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Abstract.  In this paper, optimization of cylindrical shells under external pressure to minimize its weight 
has been studied. Buckling equations are based on standard of ABS underwater vehicles. Dimension and 
type of circumferential stiffeners, and its distance from each other are assumed as variables of optimization 
problem. Considering the extent of these variables, genetic algorithms have been used for optimization. To 
study the effect of hydrostatic pressure on the shell and its fabrication according to the existing standards, 
geometrical and construction as well as stress and buckling constraints have been used in optimization 
algorithm and also penalty functions are applied to eliminate weak model. Finally, the best model which has 
the minimum weight considering the applied pressure has been presented. 
 
Keywords:    hydrostatic pressure; genetic algorithms; stiffener ring; buckling; cylindrical shell 
 
 
1. Introduction 

 
Cylindrical shells are widely used in different industries. In marine industries, these shells are 

used for construction of underwater vessels. Cylindrical shells are under hydrostatic pressure when 
placed under deep water. For shells under hydrostatic pressure, buckling is very important because 
sometimes it occurs sooner than the final strength. To increase tolerable limit of buckling pressure 
in cylindrical shells under external hydrostatic pressure, stiffener rings are used in definite 
distances. These rings sometimes have been used inside the shell and sometimes out of it. 

Extensive studies have been conducted on the buckling of cylindrical shells under hydrostatic 
pressure. Ross (2001) mentioned that if long cylindrical or conical shells had no stiffener rings, 
their buckling resistance under external hydrostatic pressure reduced considerably. If stiffener 
rings are not strong enough or shell is very long, the entire shell can be destroyed. This kind of 
destruction was recognized as general instability by Kendrick (1965). 

In fact, it is well known that an appropriate design for the circumferential stiffeners and shell 
skin may permit the structure to carry loads several times higher than the first buckling one. This 
design has shown consequential potential for further weight decrease. On the other hand, the use 
of very effective aluminum alloy structures is currently made possible by validated design 
procedures, analysis methods and by the accessibility of large amount of data. 
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The optimum buckling design of composite and aluminum stiffened plate with several 
stiffeners and loading conditions has been studied by some investigator using different methods. 
Nagendra et al. (1996) recommended an improved genetic algorithm (GA) to find the best 
stacking sequence of the skin and stiffeners laminate, and the stiffener size for minimum weight of 
a composite stiffened panel under buckling constraint. They presented an optimized design with 
weight reduction by about 4%. Bedair (1997) studied the effect of stiffener position on the 
permanence of stiffened plates in compression and plane bending. The results have shown that the 
optimum position for the stiffener depends on the relative proportions of the plate and the stiffener. 
Walker (2002) investigated the effect of stiffener arrangement and boundary conditions on the 
optimal ply angles and the buckling load. 

Todoroki and Sekishiro (2008) presented a stacking sequence optimization to maximize the 
buckling load of blade-stiffened panels with strength constraint using the iterative fractal branch 
and bound method. In this procedure, the strength constraint was executed by a response surface 
method. The results showed that an optimal stacking sequence of the stiffened panel can be 
achieved by this procedure at a low computational cost. Alinia (2005) studied the optimization of 
plate stiffeners subjected to shear load. The study has shown that the optimum geometric 
parameters of the stiffeners are related to the point when the plate buckling shape changes from a 
global mode to local mode. Kang and Kim (2005) investigated the weight optimization of 
composite structures by considering the post-buckling behavior. In order to estimate the 
post-buckling behavior, a nonlinear finite element analysis code was used and the modified genetic 
algorithm was applied as the optimization procedure. 

Hu and Yang (2007) studied the effect of end conditions, curvatures, aspect ratios, thicknesses 
and cutouts on the optimal fiber orientations and optimal buckling loads of composite cylindrical. 
Wang et al. (2010) concentrated on the optimization of a composite plate and a T-section stringer 
stiffened panel for maximizing the buckling load under a given weight. Abdi et al. (2011) studied 
the buckling behavior of optimum laminated composite cylindrical shells subjected to axial 
compression and external pressure. They used GA as optimization algorithm. The number and 
fiber orientation of layers were selected as optimization design variables. Their study had no 
constrain which must be considered. 

