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Abstract.  An equivalent friction element is proposed to simulate the friction in cable-strut joints. 
Equivalent stiffness matrixes and load vectors of the friction element are derived and are unified into 
patterns for FEM by defining a virtual node specially to store internal forces. Three approaches are described 
to verify the rationality of the new equivalent friction element: applying the new element in a cable-roller 
model, and numerical solutions match well with experimental results; applying the element in a continuous 
sliding cable model, and theoretical values, numerical and experimental results are compared; and the last is 
applying it in truss string structures, whose results indicate that there would be a great error if the cable of 
cable supported structures is simulated with discontinuous cable model which is usually adopted in 
traditional finite element analysis, and that the prestress loss resulted from the friction in cable-strut joints 
would have adverse effect on the mechanical performance of cable supported structures. 
 
Keywords:    equivalent friction element; equivalent stiffness; equivalent load; experiment; cable 
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1. Introduction 

 
The cable supported structure is a new type of efficient structural system which takes advantage 

of the prestressing force in cables to achieve the optimization of internal force and displacement 
distribution of the structure (Chen 2013). In addition to experimental approach, finite element 
analysis with numerical models based on the computer simulation technology has been a widely 
adopted and effective alternative to conduct researches on cable supported structures. However, a 
key problem confronted with scholars around the world is how to find an appropriate method to 
establish a proximate numerical model that is closest to the real structure, ensuring that the actual 
working status of the structure could be simulated by the model more accurately. The cable, which 
is a key component of cable supported structures, is continuous in a structure to achieve 
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continuous tensile forces in the structure. In previous finite element analysis, the cable is assumed 
to be discontinued due to cable-strut joints (Wang et al. 2007a, b, Zhu et al. 2013, Thai and Kim 
2011, Li and Chan 2004). However, the adjacent cable segments on the two sides of a strut would 
actually slide through the joint, especially during the construction of stretching cables. Therefore, 
it would result in great error to simulate the cable by a discontinuous model. 

To avoid the error resulted from the discontinuous model of cable, continuous model has been 
proposed by researchers around the world. Tang and Shen (1999) and Tang et al. (1997) proposed 
a five-node isoparametric element to simulate the continuous cable in cable supported structures. 
Based on catenary elements, different cable elements considering the sliding of cable are proposed 
by Zhang and Dong (2001), Wei (2004) and Nie et al. (2003) respectively. In addition, a 
frozen-heated method is adopted to apply virtual temperature load in order to achieve equivalent 
internal forces in adjacent cable segments, simulating the case of continuous cable (Cui et al. 
2004). A three-node cable element with cable clamp is proposed by Aufaure (2000), and the 
sliding of cable is considered with additional generalized degrees of freedom. Zhou et al. (2004) 
put forward a three-node sliding cable element based on the same strain of cable segments, and the 
stiffness matrix of the element is also derived. Chen et al. (2010) proposed the analysis method of 
the sliding cable element put forward based on theories of Lagrange isoparametric element, Green 
strain and Cauchy stress. However, the friction between continuous cable and struts is not taken 
into account in the above researches. The influence of prestressing loss resulted from the friction 
in cable-strut joints on structural behavior is investigated by Wang et al. (2008), and the results 
indicate that the prestressing loss would cause a non-uniform internal force distribution and a 20% 
decline of global stability performance. Therefore, the friction loss in cable-strut joints should be 
taken into account in construction analysis of cable supported structures; otherwise, the bearing 
capacity of the structure would be overestimated. Liu et al. (2009) proposed an iterative method 
based on theories of pseudo temperature and generalized inverse in functional analysis to consider 
the friction loss. Zhang et al. (2008) proposed a modified original length method to consider the 
effect of friction loss. However, both two methods require a time-consuming iterative analysis by 
establishing equilibrium equations of friction and internal forces in cable. Wei (2006) proposed a 
three-node friction sliding element and derive the sliding stiffness at the support, which is, 
however, complex for engineers to require. The coupling degrees of freedom in cable-strut joints 
and variable-stiffness spring are used to simulate the friction loss by Wang et al. (2008). 
Nonetheless, detailed process of the method is not presented and the stiffness of spring is complex 
to determine accurately. A solid model of cable-strut joint in suspen-dome is established by Wang 
et al. (2007a, b), and the sliding friction is analyzed with nonlinear contact element. The main 
problems of this method are that the calculation is complicated and it can be applied in joint 
analysis only and not suitable to analyze the sliding of the whole cable. 

