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Abstract.  In this article, nonlinear free vibration behaviour of functionally graded spherical panel is 
analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for 
shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of 
functionally graded material are assumed to be varying continuously in transverse direction and evaluated 
using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of 
the shell panel is obtained using Hamilton’s principle and discretised with the help of nonlinear finite 
element method. The desired responses are evaluated through a direct iterative method. The present model 
has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those 
available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, 
aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of 
spherical panel have been discussed through numerical experimentations. 
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1. Introduction 

 
The necessity of advanced materials for aerospace, power, automotive and other engineering 

fields are focused demanded which can maintain their capabilities even in the extreme 
environmental conditions. Layered structures have shown their applicability in various weight 
sensitive industries, but due to residual stresses at the interfaces, de-lamination of layers may occur 
which causes failure. In functionally graded material (FGM), smooth variation of (metal/ceramic) 
materials from one surface to another surface results elimination of de-lamination phenomenon. 
The metals or metal alloys are having good high toughness and strength whereas in the other 
counterpart, the ceramics have better heat resistance and anti-oxidant properties. 

Several studies have already been studied and reported on the analysis and modelling of 
functionally graded (FG) shell panels based on the different shell theories and the solution 
techniques (Birman and Byrd 2007, Liew et al. 2011, Jha et al. 2013, Alijani and Amabili 2014). 
Talha and Singh (2011) analysed the free vibration of the FG plate in the framework of higher 
order shear deformation theory (HSDT) by taking Green–Lagrange nonlinearity. Uymaz and 
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Aydogdu (2007) developed 3D solutions for vibration of FG plates under different support 
conditions using small strain linear elasticity theory. Matsunaga (2008) studied the free vibration 
and buckling responses of simply-supported FG shallow shell panels by using a 2D higher-order 
deformation theory. Hosseini-Hashemi et al. (2010) computed analytically the free vibration 
behaviour of moderately thick FG plates for various support conditions. Bich and Nguyen (2012) 
studied nonlinear vibration of FG cylindrical shell subjected to axial and transverse mechanical 
loads using displacement method and improved Donnell shell theory. Malekzadeh and Heydarpour 
(2012) investigated free vibration behaviour of temperature dependent FG cylindrical shells based 
on the first order shear deformation theory (FSDT). Rahimi et al. (2011) investigated the vibration 
responses of FG cylindrical shells with intermediate ring supports based on Sanders’ thin shell 
theory. Santos et al. (2009) proposed a semi-analytical axisymmetric finite element model to 
investigate the free vibration behaviour of FG cylindrical shell using the 3D linear elastic theory. 
Haddadpour et al. (2007) presented free vibration behaviour of FG cylindrical shell for four 
different in-plane boundary conditions for different thermal conditions. Patel et al. (2005) 
investigated free vibration characteristics of FG cylindrical shell with elliptical base using 
higher-order through the thickness approximations based on finite element formulation. 
Pradyumna and Bandyopadhyay (2008) studied free vibration responses of FG curved panels using 
HSDT kinematic model and Sanders’ shallow shell theory. Pradyumna et al. (2010) examined the 
nonlinear transient vibrations of FG doubly curved panels based on higher-order finite element 
formulation using New-mark method. Alijani et al. (2011a) employed Donnell’s nonlinear 
shallow-shell theory to examine the nonlinear forced vibrations of simply-supported FG doubly 
curved shallow shells. The authors (Alijani et al. 2011b) also investigated the nonlinear forced 
vibrations of FG curved shells through multi-modal energy approach and pseudo-arc-length 
continuation and collocation scheme under thermal environment. Sundararajan et al. (2005) 
examined the nonlinear vibration behaviour of FG plates under thermal environment based on 
FSDT using von Karman’s assumptions. Shen and Wang (2014) reported the nonlinear vibration 
behaviour of FG cylindrical shell panel using the HSDT and von Karman nonlinearity under 
temperature field. Chorfi and Houmat (2010) approached the harmonic balance method to 
investigate the nonlinear vibration responses of clamped FG doubly curved shallow shells. 
Tornabene and Viola (2009) employed the Generalized Differential Quadrature method to obtain 
the free vibration of FG panels and shells of revolution based on the FSDT. 

Based on the review, we note that no study has been reported on the free vibration behaviour of 
FG spherical shell panel using HSDT mid-plane kinematics with Green-Lagrange nonlinearity. In 
addition to the above, the present study included all the nonlinear higher order strain terms in the 
mathematical model to predict the exact responses under severe nonlinearity. Here in this study, 
the effective material properties of in-homogenous FG shell panel are evaluated using 
micromechanical model (Gibson et al. 1995) in conjunction with power-law distribution to 
achieve the smooth gradation between different constituents. Hence, an attempt has been made 
first time to solve such complex problem numerically for FG shell panel and to develop better 
understanding in small strain and large translation/rotation regime. The governing equation of 
vibrated FG shell panel is derived using Hamilton’s principle for the developed mathematical 
model. The model has been discretised via suitable finite element steps and the desired responses 
are obtained using a direct iterative method. The convergence test of the present developed model 
has been carried out to stabilise the presently proposed model. Subsequently, few comparisons 
have been made for both linear and nonlinear cases to exhibit the efficacy and necessity of the 
present developed model. Finally, the influence of different parameters such as power-law index, 
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thickness ratios, aspect ratios, curvature ratios, amplitude ratios and support constraints on 
frequency ratios (nonlinear frequency to linear frequency) are studied in details. 
 