Lee et al. (2013) have studied design load optimization of composite sandwich cylinders under 
external hydrostatic pressure and determined that both the buckling and the static material failure 
should be considered in the design of the composite sandwich cylinder. Ghasemi and 
Hajmohammad (2013) used response surface method (RSM) and GA to optimize stacking 
sequences of laminated composite materials and increase buckling capacity load. Walker and 
Tabakov (2013) have proposed and demonstrated the optimal design of engineering structures with 
manufacturing tolerances as design variables and used a GA to obtain the optimize results. 

All these previous studies have contributed to useful guidelines, which help the design of 
stiffened shells under some loading conditions. However, there is no research focused on the 
optimum design for the minimum weight of cylindrical stiffened shell under buckling and strength 
criteria or geometrically constraint such as margin of displacement between stiffeners and some of 
continuous and discrete variables such as thickness of shell, displacement between stiffeners, size 
of stiffener and also kind of stiffeners like I, H, L, T and S- section profiles. 

Among different optimization designs, the method of consecutive linear programming has been 
successfully implemented for many large scale structural problems (Zienkiewicz and Campbell 
1973, Vanderplaats 1984). One of the discrete and continuous optimization techniques, genetic 
algorithm was submitted for the optimization of composite structures, and many researchers 
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represented that GA was a suitable solution to complex optimization problems such as composite 
structures (Nagendra et al.1996, Perry et al. 1997). Above all, weight-minimization is the final 
goal for many researchers because the major inducement for the use of optimization concept is 
weight reduction. 

Optimization with stability constraints has been investigated widely in the past. The researchers 
(Khot et al. 1976, Khot 1983) represented an optimality criterion method for determining the 
minimum weight design of linear space truss structures subjected to stability constraints. Muc and 
Muc-Wierzgoń (2012) have presented an evolution strategy to optimize stacking sequences of 
structures. They deal only thickness and stacking sequence optimization problems for circular 
cylindrical shells subjected to various dynamic and static constraints, respectively. 

In this research, optimization of cylindrical shells under external pressure has been studied to 
minimize its weight. Variables of optimization problem are dimensions, the type of circumferential 
stiffeners and its distance from each other. Therefore, according to the extent of these variables, 
genetic algorithms have been used for optimization. To study the effect of hydrostatic pressure on 
the shell and its fabrication according to the existing standards, geometrical and construction as 
well as stress and buckling constraints have been used in optimization algorithm. Finally, the best 
model which has the minimum weight on the basis of the applied pressure has been presented. 
 
 
2. Mathematical modeling of optimization problem 

 
2.1 Objective function 
 
In this section, mathematical modeling of optimization problem has been obtained. For an 

optimization problem, we search to find the best answer which maximizes or minimizes a function 
called objective function. Problem solving space is limited by constraints that mainly govern 
physics of the problem. Although all answers which are included inside permissible solving space 
are acceptable for designer, designer searches to find the answer which is preferred over other 
answers in terms of the problem type. In the first section of this research, objective function of the 
problem is studied and in the second section, constraints governing of the problem and their 
applications are studied. In this research, the objective function of the problem based on different 
components weight of the shell has been considered. The formed sheet of shell has been reinforced 
by stiffener ring with the same material to increase resistance against external pressure and the 
resulting inductive stresses. In this study, length and external diameter of the shell are constant and 
the optimization is performed on the thickness of shell, type of ring, geometrical dimensions and 
the number of rings. In this section, attempt has been made to obtain objective function of the 
problem after mathematical modeling of reinforcing rings and shell weight functions. 

 
2.1.1 Shell weight function 

Based on hypotheses of the problem, the desired problem is a cylindrical shell which has been 
made by aluminum with fixed external diameter and length. The properties of aluminum are 
presented in Table 1. 

According to the thickness of the shell as the only variable of this equation, shell weight 
function is obtained through Eq. (1) 
 

sssmshell LtDW                                (1) 
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Table 1 Properties of material, Mechanics of materials (1992) 

Density (Kg/m3) Elastic modulus (GPa) Poisson’s ratio Yield strength (MPa) Ultimate strength (MPa)

2710 72.7 0.28 215 305 

 
 

where Dm, ts, Ls and ρs are medium diameter, thickness, length and density of shell, respectively. 
Medium diameter of the shell is substituted by Eq. (2) and in terms of fixed external diameter and 
variable value of the shell thickness 
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For performing optimization process, a case study needs to optimize its variables which can 
effect on the weight of specimen. Also this case will be used in future works. 

