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Abstract.  The effect of cutting off fibers on transient load in a polymeric matrix composite lamina was 
studied in this paper. The behavior of fibers was considered to be linear elastic and the matrix behavior was 
considered to be linear viscoelastic. To model the viscoelastic behavior of matrix, a three parameter solid 
model was employed. To conduct this research, finite difference method was used. The governing equations 
were obtained using Shear-lag theory and were solved using boundary and initial conditions before and after 
the development of break. Using finite difference method, the governing integro-differential equations were 
developed and normal stress in the fibers is obtained. Particular attention is paid the dynamic overshoot 
resulting when the fibers are suddenly broken. Results show that considering viscoelastic properties of 
matrix causes a decrease in dynamic load concentration factor and an increase in static load concentration 
factor. Also with increases the number of broken fibers, trend of increasing load concentration factor 
decreases gradually. Furthermore, the overshoot of load in fibers adjacent to the break in a polymeric matrix 
with high transient time is lower than a matrix with lower transient time, but the load concentration factor in 
the matrix with high transient time is lower. 
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1. Introduction 

 
Today, due to the widespread use of composite materials in different industries, having enough 

and accurate knowledge of how stress distributes in these materials is vital. When in a composite 
material one or more of the fibers get ruptured or a crack develops, the amount of load that these 
fibers carried before rupture, is transferred to adjacent fibers and results in normal stress 
concentration which is quite temporary. On the other hand, polymeric materials have a widespread 
application in industries as a composite materials matrix. Polymeric materials possess a significant 
viscoelastic property which results in many changes in their mechanical properties under the 
passage of time or rate of loading (Shaw and MacKnight 2005). 
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In the past, few researches were conducted on the analysis of transient stress due to break in 
fibers. One of the first studies in this field was conducted by Landis and McMeeking (1999). They 
analyzed stress in a composite material containing a broken fiber using a model close to shear-lag 
theory. In this analysis, the behavior of the matrix was considered complete elastoplastic. 
Beyerlein (2000) investigated the effect of pre-existing breaks in the fibers on the time dependent 
stress distribution and displacements in a unidirectional fiber composite material under constant in 
plane tension. He employed a Newtonian viscos model to calculate the shear deformation behavior 
of matrix and to calculate creep in it, meanwhile the fibers were considered to possess 
time-independent elastic properties. Balacó de Morais (2001) developed a model to predict the 
shear stress distribution along the broken fiber in a unidirectional fibrous composite material. In 
this model, it is assumed that the matrix behaves as elastic-perfectly plastic. 

Some studies have been done in the field of dynamic stress of electro-elastic interaction and 
fracture behaviors of a cracked piezoelectric laminated structure. Wang and Noda (2001) studied 
the electro-elastic fracture problem for a laminate with two layers of piezoelectric material bonded 
to an elastic layer and investigated numerical values of the crack tip fields under transient 
electromechanical loading. In the other study, the finite element method has been used by Martines 
and Artemev (2009) to study the effect of fiber damage on the performance of active fibrous 
composite with piezoelectric fibers. Itou (2007) examined transient dynamic stresses around two 
rectangular cracks in a nonhomogeneous interfacial layer sandwiched between two dissimilar 
elastic half-spaces that included a ceramic half-space and a steel half-space. Su et al. (2007) 
studied the problem of interface cracks between dissimilar magneto-electro-elastic strips under 
out-of-plane mechanical and in-plane magneto-electrical impacts by using the integral transform 
and the Cauchy singular integral equation methods. The effects of the crack configuration and the 
main constitutive parameters of the magneto-electro-elastic materials on the dynamic response are 
examined. Aboudi (2013) presented a continuum model which is capable of generating the 
transient electroelastic field in piezoelectric composites of periodic microstructure, caused by the 
sudden appearance of localized defects. Several applications are presented for the sudden 
formation of cracks in homogeneous and layered piezoelectric materials which are subjected to 
various types of electromechanical loading, and for the sudden appearance of a cavity. 

