1~(1)~(                   (13b) 
 
where ηc is the softening modulus of post-peak branch normalized with f ′c / εco and α depends on 
the confinement effects. If the transverse reinforcement has a good effect on the confinement, α, ηc 
and μc can be considered to be 0.7, -0.1 and 3.0, respectively (Fossetti and Papia 2012). Otherwise, 
these values should be obtained analytically. 
 

4.2 Steel reinforcement 
 
The stress-strain relationship of reinforcement is considered to be linear up to the yielding point 

(fyr) corresponding to ± εyr. After that, it is replaced up to rupture strain (± εur) by a linear branch 
having a constant slope equal to the hardening modulus Eh, as shown in Fig. 3. Based on these 
assumptions, the dimensionless stress of reinforcement is 

 
 

Fig. 2 The normalized stress-strain diagram of concrete 
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Fig. 3 The normalized stress-strain diagram of steel 
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In Eq. (15), Eh is the average hardening modulus and Es is the modulus of elasticity. In addition, 

Eq. (14b) can be expressed as an accurate expression (Chang and Mander 1994) instead of a 
bilinear relationship. Since all the strains are normalized with respect to εco, another expression is 
required to relate the characteristic strain values of concrete and reinforcement. The latter is 
defined by 
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Note that the compressive stresses and shortening strains are considered to be positive values 
and tensile stresses and elongations are assumed to be negative for all materials. 

 
4.3 Structural steel 
 
The xn axis is considered to be parallel to the neutral axis; therefore, the rotated xnyn Cartesian 

system can be defined at the centroid of the section. All the coordinates in the xy Cartesian system 
can be expressed in the rotated xnyn Cartesian system by the rotational transformation 
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where angle v is assumed to be positive in the clockwise direction. The normalized strain at any 
point on a steel section can be expressed as a function of distance from the xn axis 
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3,,cnd  and 3,,cxn
d  are the normalized distances of corner bar 3 from the neutral and xn axes, 

respectively. As shown in Eq. (17), the x, y coordinates can be transformed into xn, yn coordinates. 
This can be done for any value of v. It is assumed that any segment on the stress-strain diagram of 
steel is expressed by a cubic polynomial expression. Therefore, the normalized stress-strain 
relation at any point of the steel section is 
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where the coefficient ai is known from the properties of the steel and specified by arbitrary points 
on the stress-strain diagram. Substituting Eq. (18) into Eq. (21) obtains 
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5. Contribution of materials to the bearing capacity of rectangular section 
 
5.1 Contribution of concrete core 
 
The compressed region in the concrete is divided into Nst strips parallel to the neutral axis. All 

the strips have the same normalized height 
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and are numbered from 1 to k with the first strip being the farthest fiber of the compressed 
concrete from the neutral axis. Fig. 4 shows the typical division and numbering of the strips. The 
concrete contribution to the stress is measured at mid-height of the strips at its centroid (Gk). The 
kth strip has the normalized length kl  and the normalized height is 
 

hkek )5.0(                                (25) 
 

The area of each strip is hek .  normalized with respect to b2. The normalized distances of the 
strips from the neutral axis are expressed by 
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These normalized distances are presented in Table 1 where vl  is equal to 
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Four cases are considered in Fig. 5: 
 

 Case 1: Fig. 3(a)   if   veve kk cos&sin   
 Case 2: Fig. 3(b)   if   veve kk cos&sin   
 Case 3: Fig. 3(c)   if   veve kk cos&sin   
 Case 4: Fig. 3(d)   if   veve kk cos&sin   

 
The contribution of the concrete core to the strength of the section (the normalized axial load) 

and the ultimate moments along the x and y axes are 
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The expression fc,k / f ′c in Eq. (28) is calculated using Eq. (12). The strain at any point on the 

concrete can be stated as 
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5.2 Contribution of reinforcement 
 
The normalized distances of the reinforcement bars are defined by ktad ,,  where 
 

● a: coordinate axes (n, x, y, xn, yn) 
● t: type of reinforcement; corners (c), top of section in direction b (bu), bottom of section in 

direction b (bl), left side of section in direction h (hl), right side of section in direction h (hr) 
● k: number of bars; 1, 2,…, 4 for corner bars, 1, 2,…, nb for t = bu, and t = bl, 1, 2,…, nh for t 