By substituting the known values of the specimen which include length of shell, 9 m, external 
diameter of shell, 75 cm, density of shell, 2710 kg/cubic meter , shell weight objective function is 
obtained as Eq. (3) in weight equation 
 

)75.0(24390 2
ssshell ttW                             (3) 

 
2.1.2 Stiffener rings weight function 

Stiffener rings mean a metal section which is connected to a part or the whole of shell under 
pressure as inscribed in circle or circumscribed about circle or continuously or discontinuously and 
locally reinforces power of resistance against inductive stresses. In this study, it is assumed that 
stiffener rings are inserted locally or as circumscribed about the circumference of the shell. In the 
cross section used in rings, they are selected based on the related standards such as Stahl etc. Since 
optimization of the type and geometry of the cross sections has been raised and considering 
aluminum material of the stiffener rings and necessity of formation instead of being purchased 
from the market, all used dimensions in definition of a cross section have been considered as 
variables of the problem. Tables available in Stahl standard have been used to define geometrical 
constraints which control dimensions of the rings. 

To define cross sections of stiffener rings, standards ABS (2012) and ASME sec VIII (2010) 
have been referred. In these references, the following five sections have been recommended for 
reinforcing shell under pressure. As seen in the following figures, four cross sections can be 
defined using five parameters tb1, tb2, tw, h, b. 

By applying this technique, different cross sections with fixed parameters can be defined. This 
work helps us deal with weight functions and constraints and also reduce equations relating to the 
figure effectively. The fifth section is equal to definition of the second section in terms of 
parametric definition and the only difference is definition of moments of inertia. This section is 
shown in Fig. 5. 

Moments of inertia of Sections 1 to 4 can be expressed only by one parametric equation (due to 
symmetry) in which doesn’t hold true for the fifth section. For this reason, this ring will be 
optimized separately by applying equations relating to equations of its moments in constraints 
subprogram and the obtained result will be compared with the most optimal state of other four 
rings. 
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Fig. 1 Design variables of I-section Fig. 2 Design variables of inverse T-section 
 
 

 

Fig. 3 Design variables of T-section Fig. 4 Design variables of flat bar 
 
 

Fig. 5 Design variables of L- section 
 
 
Cross section of all these rings is written in terms of the five parameters and weight function of 

each stiffener ring can be obtained as Eq. (4) by assuming that stiffener ring has circumscribed 
about the desired shell from inside (θ = 2π). 
 

ringringringring lSW                           (4-1) 

 
)()( 2121 bbwbbring ttbttthS                       (4-2) 

 
)2( 0 siring tDRl                          (4-3) 

 
)())(275.0(2710 2121 bbwbbsring ttbttthtW                 (4-4) 
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2.1.3 Final objective function 

Final shell and stiffener rings objective function are obtained from sum of the shell weight and 
ring number functions. In this section, the number of stiffener rings is also included in the 
optimization problem and algorithm selects it. Finally, weight function is obtained as Eq. (5) 
 

)())(275.0(2710)75.0(24390 2121
1

2
bbwbbs

n

i
stotal ttbttthttW  



       (5) 

 
2.2 Constraints governing the problem 
 
Constraints governing of this problem majorly result from the limitations which ABS standard 

(2012) has applied on the stresses inducted due to external pressure in shell and stiffeners. Another 
class of the constraints is geometrical constraints which designer includes for proper and rapid 
direction of algorithm based on standards on limits and dimensions of variables. The following 
figures show the schematic diagram of cylindrical shell and detail of reinforcement rings. 

 
 

 

Fig. 6 Schematic diagram of cylindrical shell, ABS (2012) 
 
 

Fig. 7 Detail of reinforcement rings, ABS (2012) 
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2.2.1 Inter-stiffener strength 

2.2.1.1 von mises buckling pressure for a cylinder 
To calculate inter- stiffener strength, von Mises buckling pressure and yield stress are 

calculated under designed midline. The von Mises buckling pressure can be obtained according to 
Eq. (6) 
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where Pm, ts, R, E, υ are von Mises buckling pressure, thickness of shell, average radius of shell, 
elastic modulus and Poisson’s ratio, respectively. In addition L is larger number between ls and lb, 
that lb is distance among stiffeners and ls is length of compartments. 

Yield stress in midline can be obtained according to Eq. (7) 
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where Py is yield pressure in midline and σy is the minimum yield stress, which is specified for the 
shell. Further, F will be obtained by the appendix equations. 