In the following, we can pointed to some works about transient stress. Rizk (2008) examined 
the transient thermal stress crack problem for two bonded dissimilar materials subjected to a 
convective cooling on the surface containing an edge crack perpendicular to the interface. Khalili 
et al. (2009) studied free and forced vibration of multilayer composite circular cylindrical shells 
under transverse impulse load as well as combined static axial loads and internal pressure. In the 
analysis of transient dynamic response, the impulse load was in the form of sine pulse, which is 
applied on a rectangular area and the effect of fiber orientation, axial load, internal pressure and 
some of the geometrical parameters on the time response of the shells has been investigated. 
Wünsche and Zhang (2010) developed a spatial symmetric time-domain boundary element method 
to study transient elastodynamic analysis of two-dimensional, piecewise homogeneous, anisotropic 
and linear elastic solids containing interior and interface cracks which subjected to impact loading. 
The spatial discretization is performed by a symmetric Galerkin-method. Chaudhuri (2011) 
employed an eigenfunction expansion technique to derive hitherto unavailable three-dimensional 
asymptotic stress field in the vicinity of the front of a semi-infinite through-thickness crack 
weakening an infinite transversely isotropic unidirectional fiber reinforced composite plate, of 
finite thickness and subjected to far-field mode I/II loadings. Souad et al. (2013) investigated the 
stress concentration factor in a fibre reinforced composite material with ceramic matrix. Using 
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Fig. 1 Numbering of fibers in a lamina with a break 
 
 
finite element method, they calculated the stress concentration factor for crack growth in the 
ceramic matrix and fiber-matrix interface. 

Earlier studies in this field were conducted to investigate the stress concentration factors in 
steady state and few studies have been done about transient stress concentration factors. 
Furthermore, in the all of performed researches about polymeric matrix composite materials, the 
behavior of matrix has been assumed to be elastic. Whereas polymeric matrices possess featured 
viscoelastic behavior, therefore transient normal stress due to the sudden break of fibers in the 
polymeric composite materials with considering viscoelastic properties of the matrix has been 
chosen as the subject of this analysis. 
 
 
2. Governing differential equations and assumptions 

 
In this analysis, a filamentary lamina composite plate has been considered under tensile loading, 

as shown in Fig. 1, which one or more of fibers has been ruptured. 
As shown in Fig. 1, the break is considered to be in the middle of the lamina, symmetrically. 

For further simplification, the cross sectional area of fibers was considered to be square. 
Considering the polymeric matrix of lamina and also low tensile modulus ratio of matrix rather 
than the fibers, shear-lag model seems to be reasonable. So, unidirectional fibers carry normal 
loads and imbed in a matrix which carries only shear. Lamina is considered to be under in plane 
tensile load. Moreover: 

 
 Both matrix and fibers are considered homogenous. 
 Uniform loading is assumed at infinity in the direction of fibers. 
 Small deflection elasticity theory is used. 
 A three-parameter solid model was used to model the viscoelastic behavior of matrix. 
 A complete bond exists between the matrix and fiber. 
 Fibers possess linear elastic behavior until rupture. 
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Fig. 2 Displacement in the fiber and surrounding matrix bays 
 
 
Normal stresses and loads in each fiber (n-th fiber) is obtained from Eq. (1) 
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ffn
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Where un and pn are displacement and tensile load in n-th fiber. Shear stress in the viscoelastic 
matrix (assuming that the lateral displacement is not function of x) will be determined by Eq. (2) 
 

 



t

xy dtG
0

)( 

                             (2) 

 
Where G is the relaxation function of matrix shear modulus (Brinson and Brinson 2008). By 

substituting 
y
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
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  and according to Fig. 2, the finite difference form of shear stress in the matrix 

bays between n-th fiber and (n − 1)-th fiber in terms of fiber displacement and the space between 
them, i.e., d, will be according to Eq. (3) and the shear stress between n-th and (n + 1)-th fiber will 
be according to Eq. (4). 
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To model the viscoelastic properties of matrix, viscoelastic three-parameter solid model has 

been employed, as shown in Fig. 3. 
Dimensionless relaxation modulus of this model is defined according to Eq. (5) (Brinson and 

Brinson 2008) 
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Fig. 3 Viscoelastic three-parameters solid model 
 
 

Fig. 4 The applied forces on the n-th fiber 
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According to Fig. 4 and by using shear-lag theory, equilibrium equations of n-th fiber in the 

moment of rupture were obtained according to Eq. (7). 
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Where, h is thickness of lamina and m is mass per unit length of the fibers. It’s important to 

know that the shear stresses in the free edges of lamina are equal to zero. Therefore equation of 
motion for fibers locating at the edges of the lamina is different. In the meantime, by substituting 
Eqs. (1), (3) and (4) in Eq. (7), the governing equations of fibers in terms of displacements are 
expressed according to Eq. (8). The governing equations contain an integral term which is due to 
the viscoelastic properties of the matrix. 
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To non-dimensionalize the equations of motion, dimensionless parameters were employed 
according to Eqs. (9). 
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So, the equation of motion is written this way 
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Where the initial conditions are as follow 
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3. Finite difference method 
 