= hr and t = hl 
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Fig. 4 Strip model of compressed concrete region in rectangular section 
 
 
 

 
(a) (b) 

  

 
(c) (d) 

Fig. 5 Possible cases of position for mid-height segment of kth strip of compressed concrete in 
rectangular section 
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Table 1 Expressions of kxk dl ,  ,  and kyd ,  for kth strip in compressed concrete 

case kl  kxd ,  kyd ,  

1 )2sin(/2 vek  )sin(5.0 vlk  )cos(5.0 vlk  

2 1 / cos v vevl kk cos/)sin(5.0   0 

3 ξ / sin v 0 vevl kk sin/)cos1(5.0   

4 )2sin(/)(2 vel kk   )sin(5.0 vlk   )cos(5.0 vlk   

 
 
The stress (σr) and strain (εr) of the kth bar for type t are denoted as σr,t,k and εr,t,k, respectively. 

Fig. 6 shows the type and number of bars and Fig. 7 shows the normalized distances of the corner 
bars from the neutral axis. In Fig. 7, the latter is expressed as 
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and the normalized distances of the corner bars from the x and y axes are 
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Normalized distances for other types of reinforcement are shown in Table 2. For a specific 

value of angle v, if cx  is known, the dimensionless curvature can be obtained from Eq. (7) and the 
normalized strain of the kth bar of type t as 
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Then, σr,t,k / fyr can be calculated using Eq. (14). The contribution of reinforcement is 
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Fig. 6 Type and numbering of reinforcement bars in rectangular section 
 
 

 

Fig. 7 Normalized distances of corner bars from the n, x, and y axes in rectangular section 
 
 

Table 2 Normalized distances of kth bar for type t from the n, x and y axes 

type ktnd ,,  ktxd ,,  ktyd ,,  

t = bu  vLkd bcn sin1,,   0.5(ξ − 2λ) bcy Lkd 1,,  

t = bl   vLkd bcn sin4,,   −0.5(ξ − 2λ) bcy Lkd 1,,  

t = hr  vLkd hcn cos1,,   hcx Lkd 1,,  0.5(1 − 2λ) 

t = hl  vLkd hcn cos2,,   hcx Lkd 1,,  −0.5(1 − 2λ) 
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5.3 Contribution of structural steel 
 
The contribution of steel is calculated using basic surface integrals. In this method, the steel 

section is described by 16 nodes and is divided by a line parallel to the neutral axis that passes 
through a node (Fig. 8(a)). In this way, the steel section is divided into n curvilinear trapezoids 
where the top and bottom edges are lines parallel to the neutral axis, although the left and right 
edges can be either a straight line or a circular arc. This procedure is repeated for each value of 
angle v. The basic surface integral of trapezoid j is described in the xnyn coordinate system by 
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where q and m are specific integers. 

Charalampakis and Koumousis (2008) described the 16-node steel section that includes the 
roots (connecting flange to web). To simplify and decrease the computation cost, the roots of the 
steel are ignored and the section is described by 12 nodes (Fig. 8(b)). Consequently, all trapezoids 
have straight linear edges; otherwise, the trapezoids may consist of convex or concave edges, 
which make the integrals more complex. As shown in Fig. 8(b), nodal coordinates are initially 
expressed in an xy Cartesian system, and then transformed into a rotated xnyn Cartesian system 
using Eq. (17). Table 3 shows the normalized coordinate of nodes in the xy system. 