Contact friction is highly nonlinear. In fact, there have been many numerical methods in 
geotechnical engineering field to solve contact friction between discontinuous surfaces existing in 
faults or fissures. A new contact friction element is proposed by Lei (Lei 2001, Lei et al. 1995) 
based on relevant researches (Katona 1983). In this method, the contact stress of joint is selected 
as an unknown variable, and the geometric shape of contact surface is simulated with six-node 
isoparametric elements. Geometric equations and static equations are included in the stiffness 
equation, and finally equivalent stiffness matrix is assembled into global stiffness matrix of the 
structure. Therefore, it is not necessary to obtain the stiffness coefficient of contact friction 
element, which is usually complex, thus reducing computational cost. Note that the method is 
proposed to solve the surface contact issues in rocks which differ from the point-line contact in 
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cable-strut joints of cable supported structures. However, it is indeed an efficient approach to solve 
issues about friction by selecting contact stress as an unknown variable and assembling geometric 
and static equations at the contact point into equivalent stiffness matrix of friction element. Based 
on the above method, a new equivalent friction element which can be applied in cable-strut joints 
in cable supported structures is put forward in this paper. Since it only requires judging the contact 
state of friction elements instead of conducting iterative analysis of cable force and friction, the 
amount of computational work would be reduced significantly when compared with the methods 
by Liu et al. (2009) and by Zhang et al. (2008). 
 
 
2. Equivalent friction element 

 
The equivalent friction element put forward in the paper is applied mainly in cable supported 

structures. Take a beam string structure, shown as Fig. 1, as an example to illustrate the application 
of the equivalent friction element. Detailed information about the contact in the cable-strut joint is 
shown in Fig. 2, where the joint 4 represents the lower strut joint and the joint 3 represents the 
cable joint contacting with the joint 4. It is a point-line contact issue when the continuous cable 
slides through the joint 4. Equivalent friction elements are established between the joint 3 and 4, 
and the tangential component and the normal component of force would exist in elements. A 
five-node equivalent friction element is shown in Fig. 3. Node 1 and 2 represent corresponding 
adjacent nodes in the cable joint, and node 3 represents the node at the contacting point in the 
continuous cable. An element coordinate system is defined by node 1, 2 and 3. Node 4 represents 
the corresponding lower strut joint, and node 5 is a virtual node to store information about internal 
forces of the equivalent friction element, which will be described in detail later in the paper. 
Coordinate values of node 1, 2, 3 and 4 are (x1, y1), (x2, y2), (x3, y3) and (x4, y4) respectively. Since 
the coordinate value of node 5 can be set randomly, it is set as the same value as node 4 in the 
paper. 
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Fig. 1 Cable supported structure Fig. 2 Details of contact in cable-strut joint 

 

Fig. 3 Equivalent friction element 
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2.1 Element coordinate system 
 
For a convenient describe of the issue, it is assumed in Fig. 3 that node 3 and node 4 are in 

different position, though they actually coincide with each other before the structure is subjected to 
external force. The n-axis is defined as the direction of normal pressure, i.e., the direction of 
angular bisector of adjacent cable segments. The s-axis is defined as the direction of friction, i.e., 
the tangential direction of the cable at node 3. An element coordinate system can be established by 
right-hand screw rule, and the included angle between the n-axis and the x-axis is assumed as θ, 
shown as in Fig. 3. In the element, the positive internal force is defined if node 3 and node 4 move 
apart due to the force, similar to the way that the positive force is defined in the link element. In 
the element coordinate system, the projections of n-axis on the x-axis and y-axis are shown as Eq. 
(1). 
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2.2 Equilibrium equation of internal stress and nodal load 
 