To solve the governing equation of motion, explicit finite difference method was used (Causon 
and Mingham 2010, Thomas 1995). The governing integro-differential equation is a second-order 
equation and has two variables of position and time. The fiber length is divided to equal divisions 
and the same divisions is done for time variable. Each fiber is divided to nz equal divisions, that 
each division has a length of Δξ. In a way that 
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Where i is the number of each division. Each step of time after occurrence the break is 
demonstrated by j in a way that 
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In the Eq. (16), T is the total amount of time after rupture, and nt is the number of time 
divisions. Now, all terms of Eq. (10) are transformed to finite difference terms and substituted in 
the main equation. The dimensionless second-order differential of displacement in the form of 
central difference around point i is 
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Where, ji
nU ,

 is representative of displacement in n-th fiber at a point ξ = (i – 1)Δξ far from the 
middle of the fiber at τ = (j − 1)Δτ time after occurrence the break. The second-order differential of 
time as central difference about node j will be written according to Eq. (18) (Christensen 1982) 
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The integral term in Eq. (10) will be expressed in finite difference form as Eq. (19). The first 

order derivative terms in this equation was written in form of backward difference 
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The same time divisions has been used to transform the integral term, i.e. 
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By numerical evaluating of the integral terms using rectangular method and by simplifying 
more, one can write 
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If M and E are considered to be as a unit diagonal matrix, the governing Eq. (10) can be written 
in index form according to Eq. (22) and by substituting Eqs. (17), (18) and (21). 
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By assuming 
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Eq. (23) is the equation of displacement in the dimensionless distance ξ = i Δ ξ, and after the 
dimensionless time step τ = j Δ τ. Therefore to start solving and calculation of displacement 

1, ji
nU in each location of fibers and in a new time step, unknowns need to be calculated by using 

boundary and initial conditions. The displacement of fibers in the first two steps time is calculated 
using initial conditions. The first step is considered before the break occurrence of fibers. At this 
time, all fibers are intact and the exerted tensile stress is uniform. So, according to Eq. (11), one 
can write 
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With this assumption that lamina is symmetric and displacement of middle fibers is equal to 

zero, in the first time step i = 1, 01,1 nU  and displacement of all points of fibers in this step is 
obtained using Eq. (25). 
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The second step (j = 2), is the moment of break occurrence in the fibers. Using initial conditions 

of relation (11) and expanding the velocity term in the form of forward difference, the 
displacement in various points can be expressed as Eq. (26). 
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According to Eq. (12), the amount of displacement in intact fibers and in the middle of lamina 

(in ξ = 0) is equal to zero. Therefore 
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To obtain displacement of broken fibers in the middle of the lamina, (in location of break), 

boundary condition of relation (13) is used. Using forward difference form around point i = 1, one 
can write 
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In this way, by having Eq. (23) and boundary and initial conditions of Eqs. (25) to (28), one can 

obtain the displacements in every location of fibers and at various times (From j = 3 and so on). 
Load concentration factor has been defined as ratio of tensile load in the intact fiber adjacent to 
broken fiber(s) at break location to load value in the same fiber which far away from break 
location. 
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4. Results and discussion 
 
To investigate the effect of viscoelasticity of matrix on transient normal stress in the fibers 

which adjacent to the break, three types of materials with different viscoelastic properties were 
used as a composite material matrix. 

Environmental conditions like temperature affect the viscoelastic properties of materials 
significantly and temperature increase or decrease could change and shift the transient time in 
polymeric materials. Fig. 5 shows typical relaxation modulus curves obtained from the creep 
experiments. For three typical temperatures in this study, the material exhibited time-temperature 
superposition with only horizontal shifting required to construct the master curves. The initial and 
the equilibrium modulus of these three cases were assumed to be equal. Therefore to investigate 
different states of matrix, as shown in Fig. 5, three type of materials with low, medium and high 

 
 

 

Fig. 5 Three typical state of matrix relaxation function 
 
 

Fig. 6 Transient load concentration factor in a lamina with one broken fiber 

1473



 
 
 
 
 
 

Arash Reza, Hamid M. Sedighi and Mahdi Soleimani 

 

Fig. 7 The effect of broken fibers number on the load concentration factors for a matrix with 
high transient time 

 
 

Fig. 8 The effect of broken fibers number on the load concentration factors for a matrix with 
medium transient time 

 
 

transient time were used to consider the viscoelastic property of the matrix in different conditions 
on transient load of fibers adjacent to break. 