 
 

Table 3 Normalized coordinate of nodes in steel section 
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Fig. 8 Decomposition of steel section into curvilinear trapezoids 
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Eq. (21) can be used for each segment of the stress-strain diagram (Fig. 9) for a trapezoid in a 
specific segment of the steel stress-strain diagram. For example, a cubic segment is formed by four 
points and a linear segment by two points. If a trapezoid includes a transition between segments of 
the stress-strain diagram, it is divided into two by a line parallel to the neutral axis. Consequently, 
all trapezoids are covered by a single segment. Integration of the stress field over the area of the 
trapezoids develops the normalized axial load and moments of each trapezoid along the xn and yn 

axes 

   















3

0
),0(

3

0
  

3

0

).()(..
i

j
ii

i
jtrapezoid

i
ni

jtrapezoid
i

i
ni

c

j
sj

s IbdAybdAyb
fbh

N
n      (35a) 

 

 
 

  

 
















3

0 )1,0(

3

0  

1

 

3

02

,
,

).()(.

 ).(

i

j
iii jtrapezoid

i
ni

jtrapezoid i n
i
ni

c

j
xusj

xus

IbdAyb

dAyyb
fhb

M
m n

n

               (35b) 

 

 

  

























3

0
),1(

3

0
 

 

3

0
2

,
,

).().(.

 ).(

i

j
ii

i
jtrapezoid

nn
i
ni

jtrapezoid
i

n
i
ni

c

j
yusj

yus

IbdAxyyb

dAxyb
fhb

M
m n

n

                 (35c) 

 
The expressions j

i
j

i II )1,0(),0(  ,   and j
iI ),1(  are described in Appendix. By summing the stress 

resultants of all trapezoids, the overall axial load and bending moments are 
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Fig. 9 Stress-strain diagram of steel 
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Eq. (36a) is the total normalized axial load of the steel section. The ultimate moments along the 
x and y axes are obtained by the inverse rotational transformation of Eq. (17) 
 




























n

n

yus

xus

yus

xms

m

m

vv

vv

m

m

,

,

,

,

cossin

sincos
                      (37) 

 
 

6. Section geometry and reinforcement of RC circular section 
 
The circular section has diameter D. The distribution of the longitudinal reinforcement bars is 

symmetric to the principal axes and comprises nR bars of the same diameter and a total area Ar. 
The distance between the centroid of the reinforcement bars and the closest concrete surface is 
defined by c. In this section, all lengths and distances are normalized with respect to D. The 
dimensionless parameter corresponding to the distribution of reinforcement is 
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where Ac is the area of the concrete core. The ratio of reinforcement in the cross-section is 
expressed by 

yr

c
rr f

f 
                                (39) 

 

and the dimensionless parameter denoting the section geometry is 
 

D

c
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7. Limit state of circular section 
 
Fig. 10 shows a limit state for a circular section under axial loading and biaxial bending. The 

value of xc is normalized with respect to D 
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and the normalized curvature is 
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The stress-strain relation of materials is the same as for Section 4; thus, the normalized axial 

load and components of moment are expressed as 
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8. Contribution of materials to the bearing capacity of circular section 
 
8.1 Contribution of concrete core 
 
The division and numbering of the strips are shown in Fig. 11. The dimensionless parameters 

of the strips are described as 
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Fig. 10 Ultimate state of RC circular section under axial loading and biaxial bending 
 
 

 

Fig. 11 Strip model of compressed concrete region in circular section 
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and the normalized distances of the strips from the n, x and y axes are shown in Table 4. The 
contribution of the concrete is described as 
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Table 4 Normalized distances of kth strip from the n, x and y axes in compressed concrete 

Strip knd ,  kxd ,  kyd ,  

k hkxc   vek cos)5.0(   vek sin)5.0(   
 
 
 
8.2 Contribution of reinforcement 
 
Fig. 12 shows the numbering of the bars. Bars placed on the x and y axes are classified as type 

p. Other bars are described in four zones as types a to d. Table 5 shows the normalized distances 
of the type p bars and Table 6 shows the normalized distances of the other types. The normalized 
distance between the neutral axis and the xn axes is described by 
 
 
 

 

Fig. 12 Type and numbering of reinforcement bars in circular section 
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Table 5 Normalized distances of bars for type p from the x and y axes 

Type of reinforcement kpxd ,,  kpyd ,,  

p1 0.5 − λ 0 

p2 0 − (0.5 – λ) 

p3 − (0.5 – λ) 0 

p4 0 0.5 − λ 

 
 