Inter-stiffener strength (Pc) is obtained according to the following rules and in terms of 
pressures calculated according to Eq. (8) 
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Finally, the highest permissible working pressure is calculated based on inter-stiffener strengths 

according to Eq. (9) 
8.0,1  ca PP                           (9) 

 
Output constraint of this limiting pressure is obtained based on Eq. (10) 

 

1)1( aPPCons                             (10) 
 
2.2.1.2 Longitudinal stresses at stiffeners 
One of the limiting factors in stresses is longitudinal stress at stiffeners which reaches critical 

stress. This stress is defined according to Eq. (11) 
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Permissible working pressure is defined as Eq. (12) for reinforced shell based on inductive 

longitudinal stress at stiffeners 
67.0,2  La PP                         (12) 

 
Finally, output constraint of this section can be expressed according to Eq. (13) 

 

2)2( aPPCons                            (13) 
 
2.2.2 Overall buckling strength 

Limited external pressure is obtained from Eq. (14) according to the overall buckling mode 
between the heavy supporting and reinforcing elements 
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where I is moment of inertia of combined section consisting of stiffener with an effective 

length of shell Le about the centroidal axis of the combined section parallel to the axis of the 
cylinder. Its factors can be calculated according to Eq. (15). 
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where LC is the maximum distance between two heavy stiffeners or one stiffener and 
Quasi-spherical end or the entire length of a shell. In case knobs are quasi-spherical, this length 
also includes 40% of the depth of each knob. Since in this problem a cylindrical shell without knob 
and without using heavy stiffeners is considered, this length is total length of the shell and it is 
equal to 9 m. The parameter nl indicates the number of buckling modes which is an integer of 
larger than or equal to 2 as recommended by standard. Considering application of this parameter in 
the above equation, it can be seen that the smaller the number becomes, the more critical pressure 
increases, therefore, number 2 is selected for this model in the next analyses. Then, permissible 
working pressure is obtained based on general buckling strength according to Eq. (16). 
 

5.0,3  na PP                          (16) 
 

Finally, output constraint of this section can be expressed according to Eq. (17) 
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3)3( aPPCons                            (17) 
 
2.2.3 Stiffener rings strength 

All stiffeners should be connected to shell using the continuous welds. Each stiffeners ring 
which is connected to the cylindrical shell should satisfy all of the following strength formulas 
based on maximum stress in stiffener, stiffener tripping, local buckling of webs and flanges and 
stiffener flexural inertia. These formulations are applied to stiffeners that outer flanges (where 
fitted) are symmetric about the web. But by special consideration, these can be used in other 
geometries. Based on definition available in ABS standard (2012), all stiffeners are among the 
light stiffeners and these stiffeners don’t reduce compartment length of shell. 

 
2.2.4 Limitations of the stress 

Yield pressure (Pt) which includes circumferential (hoop) stress and the bending stress arising 
from possible out-of-roundness are calculated by satisfying Eq. (18) 
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As seen above, yield stress function has been repeated among this equation complicatedly and 

the equation cannot be simply ordered. To solve the equation, the rules relating to solution of the 
equations in Matlab software have been used. In this equation, the distance of the stiffener flange 
from the neutral axis of the combined stiffener and effective shell section Le is denoted “C” and δ 
is allowable out-of-roundness which is equal to 0.5 percent of average radius or 0.005R. 

Pyf is calculated from Eq. (19) 
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where Rf is radius of the shell to vertex of the stiffener ring. Also, the maximum allowable 
working pressure based on stiffener stresses is given by 
 

5.0,4  ta PP                          (20) 
 

Finally, output constraint of this section can be expressed according to Eq. (21) 
 

4)4( aPPCons                            (21) 
 
2.2.5 Stiffener tripping 

Circumferential tripping stress for flanged stiffeners attached to the shell is obtained as follows 
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where Iz is moment of inertia around its radial axis which passes web of ring, Z is the distance 
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between stiffener cross section center and the nearest surface of shell and As is the area of stiffener 
cross section alone. Tripping stress calculated in this equation should be larger than the yield stress 
applied in design. Therefore, output constraint of this stress is expressed based on Eq. (23) 
 

TyCons  )5(                           (23) 

 
2.2.6 Local buckling 

To address the possibility of local buckling of the flanges and webs of a stiffener cross section 
welded to the shell, the following slenderness limits are to be met: 