In general, the nodal displacement is selected as the unknown variable in finite element 

analysis, and the relation of the nodal load and nodal displacement is established in element 
stiffness matrix. However, the internal stress is selected as the unknown variable in equivalent 
friction element, and the relation of nodal load and internal stress should be established first. In an 
equivalent friction element, node 1 and node 2 are used to determine the position of the element, 
and node 5 is a virtual node, and only node 3 and node 4 have certain physical interpretations. 
Hence, the nodal load can be expressed as {F3x, F3y, F4x, F4y}

T in global coordinate system. Force 
diagrams of node 3 and node 4 are shown in Fig. 4, where σn and σs represent internal stresses in 
equivalent friction element along normal and tangential directions respectively. According to 
equilibrium equations at node 3 and node 4, Eq. (2) and Eq. (3) are established in x-axis and y-axis 
respectively, and Eq. (4) is a matrix form of Eq. (2) and Eq. (3). Considering that nodes in the 
structure are actually not subjected to external loads, Eq. (4) is transformed into Eq. (5), thus 
yielding the equilibrium equation of internal stress and nodal load in an equivalent friction 
element. 
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(a) Force diagram of node 3 (b) Force diagram of node 4 

Fig. 4 Force diagrams of nodes in equivalent friction element 
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2.3 Constraint equations 
 
The internal force vector of the equivalent friction element at the end of any load step k can be 

expressed as Eq. (6), and the displacement vectors of node 3 and node 4 along coordinate axes are 
shown as Eq. (7), where the superscript k signifies the load step considered, and subscripts n and s 
signify directions along n-axis and s-axis respectively. Relative displacements of node 3 and node 
4 along n-axis and s-axis can be determined by Eq. (8). 

The displacement vectors of node 3 and node 4 are shown as Eq. (9). The relationship of the 
nodal displacement for node i (i = 3, 4) in element coordinate system and in global coordinate 
system is presented in Fig. 5. The relationship shown in Fig. 5 can be expressed as Eqs. (10) and 
(11). Eq. (12), describing the relationship of relative displacement of node 3 and node 4 in element 
coordinate system and in global coordinate system, can be derived by substituting Eqs. (10) and 

(11) into Eq. (8). Substituting 
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Fig. 5 Relationship of nodal displacement in element coordinate system 
and in global coordinate system 
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where: 
k
nu   –  relative displacement of node 3 and node 4 in equivalent friction element (EFE) 

     along n-axis at the end of load step k; 
k

su ),4(3  –  displacement of node 3 or node 4 in EFE along n-axis at the end of load step k; 
k
nv   –  relative displacement of node 3 and node 4 in EFE along s-axis at the end of load 

     step k; 
k

sv ),4(3  −  displacement of node 3 or node 4 in EFE along s-axis at the end of load step k. 
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Where L is as shown in Eq. (11). 
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There are only three types of contact between the continuous cable and lower strut joints: fixed, 
sliding and separated, corresponding to different constraint equations respectively. The fixed state 
means that two neighboring nodes in the equivalent friction element are static relatively to each 
other when the external force is less than the maximum static friction in the contact point, which is 
similar to the case where the two nodes are fixed together. The fixed state is used in the paper to 
describe this specific contact, in which no relative displacement exists between the two 
neighboring nodes, i.e., relative displacements of node 3 and node 4 in the direction of n-axis and 
s-axis are both 0; in the case of sliding contact, relative displacement of node 3 and node 4 along 
n-axis is 0, and the tangential stress σs = T; in the case of separation, the normal stress and the 
tangential stress are N and T respectively, i.e., σn = N and σs = T. Hence, the contact state of the 
element can be obtained by relative displacements of node 3 and node 4 along the element 
coordinate axes and (or) stresses of the element, and each contact state can be determined by two 
constraint conditions. Different constraint equations in different contact state of the equivalent 
friction element can be written as a unified expression as Eq. (15), where L′ is the relative 
displacement constraint matrix; R′ is the stress constraint matrix; a*, b* are corresponding values of 
displacements and (or) stress, related to the contact condition in the load step (k − 1), and specific 
values are shown in Table 1. 
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(1)  Fixed state 
In the fixed state, the relative normal displacement 
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Table 1 Constraint values in different contact conditions 