 
2. Mathematical formulations 

 
In the present analysis, a spherical FG shell panel is considered with uniform thickness ‘h’ and 

sides a and b as shown in Fig. 1. Here, Rx and Ry are the principal radii of curvatures of the shell 
panel along x and y directions, respectively. The principal radii of curvature of spherical panel is 
assumed as, Rx = Ry = R. 

 
2.1 Kinematic model of FG panel 
 
The following HSDT displacement field is used for the FG shell panel to derive the 

mathematical model as in Reddy (2003). 
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where, ,,vu  and w  denote the displacements of any point in the given panel along the (x, y, z) 
coordinates. u0, v0 and w0 are the corresponding mid-plane displacements. θx and θy are the 
rotations of transverse normal about the y and x-axis, respectively. The functions 

**
0

*
0 ,, xvu   and 

*
y  

are the higher order terms in the Taylor series expansion defined in the mid-plane of the shell. 
Eq. (1) can also be represented in the matrix form as 

 
}]{[}{ 0 f                                (2) 

 
 

Fig. 1 Geometry and dimension of spherical FG shell panel 
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where, },        {}{ ,}  {}{ ***
0

*
00000 yxyx

T vuwvuwvu    and [f] is the function of thickness 
coordinate. 

 
2.2 Strain displacement relations 
 
The total strain vector {ε}, comprised of linear {εL} and nonlinear {εNL} strains, are defined in 

Green-Lagrange sense of any material continuum as in (Panda and Singh 2009). 
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By substituting Eq. (1) in Eq. (3), the strain displacement relation for FG shell panel 
can be represented in terms of mid-plane strain vectors as 
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 are the 

linear and nonlinear mid-plane strain vectors, defined in Appendix A(1). 
The above Eq. (3) can also be rearranged in the terms of linear [T1] and nonlinear [Tnl] 

thickness coordinate matrices, as 
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2.3 Finite element formulation 
 
The present FG shell panel is discretised using a nine noded isoparametric quadrilateral 

Lagrangian element with 81 degrees of freedom per element. Therefore, for any element, the 
mid-plane displacement vector can be expressed as 
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00000    is the ith nodal mid-plane displacement vector 

and [N] is the shape function. 
The linear and nonlinear mid-plane strain vector in terms of nodal displacement vector can be 

written as 
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where, [B] is the product form of differential operators and the shape functions in the 
linear strain terms. [A] is t function of displacements and [G] is the product form of 
differential operator and shape functions in the nonlinear strain terms. The individual 
terms of [B], [A] and [G] matrices are defined in Appendix A(2), A(3) and he A(4), 
respectively. 
 

2.4 Effective material properties of FGM 
 
In this study, it is assumed that FGMs are varying smoothly along the thickness direction of 

  
 

-0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Non-dimensional thickness coordinate (z/h)

V
o

lu
m

e
 fr

a
ct

io
n

 o
f c

o
n

st
itu

e
n

ts

Volume fraction of Metal V
fm

 n=0.2
 n=0.5
 n=2
 n=5
 n=10

Volume fraction of Ceramic V
fc

 n=0.2
 n=0.5
 n=2
 n=5
 n=10

 

Fig. 2 Variations of volume fractions of FGM constituents (metal and ceramic) along with the 
non-dimensional thickness coordinate 
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shell panel from the bottom surface (metal rich) to the top surface (ceramic rich) based on 
power-law distribution. The effective material property of FGM is evaluated through the Voigt 
micromechanical model and represented as (Gibson et al. 1995) 
 

  bfbt PVPPP
t
                               (8) 

 
where, Pb and Pt are the metal and ceramic material properties. Vft is the volume fraction of 
ceramic material which can be presented according to power-law distribution as (Shen 2009) 
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where, n (0 ≤ n ≤ ∞) is the power-law index which describes the material profile along with the 
thickness of the FG shell panel. Different material profiles can be generated by varying the 
power-law index with respect to the ceramic and the metal volume fractions along with the 
non-dimensional thickness coordinate (Z = z / h) as shown in Fig. 2. 

 
2.5 Constitutive relations 
 
The stress strain relationship for FG shell panel can be expressed as 
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where, Q11 = Q22 = E / (1 – υ2), Q12 = Q21 = E * υ / (1 – υ2), Q66 = Q55 = Q44 = E / 2 * (1 + υ). 

The strain energy of the curved shell panel can be expressed as 
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Eq. (11) can be rearranged by substituting strain and stress terms from Eqs. (5) and (10) as 
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The kinetic energy of the vibrated FG shell panel is given by 
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where, ρ is the mass density and }{  is the first order differential of global displacement vector 
with respect to time. 