Flat bars, other outstands: Width/Thickness yE /3.0  
Web of flanged stiffener: Depth/Thickness yE /9.0  
Therefore, according to Eq. (24) 
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2.2.7 Inertia requirements 

The moment of inertia for the combined section consisting of a stiffener welded to the shell and 
the effective shell length Le has not to be less than I obtained from the following 
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where Rs is radius of the shell to central point of cross section of stiffener. Finally, output 
constraint of this standard requirement is calculated based on Eq. (26) 
 

oIICons )7(                            (26) 
 
2.2.8 Geometrical constraints governing variables 

Unlike the problem variables which are geometrical parameters, it is inevitable the constraints 
which control ratios among these geometrical dimensions (if available) are needed. In the studied 
constraints, the lack of constraint which can find and control the constraint was felt. Constraints 
resulting from stress approaches majorly control permissible limits of variables. To proper and 
rapid direction of optimization algorithms and by referring to Stahl cross section standard, 
standard ratios among dimensions like depth, width, thickness of web and flange of the stiffener 
rings were extracted. The information governs output ratios as constraints of Eq. (27). 
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3. Problem optimization using genetic algorithm 
 

3.1 Genetic algorithm 
 
Genetic Algorithm (GA) is the optimization method inspired by living nature (living creatures) 

which can be considered in classifications as a direct and random numerical method. This 
algorithm is an iteration algorithm and its primary principles have been adopted from genetics as 
mentioned before. 

Main factors of biological planes in living creatures are chromosomes and genes and their 
function is such that better and stronger genes and chromosomes remain and weaker genes are 
destroyed. In other words, result of mutual operation of genes and chromosomes is survival of 
better creatures. 

The GA has several main differences from conventional search methods due to its imitation of 
nature: 

 
(1) The GA works with bit strings each showing total set of variables while most methods 

independently face special variables. 
(2) The GA performs random selection for searching guidance and there is no need for 

information of derivative. 
In the GA, search methods act based on natural genetic and selection mechanism. These 
algorithms select the most suitable strings among the organized random information. In 
each generation, a new group of strings is created using the best parts of previous 
sequences and new random part for reaching a proper answer. Although algorithms are 
random, they are not regarded as simple random algorithms. They efficiently explore the 
past information in search space to move toward the best answer in a new search point 
with better answers. 

(3) The GA follows potential laws not definite rules. 
(4) The GA considers several points of search space in each iteration. Therefore, there is low 

chance of converging to a local maximum. In most conventional search methods (gradient 
method), governing decision rule acts such that it moves from one point to another point. 
These methods can have many hazardous maximum because they may converge to a local 
maximum. However, the GA produces full populations of strings (points). It makes each 
point and form as a new population which includes improved points by combining their 
contents. Aside from a search, concurrent observation of some points in the GA makes 
their adaptation with parallel machines possible. 

 
3.1.1 Genetic algorithm mechanism 

The GA as an optimization computational algorithm effectively searches for different zones of 
answer space according to a set of answer space points in any computational iteration. Although 
value of objective functions is not calculated in search mechanism, the calculated value of 
objective function for each point is involved in statistical averaging of objective function in all 
subspaces on which point is dependent and these subspaces are statistically averaged in parallel in 
terms of objective function. This mechanism is called implicit parallelism. This trend causes space 
search to lead to the zones in which statistical mean of objective function is high and there are 
more absolute optimal points. Because answer space is multilaterally searched in this method 
unlike single-path methods, there is low probability of convergence to a local optimal point. 
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In any iteration, each one of the strings available in population of strings is decoded and value 
of objective function is obtained for it. Based on the obtained values of objective function in 
population of strings, each string is assigned a fitness value. This fitness value will determine 
probability of selection for each string. Based on this selection probability, a set of strings is 
selected and new strings replace strings of the primary population by applying genetic functions on 
them so that the number of strings population can be fixed in computational iterations. Random 
mechanisms which act on selection and deletion of string are such that the strings with larger 
fitness value have more probability of combining and producing new strings and are more resistant 
than other strings in replacement stage. In this regard, population of sequences is completed in a 
competition based on objective function in different generations and average value of objective 
function increases in population of strings. 