Load step k Fixed Sliding Separated 
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Substituting Eq.s (9), (16)~(18) into Eq. (15) yields the constraint equation in the fixed state as 
Eq. (19). 
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(2)  Sliding state 
In the case of sliding state, the relative normal displacement between node 3 and node 4 

k
nu  = 0; 

the relative tangential displacement can be any value due to the sliding in tangential direction. The 
tangential stress 

k
s  is a constant value T, which is determined by the maximum friction f k and the 

tangential stress 
1k

s  in the last load step k − 1. Specific values of T are shown in Table 1, and the 
calculation of f k is shown as Eq. (24). Substituting Eqs. (9), (20)~(22) into Eq. (15) yields the 
constraint equation in the sliding state as Eq. (23). 
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(3)  Separated state 
In the case of separated state, free relative displacements in both normal and tangential 

directions are generated in node 3 and node 4, and stresses in normal and tangential directions are 
constant value. Substituting Eq. (9), Eqs. (25)~(27) into Eq. (15) yields the constraint equation in 
the separated state as Eq. (28). Specific values of N is shown in Table 1. 
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2.4 Equivalent stress-load equation 
 
As mentioned above, the element stress is selected as the unknown variable in the equivalent 

friction element, and the equilibrium equation of element stress and nodal load is discussed in 
Section 2.2. Note that the stress in tangential or normal direction is constant in the sliding or 
separated state, hence necessary adjustments of Eq. (5) should be considered in the three constraint 
conditions in order to introduce stress constraint values into Eq. (5) and at the same time maintain 

the form of unknown variables in Eq. (5) as .
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(1)  Fixed state 
In the fixed state, Eq. (5) maintains the same since there is no stress constraint. Nonetheless, for 
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the convenience of establishment of equivalent stiffness matrix of the element, Eq. (29) is yielded 
by adjusting the form of unknown variable vector in Eq. (5) to that as in Eq. (15), where 
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(2)  Sliding state 
In the sliding state, substituting 

k
s  = T into Eq. (5) yields Eq. (30), then moving T to the right 

of equation yields Eq. (31). Eq. (32) can be obtained by the same way as Eq. (29), where 
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(3)  Separated state 
Similarly, Eq. (33) can be yielded by substituting k

n = N, k
s = T into Eq. (5), and moving N 

and T to the right of the equation. Then we can get the the equivalent stress-load matrix and the 
equivalent load vector in the separated state. 
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2.5 Element equivalent stiffness matrix and equivalent total load vector 
 
Constraint equations and equivalent stress – load equations in different contact conditions are 

derived in Section 2.3 and 2.4 respectively. These equations can be unified into one expression, 
yielding the equivalent equilibrium equation of the equivalent friction element. 

 
 
(1)  Fixed state 
Eq. (34) is yielded by unifying Eq. (29) and Eq. (19). Equivalent stiffness matrix and 

equivalent total load vector in the fixed state are shown as Eq. (35) and Eq. (36) respectively. 
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(2)  Sliding state 
Similarly, unifying Eqs. (32) and (23) yields Equivalent stiffness matrix in the sliding state as 

Eq. (37). Equivalent total load vector is shown as Eq. (38). 
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(3)  Separated state 
Unifying Eqs. (33) and (28) yields Equivalent stiffness matrix in the sliding state as Eq. (39). 