Table 6 Normalized distances of kth bar for types a to d from the x and y axes 

Type of reinforcement kpxd ,,  kpyd ,,  

a ks  )1( kna
s  

b ks  )1(  knb
s  

c ks  )1(  knc
s  

d ks  )1( knd
s  

 
 

cxr  5.0                                (46) 
 

The coordinates of the bars are transformed by Eq. (17) into an xnyn system. Note that the x 
coordinate of the bars is ktyd ,,  and the y coordinate is .,, ktxd  The normalized distances of the bars 
from the neutral axis are expressed as 
 

rdd ktxktn n
 ,,,,                            (47) 

 
where ktxn

d ,,  is the yn coordinate of the kth type t bar. The contribution of the reinforcement bars is 
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If the RC circular section includes an encased structural steel section, the ultimate bearing 

capacity of the contribution of the steel section is calculated as in Section 5.3. 
 
 

9. Analysis 
 
It is now possible to construct the muy – mux and uxuy  ~~   curves for specific values of n and v. 

The numerical procedure comprises three levels: 
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(1) The range of 0 ≤ v ≤ π / 2 is divided into the appropriate number of angles v so each value 
of v provides one point of the muy – mux and uxuy  ~~   curves 

(2) For each value of v, the value of cx  is obtained by imposing equilibrium between assigned 
force (n) and ultimate load (nu), i.e., n = nu 

(3) When the value of cx  is determined, the other parameters can be obtained and it is 
possible to calculate mux, muy, ux~  and uy~  

 
For item (2) in the preceding list, increasing the value of cx  increases nu. Therefore, for the first 

iteration, a very low value of cx  can be considered; for example λ (sinv + cosv) (Fig. 7) for the 
rectangular section and λ for the circular section. The value of nu is obtained by summing Eqs. 
(28a)-(33a)-(36a) 
 

srcu nnnn                               (49) 
 

The normalized ultimate moments in item (3) are 
 

yusyuryucuyxusxurxucux mmmmmmmm ,,,,,, ,              (50) 

 
which are the results of summing Eqs. (28b)-(33b)-(37). The components of the dimensionless 
curvature are 
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As in Section 3, the analysis assumes the limit state of a section and the ultimate strain of the 

compressed concrete at the farthest fiber from the neutral axis reaches εcu. Nevertheless, if rupture 
of the reinforcement at the farthest tensile fiber occurs when the maximum strain value of the 
compressed concrete is lower than εcu, the procedure should be revised as follows: 

 

● For a specific value of angle v, corner bar 3 in Fig. 7 (rectangular section) is subjected to 
maximum tensile strain εru with the normalized value 

 
crrr ,                              (52) 

 
● For each value of ,cx  the normalized curvature is 
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where 3,,cnd  is the normalized (negative) distance of corner bar 3 from the neutral axis. 

● The maximum strain for the compressed concrete is lower than μc and equals 
 

cuc x ~
max,                              (54) 

 
All previous expressions are modified by substituting max,c  for μc. 
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This modification is for a rectangular section. For a circular section, the procedure is revised 
for the type p3 reinforcing bar in Fig. 12. Thus, 3,,cnd  in Eq. (53) is substituted for 3,, pnd  to obtain 
the normalized curvature. 

 
 

10. Validation and effectiveness of proposed formulation 
 
To provide validation and effectiveness of the proposed method, a concrete encased steel 

column analyzed by Chen and Lin (2006), namely SRC2, is considered as shown in Fig. 13(a). To 
demonstrate the effectiveness of the normalized formulation, another cross-section with the same 
normalized parameters is adopted as shown in Fig. 13(b). Considering the concrete core described 
by the centroid line of the transverse reinforcement, the following normalized parameters are 
obtained for the cross-section in Fig. 13(a): b = h = 280 – 2 (18 + 4) = 236 mm, hence: ξ = h / b = 1 
and λ = c / b = (4 + 8) / 236 = 0.05. The contribution of longitudinal reinforcement bars is considered 
symmetric which is fairy equal to the original cross-section analyzed by Chen and Lin (2006). 
Consequently:  hb LL (1 – 2 × 0.051) / 3 = 0.299, where nb = nh = 2. For H-shape steel section: W 
= 150 / 236 = 0.636, D = 130 / 236 = 0.551, T = 10 / 236 = 0.042 and S = 7 / 236 = 0.030. 