The GAs execute main search in answer space. These algorithms start with reproduction, which 
are responsible for creation of set of primary search points called primary population and are 
determined selectively or randomly. Since GAs use statistical methods to guide search operations 
to optimal point, the existing population is selected based on fitness of individuals for the next 
generation. Then, genetic operators include selection, combination, mutation and other potential 
operators are applied and new population is created. After that, new population replaces the 
previous population and this cycle continues. New population usually has more fitness that is 
population improves from one generation to another generation. When we reach the possible 
maximum generation or convergence is achieved or stop criteria have been fulfilled, search will be 
successful. 

 
3.2 Problem optimization 
 
Although the GAs follow a specified path and pattern for achieving optimal result, each of 

them has its unique procedure based on method of program coding. The algorithm used in this 
project utilizes three instruments of elitism, penalty function and control function for achieving the 
global optimum rapidly and safely. Elitism means the process that some members which have 
obtained the best ultimate functions in each generation are transferred directly to the next 
generation after participating in genetic operators and are not replaced by their children like other 
members of population. In this regard, the best genes of each generation remain in that generation 
which is not easily lost and accelerates convergence by increasing reproduction. 

Penalty and control functions have been designed to control and prevent answers by entering 
genetic population from unauthorized solution space. Their procedure is such that each member of 
population which doesn’t satisfy one of the constraints is penalized heavily and it does not 
qualified for competition to enter the elite groups. Furthermore, each member which violates the 
defined limits is rapidly excluded from population and is replaced by random members. In the 
program used for all variables, upper and lower limits have been defined and value of variable 
cannot violate these limits. These limits have been placed for the variables by referring to Stahl 
standard and considering physics of the problems. 

Two important parameters which play significant role in progress and convergence of the GA 
are the number of generations and iterations of algorithm and the number of members of one 
generation. Selection of small values of these two parameters can lead to immature algorithm and 
convergence to a local optimum. Since the number of large solution space is large but 
mathematical computations are limited and light in this problem and requirement for achieving the 
best possible answer may be preferred over cost considerations, relatively values of 1000 and 
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10000 have been considered for these two parameters. 
Other three parameters which play main role in each generation and generally in promotion and 

convergence of algorithm are coefficient of elitism, combination and mutation. These three 
parameters which represent the number of population members which have been recognized as 
elite and are protected against genetic operators enter reproduction operation and form the next 
generation and in each generation, some of its genes randomly change. According to the physics 
and conditions governing problem and referring to the GA references, values of elitism, 
combination and mutation were selected as 0.01, 0.95 and 0.2, respectively. 

 
 

4. Result and discussion 
 
4.1 Optimization diagrams 
 
Power of the GA to solve optimization problems can be shown by diagrams. These diagrams 

usually show power of algorithm convergence and its dependency on main parameters of 
algorithm. Review of the main parameters of the GA which affect its computational loads 
effectively are the number of generations and the number of each generation members. Fig. 8 
shows variations of the objective function in terms of the number of algorithm generations and 
iterations. To achieve this algorithm, another main algorithm or the number of each generation 
members should be constant. In this case, the number of each generation was considered as 50. 
The following diagram is obtained by different executions of the algorithm. In this diagram can be 
found that the algorithm rapidly has entered authorized solution space. The higher the number of 
generations increases, the more the optimal results become. Based on the diagram and for this 
problem, the required number of generations is about 200 generations for closing to optimal result 
reasonably while optimal result has been obtained in 600 generations. 

To study dependency of the objective function value on the number of generations’ members, 
different executions have been investigated in fixed number of 600 generations. These variations 
are shown in Fig. 9. It can be clearly shown that the algorithm could be closed to limits of optimal 

 
 

Fig. 8 Variations of weight in terms of the number of generations and iterations of algorithm 
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Fig. 9 Dependency of objective function value on the number of generations’ members 
 
 

result reasonably only by population of 35 chromosomes while it has achieved optimal result by 
population of 75 chromosomes. 

 
4.2 Optimal dimensions 
 
After different executions of the program and changes which have been made in some parts of 

program, final optimal dimensions of the program were obtained as follows 
Table 2 shows that stiffener ring program number 1 (I- section stiffener) has been selected for 

this problem and algorithm could freely select all types of the defined rings and has selected this 
model for all rings. Even output dimensions of the algorithm are close to the dimensional ratio of 
wide beams which presented in Stahl standard. Although this ring has larger cross section than 
other rings and consequently it should be heavier, because of parametric advantage of this stiffener 
by reducing dimensions of stiffener and shell, it can achieved lighter design while it should be 
safe. 