Equivalent total load vector is shown as Eq. (40). 
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Equivalent stiffness matrix and equivalent total load vector of the equivalent friction element in 

three contact conditions are obtained as above. The unknown variables in equivalent equilibrium 
equations of equivalent friction element are displacements of node 3 and node 4 along x-axis and 
y-axis and element stress. The displacement in x- or y-axis is identical to that of general finite 
element. Virtual node 5 is defined to storage internal force (stress) of equivalent friction element. 
The stiffness matrix of equivalent friction element has six degrees of freedom of nodes, including 
degrees of freedom of node 3 in x-axis and y-axis, degrees of freedom of node 4 in x-axis and 
y-axis, internal force of equivalent friction element in n-axis (replaced by degree of freedom of 
node 5 in x-axis) and internal force of equivalent friction element in s-axis (replaced by degree of 
freedom of node 5 in y-axis). The stiffness matrix of equivalent friction element can be assembled 
with other elements into total stiffness matrix. 

 
 

3. Calculation procedure using equivalent friction element 
 

When equivalent friction element is adopted to simulate the friction in cable-strut joints, the 
correct solution can be obtained by several iterations. The calculation in each load step is based on 
the contact condition obtained in the last load step. In other words, }{ 1 ku  and }{ 1k  at the end 
of load step (k − 1) has been determined prior to the load step k. Particularly, in the load step 1, 
since the whole structure is not subjected to external force, it is assumed that all the equivalent 
friction elements are in fixed state at the end of the load step “0” and that the values of internal 
forces are 0 and node 3 and node 4 are in the same position, i.e., }{ 0u = {0, 0}T, }{ 0 = {0, 0}T. 
In detailed calculation, the equivalent friction element is assumed to be in a certain contact state. 
The corresponding equivalent stiffness matrix and equivalent total load vector of the element can 
be obtained according to Eqs. (34)~(40) and Table 1. A trial solution can be obtained with the 
global stiffness matrix and the total load vector. The contact state in the trial solution is checked 
with Table 2: if the check result is consistent with the assumption, continue the calculation to the 
next load step; otherwise, take the check result as the new assumption of contact state and repeat 
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the calculation in the current step until the check result is consistent with the assumption. The 
detailed calculation process is shown in Fig. 6. 

 
 

Table 2 Check list of trial solution during iteration within load step 

Iterations i Fixed Sliding Separated 
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Build the Finite Element Numerical model with equivalent friction elements

Assume the contact state as
Fixed / sliding / separated

Solve the equivalent element’s 
stiffness matrix

Solve the equivalent element’s 
load vector

Assemble the equivalent friction element’s stiffness matrix and load 
vector into the structure’s total stiffness matrix and total load vector

Solve {Δuk} and {σk}

Check the assumption

Correct

Go to next load step

Incorrect 

 

Fig. 6 Calculation process diagram 
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4. Application of equivalent friction element 
 
4.1 Cable-roller model 
 
4.1.1 Numerical model 
Internal forces of the adjacent cable segments on the two sides of a joint are related to the 

coefficient of friction of the cable and the roller. As is shown in Fig. 7, the cable on one side of the 
roller is hinged, and the other side is hinged with the strut. The equivalent friction element is 
established in the contact point of the cable and roller. In addition, an external force Fy = 1 kN is 
applied in order to ensure the tension in cable and restrain the nodal displacement in x-axis. A 
finite element numerical model of equivalent friction element is established with Matlab, with E = 
2 × 105

 N/mm2, A = 100 mm2 for the cable and strut. Cable forces are calculated with different 
coefficient of friction between cable and roller respectively: μ = 0 (i.e., no friction), μ = 0.1, μ = 
0.5 and μ = 2.42. The coefficient of friction μ = 2.42 is derived from the internal friction angle of 
the cable and roller which is 67.5°, therefore μ = tan 67.5°. The calculation results are shown in 
Table 3. 

It is indicated in Table 3 that cable forces of adjacent cable segments on the two sides of the 
roller are the same in the case of μ = 0 (no friction exists between the cable and roller); in the case 
of μ = 2.42 when it is just impossible for the cable to slide, the cable force could not transfer to the 
other side of the roller, which satisfies well with the actual case; in the case of 0 < μ < 2.42, there 
would be loss in cable force due to the friction, and a larger coefficient of friction would result in 
greater frictional loss. 