The value of f ′c is 28.1 MPa for unconfined concrete. By assuming the factor 1.24 for confined 
concrete for SRC2, f ′c is obtained 34.8 MPa. The values of fyr and fys are considered equal to 350 
MPa and 296 MPa, respectively. For simplicity, the stress-strain relationship of H-shape steel 
section is considered linear up to the yielding point, and a direct line for post-peak branch. The 
longitudinal reinforcement ratios with ϕl = 16 mm are Arc/bh = 0.014 and Arc/bh = Arh/bh = 0.007. 
Accordingly, ωrc = 0.144 and ωrb = ωrh = 0.072. 

For the cross-section in Fig. 13(b), the normalized geometric parameters are: b = h = 250 – 
2(19 + 3) = 206 mm, ξ = 1, λ = (3 + 7) / 206 = 0.048 and  hb LL (1 – 2 × 0.048) / 3 = 0.301. The 
values of W, D, T and S are approximately equal to those for cross-section in Fig. 13(a). The 
longitudinal reinforcement ratios according to ϕl = 14 mm are Arc/bh = 0.014 and Arb/bh = Arh/bh = 
0.007, therefore, the values of ωrc, ωrb and ωrh are equal to those of the cross-section in Fig. 13(a). 
If the latter turn out not to be equal, the values of f ′c and fyr can be considered different from those 
of cross-section in Fig. 13(a) to obtain a same normalized geometric and mechanical parameters. 
The only difference between two cross-sections is the value of parameter λ which can be 
considered as a mean value equal to λ = 0.050. Hence, both cross-sections can be considered to 
belong to the same class of composite sections with the equal expected values for dimensionless 
ultimate curvature and bending moment. 

Assuming that the transverse reinforcement has a good effect on the confinement, The 
following values for the stress-strain relationship of concrete (Eq. (13)) are considered: α = 0.7, ηc 
= −0.1, μc = 3.0 and those for reinforcement (Eq. (14)) are considered: ηh = 0.01 and μr = 20. By 
adopting the values of 1/200 and 0.45 for h  and ∂r,c, respectively, the interaction curves for 
various axial loads using the proposed formulation can be obtained as shown in Fig. 14(a). The 
moment domains for N = 1000 kPa are provided by a graphical interface program called 
myBiaxial, which has already been presented by Charalampakis and Koumousis (2008), and the 
results are compared with the results of the proposed method as shown in Fig 14(b). The axial load 
response provided by Charalampakis and Koumousis (2008) itself, follows the experimental curve 
provided by Chen and Lin (2006) fairy well. 
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(a) Specimen 280 × 280 mm (b) Specimen 250 × 250 mm 

Fig. 13 Concrete encased steel composite section (Distances in mm) 
 
 

(a) Normalized interaction curves for various axial loads (b) Moment domains for N=1000 kN 

Fig. 14 Interaction curves for class of concrete encased steel composite section 
 
 
 
11. Conclusions 

 
This study determined the ultimate curvature and moment domains for RC columns with or 

without an encased steel section. The cross-sections were rectangular or circular with 
symmetrically longitudinal reinforcement bars under biaxial loading. The study showed that the 
dimensionless formulation decreased the amount of computation required by the computer 
analysis programs. In addition, one result could be used for sections with the same normalized 
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parameters. An exact stress-strain relationship was used for the contribution of the materials to 
improve the accuracy of analysis; this allowed the use of nonlinear static and nonlinear dynamic 
analysis. This approach decreased the difficulty of nonlinear biaxial bending analysis by adopting 
an iterative procedure and defining the exact polynomial expressions for the stress-strain 
relationship of the steel and concrete. 
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Appendix: Basic surface integrals 
 
 
As shown in Fig. 13, expressions L14 and L23 are described as 
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Thus, the basic surface integral of trapezoid j is 
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Fig. 15 Trapezoid 
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