Optimal weights of different cross sections are given in Table 3. 
Although only these common and known models of the stiffener rings were studied, the 

program is able to study all of the available profiles only by including some geometrical 
constraints. Selection power of 1 to 100 the stiffener rings was given to the program and the 
program finally selected 15 rings for reinforcing shell. It was found when the program was 
required to select at most 10 rings or at least 20 rings, final weight of the set was much higher 

 
 

Table 2 Results of optimizing stiffened shell 

Variables 
Optimum 

weight (kg) 
Shell 

thickness (m)
Ring 

quantity 
Ring 

height (m) tw 
(m) 

tb1 
(m) 

tb2 
(m) 

b 
(m) 

Wtotal ts n h 

Optimum 
value 

482.00 0.008 15 0.0489 0.003 0.0024 0.0024 0.0325
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Table 3 Optimal weights of different cross sections 

Stiffener type I-section Inverse T-section T-section Flat bar L-section 

Optimum weight (kg) 482.00 487.09 518.22 594.24 496.84 
Ring quantity 15 14 11 19 15 

 
 

Table 4 Results of optimizing L-section stiffener 

Variables 
Optimum 

weight (kg) 
Shell 

thickness (m)
Ring 

quantity 
Ring 

height (m) tw 
(m) 

tb1 
(m) 

tb2 
(m) 

b 
(m) 

Wtotal ts n h 

Optimum 
value 

496.84 0.008 15 0.047 0.0087 0.0043 0.00 0.022

 
 

than the obtained optimal value. In other word, the program likes to reduce thickness of the shell 
by increasing the number of rings until thickness decrease of the shell leads to critical constraints 
of stresses. This point is the optimal one for the stiffener rings, but it is different for flat bar ring. 
This ring shows weak performance to reinforce shell due to weak properties of moment and cross 
section. In this case, the algorithm not only increases the number of rings, but also increases 
thickness of the shell a little to satisfy some constraint resulting in considerable increase of final 
weight. 

 
4.3 Designing optimum reinforcement ring with L cross section 
 
Since L cross section ring is a preferred reinforcement in manufacturing process and inertia 

moments of L section has not the same parametric equation as in other sections, this ring 
separately was studied. In this optimization process, thickness of the shell has been regarded 
desirable and constant of 8 mm and other dimensions of reinforcement ring have been considered 
as variable parameters. 

Dimensions presented by algorithm show that the algorithm tries to promote inertia moment of 
the ring. The algorithm has reached this goal by increasing height of the ring and thickness of the 
ring web. Although this ring is not among the best optimization rings based on weight due to 
improper conditions of its moments of inertia, it can be regarded as the best rings due to simple 
production if multi-objective optimization is performed considering cost functions. These 
dimensions have been presented in Table 4. 

 
 

5. Conclusions 
 
In this paper, optimization of cylindrical shells under external pressure has been studied to 

minimize its weight. Variables of optimization problem are dimensions, the type of circumferential 
stiffeners and its distance from each other. So, according to the extent of these variables, genetic 
algorithms have been used for optimization. 

To study the effect of hydrostatic pressure on shed and its fabrication considering the existing 
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standards , geometrical and construction as well as stress and buckling constraints have been used 
in optimization algorithm. Finally, the best model which has the minimum weight according to the 
applied pressure has been presented. It is found that: 

 
(1) I-section stiffener ring has been obtained for this problem as a best selection, although 

algorithm could freely select all types of the defined rings. The weight of specimen is sum 
of weight of the shell and stiffeners. So in the optimization process, the algorithm reached 
I-section stiffener ring by changing all of the variables. Although this ring has larger cross 
section than the other ones and consequently it should be heavier, due to parametric 
advantage of the stiffener, by reducing dimensions of I-section stiffener ring and shell, it 
can achieve lighter design while it should be safe. 

(2) It was found that when the program was required to select at most 10 rings or at least 20 
rings, final weight of the set was much higher than the obtained optimal value. 

(3) Flat bar stiffener shows weak performance to reinforce shell due to weak properties of 
moment and cross section. 

(4) In this case, the algorithm not only increases the number of rings, but also increases 
thickness of the shell a little to satisfy some constraint resulting in considerable increase of 
final weight. 

(5) Optimization results showed that diverse in design variables can decrease weight about 10 
percent. 
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