 
4.1.2 Experiment of rolling cable-strut joint 
Frictional loss in the process of stretching circumferential cables would be reduced 

significantly when rolling cable-strut joints are adopted in suspen-dome structures (Wu 2010). 
Relevant experimental researches have conducted in our previous work to investigate the loss of 
cable force on the two sides of the joint. A rolling cable-strut joint is shown in Fig. 8. The roller of 
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Fig. 7 Cable-roller model 
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Table 3 Calculation results 

Friction coefficient μ 0 0.1 0.5 2.42 

Internal force / N 

292.9

292.9

-707.1

278.8

302.9

-697.1

224

341.6

-658.4

0

500

-500

Frictional force 
f / N 

0 22.3 108.7 461.9 

Normal pressure 
N / N 

-224.2 -222.6 -216.4 -191.3 

 

Fig. 8 Rolling cable-strut joint 
 

 

(a) Test model (b) Test scene 

Fig. 9 Test of stretching cable 
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Table 4 Results 

Case 
Cable force in 
loading end 

T1 (kN) 

Cable force in 
fixed end 
T2 (kN) 

Friction 
coefficient 

μ 

Numerical 
values 
T2 (kN) 

Original state 40.00 33.35 0.1675 33.4 

Teflon layer assembled 40.00 35.66 0.1060 35.7 

Roller and pivot welded 40.00 31.34 0.2243 31.3 

Note: 




5.67cos)(

5.67sin)(

21

21






TT

TT
  

 
 
the joint is designed to reduce the friction as the roller would rotate with the sliding of the cable. 
Fig. 9 shows the test we have done before, with one end of the cable connected with the loading 
device and the other end fixed in the frame. 

Internal forces of the two cable segments are determined by the rolling state of roller. Cable 
forces of the two cable segments are obtained in the test, considering three different conditions: 
free sliding of the roller and the pivot (also called the original state in the paper), a Teflon layer 
between the roller and the pivot, and the roller and the pivot welded together. Cable forces at two 
ends of the cable when the cable is stretched with the maximum designed load are listed in Table 4. 

It is shown in Table 4 that test results of cable force at the fixed end coincide with results 
obtained with the numerical model. It should be noted that the conclusion is based on the fact that 
the coefficient of friction is obtained in experiment. Therefore, the effect of friction on cable force 
and the structure could be evaluated by numerical simulation with equivalent friction elements if 
the coefficient of friction of the joint could be obtained accurately in practical engineering. 

 
4.2 Continuous sliding cable 
 
The application of the equivalent friction element in the cable-roller model is proved feasible in 

Section 4.1. A continuous sliding cable model, which is composed of several cable-roller models, 
is designed to investigate the feasibility of the equivalent friction element further. Segment 
numbers and included angles of adjacent cable segments are shown in Fig. 10. 

 
 

 
Fig. 10 A sketch of continuous sliding cable 
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Fig. 11 Calculation diagram 
 
 
4.2.1 Theoretical solution 
The calculation diagram of a continuous sliding cable at a turning point is shown in Fig. 11. 

Equilibrium equations of forces in n-axis and s-axis are shown in Eq. (41). Eq. (43) can be derived 
from Eqs. (41) and (42) which indicates the relation of sliding friction and pressure. As is shown 
in Fig. 14, theoretical values T2, T3 and T4 can be obtained by substituting μ = 0.26 (experimental 
result) into Eq. (43). 
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4.2.2 Results obtained with equivalent friction element 
The numerical model of a continuous sliding cable is established with Matlab software. 

Equivalent friction elements are established in each turning point of the cable. The coefficient of 
friction is μ = 0.26 (experimental result), and the sectional area and modulus of elasticity of the 
cable are A = 19.6 mm2 and E = 2.0 × 105 N/mm2. Cable forces of cable segments are shown in Fig. 
14, which is called numerical solutions in the paper. 