To investigate this problem, static and dynamic load concentration factors due to one or more 
fibers being broken are determined. In Fig. 6, load concentration factor in fiber adjacent to the 
break in a lamina with viscoelastic matrix (with medium transient time) in which a break has 
occurred in one of its fibers, has been depicted. At first the load concentration factor overshoots 
and increases significantly. With the passage of time, load concentration factor decrease a little 
which is more than the state before the occurrence of break. 

In this paper the amount of overshoot in the load concentration factor is called the dynamical 
load concentration factor and its amount at the steady state is called static load concentration factor. 
In Figs. 7-9, the effect of increase in number of broken fibers, i.e., r, on the load concentration 
factors of first adjacent intact fiber near the break was shown. Fig. 7 shows the load concentration 
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Fig. 9 The effect of broken fibers number on the load concentration factors for a matrix with 
low transient time 

 
 

Fig. 10 The effect of transient time of matrix with one broken fiber on the load concentration factors 
 
 
factors in a lamina with a viscoelastic matrix and high transient time. Same investigations have 
been shown for a viscoelastic matrix by medium transient time in Fig. 8 and low transient time in 
Fig. 9. By examining these three figures, one can conclude that by increasing the number of 
broken fibers in a lamina with viscoelastic matrix, the static and dynamic load concentration 
factors increase. What which is obviously seen in these three states is the fact that by increasing 
the number of broken fibers, the value of static load concentration factors approaches to the value 
of dynamic load concentration factor and the decrease in the load concentration factor after the 
first shock is lower, considerably. 

In Fig. 10, the effect of transient time of viscoelastic matrix with one broken fiber has been 
examined on the load concentration factors. The most dynamic load concentration factor is 
observed in the viscoelastic matrix with high transient time. Meanwhile by using a viscoelastic 
matrix with low transient time, the value of dynamic load concentration factor gets less than other 
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Fig. 11 Comparison between elastic and viscoelastic matrix with one broken fiber 
 
 

Fig. 12 Comparison between elastic and viscoelastic matrix with tree broken fibers 
 
 

states. This trend is quite contrary on the static load concentration factor. In a lamina which its 
matrix has a higher transient time, the static load concentration factor is less than other cases and 
for a lamina with lower transient time, this factor is higher. 

In the following, the load concentration factor in terms of dimensionless time in a lamina with 
viscoelastic matrix has been evaluated with respect to a lamina with elastic matrix. This 
comparison is shown for a lamina with one, three and five broken fibers in Figs. 11, 12 and 13, 
respectively. 

According to the depicted results, the dynamic load concentration factor resulted from 
viscoelastic property of the matrix is less than the elastic matrix and with increase the number of 
broken fibers, no change in this trend is seen. 

In Table 1, the value of dynamic load concentration factors are shown for three different types 
of matrix (high, medium and low transient time) in terms of number of broken fibers. As can be 
seen, the dynamic load concentration factors in the viscoelastic matrix with low transient time is 
lower. Increase in the number of broken fibers increase this factor, although the rate of increase of 
this factor reduces with the number of broken fibers. 
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Dynamic load concentration caused by a break in a Lamina with viscoelastic matrix 

Fig. 13 Comparison between elastic and viscoelastic matrix with five broken fibers 
 
 

Table 1 The effect of broken fibers number on dynamical load concentration factors 

Number of broken fibers 
Dynamical load concentration factor 

High transient time Medium transient time Low transient time 

1 1.5505 1.5172 1.4276 

3 2.0543 1.9789 1.9515 

5 2.3619 2.2968 2.2895 

7 2.7395 2.5979 2.5898 

9 3.0387 2.8337 2.7053 

 
 

5. Conclusions 
 
In this paper, the effect of viscoelasticity of polymeric matrix composite lamina on the load 

concentration factor due to a break in fibers has been investigated. The results showed that the load 
concentration factor overshoots greatly and increases, initially. With the passage of time the load 
concentration factor reduces a little bit with respect to the cases which were before the occurrence 
the break. The results also reveal that considering viscoelastic property of the matrix will result in 
reduction of dynamic load concentration factor and increase of static load concentration factor 
with respect to the cases that the matrix was considered elastic. With increase of broken fibers no 
change was seen in this trend. In addition, load mutation in the fibers adjacent to the break for the 
matrix with a high transient time was greater than the matrix with a low transient time, but 
steady-state load concentration factor for the matrix with a high transient time was comparatively 
less than the others. 
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