 
4.2.3 Experiment of continuous sliding cable 
A continuous sliding cable model is made as shown in Fig. 12. Ф5 wire rope is adopted in the 
 
 

Fig. 12 Continuous sliding cable in the test 
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Fig. 13 Connection of the cable and a dynamometer 
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Fig. 14 Comparison of cable forces obtained by different means 
 
 

model which is comprised of 4 cable segments. As shown in Fig. 13, a dynamometer is installed in 
the middle of each cable segment to connect the bisected cable segment. A circle ring fixed to the 
ground is set at each turning point of the cable to simulate the contact of the cable and joint. In the 
test, a 400 N tensile force was applied at the end of No. 4 cable segment by means of suspended 
load. Cable forces of each cable segment measured are shown in Fig. 14. The average of 
coefficients of friction at three turning points calculated is μ = 0.26. 

It is indicated in Fig. 14 that theoretical solutions are consistent with numerical solutions which 
verifies the feasibility of application of the equivalent friction element in continuous sliding cable. 
As the coefficient of friction is not constant and the average of coefficients of friction is adopted to 
calculate both theoretical and numerical solutions, the error would occur inevitably. In practice, it 
is necessary to measure the coefficient of friction between the cable and joint accurately to obtain 
cable forces with the numerical model presented in this section. 

 
4.3 Truss string structure 
 
In the construction of truss string structure, the continuous cable is usually stretched at one end 

or at the both ends of the truss, and pretress would transfer in adjacent cable segments through 
cable-strut joints. The inevitable friction between the cable and joint would result in prestress loss 
and further the uneven distribution of internal forces of the structure, which would eventually 
affect the overall performance of the structure. In previous finite element analysis, the continuous 
cable is simplified as separated cable segments, and each independent cable segment is applied 
with the same pretress. Obviously, it would result in a great error with the discontinuous cable 
model, because the effect of frictional loss is ignored and the working principle of discontinuous 
cable is quite different from that of continuous cable. In this section, the equivalent friction 
element is applied in the analysis of truss string structure to consider the effect of frictional loss on 
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Fig. 15 Truss string structure model 
 

Table 5 List of working conditions considered 

Case Friction coefficient µ F / kN Comment 

Case 1 0 0 No friction 

Case 2 12.7 0 Discontinuous cable 

Case 3 0.2 20 Stretch with friction 

Case 4 0 20 Stretch with no friction 

 
 
the structure. 

A plane truss string structure with a continuous cable is shown in Fig. 15. Equivalent friction 
elements are established in cable-strut joints. Assume that the modulus of elasticity and the 
sectional area of all members in the structure are the same with E = 2 × 105

 N/mm2
 and A = 100 mm2. 

An external force F is applied in the tangential direction of the cable at the right end of the cable. 
The loads and boundary constraints of the truss string structure is shown in Fig. 15, where P = 1 kN. 

The cable-supported truss was calculated with Matlab, considering the four conditions listed in 
Table 4. The value of µ in condition 2 is less than the internal friction angle of the cable and the 
strut joint, and the cable could not slide through the cable-strut joint. In this case, it can be 
simulated with discontinuous cable model. In addition, the contact friction between the cable and 
the strut joint could not be considered in MIDAS FEA software, which is a generic commercial 
finite element software. Therefore, it is the only method to adopt the discontinuous cable model in 
MIDAS to calculate the cable-supported truss at present. As described above, the discontinuous 
cable model is equivalent to the case where the friction coefficient is not less than the internal 
friction angle. Hence, the validity of the equivalent friction element proposed in the paper can be 
proved indirectly by comparing the results of the condition 2 listed in Table 4 and MIDAS result. 
The results are shown in Fig. 16. As the continuous sliding cable model is not concluded in Midas 
and the contact friction between the cable and joint could not be considered in Midas, internal 
forces in the second condition are also obtained with Midas, shown as Fig. 17. 

A comparison of results in Figs. 16(b) and 17 indicates that internal forces calculated by finite 
element analysis with equivalent friction elements are consistent with Midas results in the second 
condition μ = 12.7 when the cable could not slide through the joint and equivalent friction elements 
keep in a fixed state. In addition, results in Fig. 16(a) show that internal forces of all cable 
segments are equal when there is no friction between the cable and joint. The above results prove 
the feasibility of equivalent friction elements. 

A comparison of Figs. 16(a) and (b) indicates that the distribution of internal forces of the 
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(a) Case 1 

 

 

(b) Case 2 
 

 

(c) Case 3 
 

 

(d) Case 4 

Fig. 16 Results of finite element analysis with equivalent friction elements (N) 
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Fig. 17 Results of Midas for the second condition 

 
 

structure tends to be uneven when the discontinuous cable model is adopted in the analysis of truss 
string structure. The maximum of cable force with the value of 7,404 N occurs in the cable in the 
middle of span, while the minimum of cable force is 4,217 N which occurs in the two ends of span, 
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displaying a significant uneven distribution of cable forces. The maximum and minimum of 
internal force of struts in the discontinuous cable model are 1,866 N and 154 N respectively, 
showing a big difference of 1,712 N. Also, tensile force occurs in certain struts. In the continuous 
cable model, the maximum and minimum of internal force of struts are 1,032 N and 548 N 
respectively, showing a relatively small difference of 484 N. The above results indicate that the 
distribution of internal forces in a discontinuous cable model would be more uneven and that the 
minimum internal force would be underestimated in a discontinuous cable model. There is a 
similar result in the upper truss. Therefore, there would be a great error if the cable in cable 
supported structures is signified as discontinuous cable, and internal forces of some members in 
the structure would be underestimated which is not favored in structural design. 

It is indicated in Fig. 16(d) that the internal force distribution in the structure is symmetric 
when there is no friction. A comparison of results in Figs. 16(c) and (b) shows that the friction 
between the cable and joint would cause an uneven distribution of internal forces when pretension 
is applied by means of stretching the cable at one end. Also, Fig. 16(c) indicates that internal 
forces of struts would decrease when friction exists, which would impair the supporting effect of 
the cable-strut system on the upper truss. In addition, an uneven distribution of internal forces in 
the cable-strut system would lead to an uneven distribution of internal forces in the upper truss that 
internal forces of bars in the truss on the stretching side would decrease while an increase of 
internal forces would occur in bars on the other side. 

Therefore, it is necessary to consider the effect of friction on the structural behavior, since the 
performance of the structure would be affected by an uneven distribution of internal forces 
resulted from the friction between the continuous cable and joints. 

 
 

5. Conclusions 
 
The equivalent friction element is proposed in this paper to consider the effect of friction 

between the cable and the joint on the mechanical performance of structure. Considering three 
possible contact state: fixed, sliding and separated, geometric and internal force constraint 
conditions are determined, and equivalent stiffness matrix and equivalent load vector of the 
element are derived. The element stiffness matrix and load vector of the equivalent friction 
element share the same formulation with other finite elements. Hence, the overall analysis of the 
structure is available by assembling equivalent element stiffness matrixes and equivalent load 
vectors into global ones. One advantage of the equivalent friction element is that only a few steps 
of iteration are required to obtain a relatively accurate solution for the analysis considering 
friction. 

Cable-roller model is the fundamental component of the continuous cable in cable supported 
structures. Equivalent friction element is firstly applied in a cable-roller model, and its feasibility 
is proved with tensile tests of rolling cable-strut joints. In addition, equivalent friction element is 
also applied in a continuous sliding cable model. Theoretical values, numerical solutions and 
experiment results are consistent with each other, verifying the feasibility of equivalent friction 
element in the continuous sliding cable model. 

Finally, equivalent friction element is further applied in truss string structure. Results of the 
fixed state obtained by finite element analysis with equivalent friction element are compared with 
Midas results, verifying the feasibility of equivalent friction element again. In addition, there 
would be a great error if the continuous cable is simplified as the discontinuous one in the finite 
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element analysis, which should be paid attention to by structural designers. Results also indicate 
that the structural performance would be affected by the friction between the cable and joints. 
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