By substituting Eq. (2) in Eq. (13), the kinetic energy of the FG shell panel for thickness h can 
be written as 
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2.6 Governing equations 
 
The governing equation of vibrating FG shell panel is obtained by using Hamilton’s principle. 
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where, L = T – U. 
Now, the final form of the eigenvalue equation is derived using the Eqs. (11)-(15) and rewritten 

as follows 
0}]}{[][ { 2   MK                            (16) 

 
where, [M] is the global mass matrix, ω is the natural frequency of the system and [K] is the global 
stiffness matrix which includes all the linear and the nonlinear stiffness matrices, 

][ ],[ ],[ 211
nlnll KKK  and ].[ 3

nlK  The linear and nonlinear responses of vibrated FG spherical panel 
are evaluated by using direct iterative method. The implementation of the iterative method has 
been discussed as point wise. 
 

(1) As a first step, the elemental stiffness and mass matrices are computed. 
(2) These elemental matrices are assembled to give global stiffness and mass matrices. 
(3) To obtain the linear response of FG panel, linear eigenvalue equation is solved by setting 

other nonlinear stiffness matrices equal to zero. 
(4) The corresponding eigenvector is extracted through an eigenvector extraction algorithm 

and normalized and scaled up using amplitude ratio (Wmax / h, where, Wmax is the maximum 
central deflection and h is thickness of the panel) for finding nonlinear stiffness matrices 
and updating the same, successively. 

(5) The above step will be continued until the nonlinear frequency parameter evaluated from 
the two successive iterations are reached the tolerance limit (≤ 10-3). 

 
 

3. Results and discussions 
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The desired responses of FG spherical panel are obtained using a nonlinear finite element code 
developed in MATLAB environment based on the proposed and developed nonlinear 
mathematical model. The material properties of FGM constituents are assumed to be temperature- 
independent for the present analysis and presented in Table 1. The support conditions (clamped C, 
simply-supported S and hinged H) are employed to avoid rigid body motion as well as to reduce 
the number of constraints. The details of different support conditions are discussed in detail in 
Table 2. The proposed and developed model has been validated by comparing the results with 
those available published literatures. Subsequently, the influences of parameters (the power-law 
indices (n), the thickness ratios (a / h), the curvature ratios (R / a), the aspect ratio (a / b), the 
amplitude ratios (Wmax / h) and the support conditions) on the free vibration responses of FG 
spherical panel are obtained by solving sets of numerical experimentations and discussed. 

 
3.1 Convergence and comparison study 
 

As a first step, the convergence behaviour of the numerical responses has been obtained and 
shown in Fig. 3. The figure shows, non-dimensional fundamental frequency parameter  )/)1(12(/ 2

mmm Evhab    with the mesh refinement of a simply-supported square FG (Al / 
ZrO2) spherical panel. The responses are plotted for three different power-law indices (n = 0.5, 2 
and 10), R / a = 50 and a / h = 100. It can be easily seen that the responses are converging well 
with the mesh refinement and a (6 × 6) mesh is sufficient enough to compute the desired responses. 

Now, the linear frequency responses are obtained using the proposed and developed model for 
a simply-supported FG (Al / Al2O3) spherical panel and compared with Matsunaga (2008) for 
different parameters i.e., two curvature ratios and six power-law indices and presented in Table 3. 
It is clear from the table that the responses obtained using present numerical model is in well 
agreement with the 2D exact solution (Matsunaga 2008) for various parameters as discussed 
earlier. In continuation to the linear case, one more comparison study has been made to exhibit the 
nonlinear behaviour of vibrated FG panel and the details are discussed in the subsequent 
paragraph. 

In this section, the convergence and comparison studies of nonlinear behaviour have been 
examined for a flat panel case. For the computational purpose, a simply-supported square FG 
(SUS304 / Si3N4) flat panel (a / h = 10, n = 2) is being analysed and the responses are plotted in Fig. 
4. It is clearly observed that, the values are converging well with mesh refinement and a (6 × 6) 
mesh is sufficient to obtain the further results. The present results are also showing good 
agreement with Sundararajan et al. (2005) for different amplitude ratios. It is interesting to note 
that, the present frequency ratios are comparatively lower than the reference for each amplitude 
ratios. It is because of the fact that the present model is being developed based on Green-Lagrange 
nonlinearity in the framework of the HSDT whereas the reference is based on the FSDT with 
von-Karman nonlinearity. In addition to that, the present model has been formulated by taking the 
effect of all the nonlinear higher order terms which makes the panel more flexible as compared to 
the reference. It is also worthy to mention that the von-Karman nonlinearity is unable to count 
both large rotation and translation terms when the structure exposed to sever nonlinearity and this 
in turn makes the model inadequate to predict the desired responses. 

 
3.2 Numerical examples 
 

In order to check the robustness of the present mathematical model of shear deformable FG 
shallow shell model, some numerical examples have been analysed and discussed for different 
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parameters. In this section, aluminum and zirconia are considered as metal and ceramic, 
respectively. 
 
 
Table 1 Material properties of the FGM constituents 

Materials 
Properties 

Young’s modulus E (GPa) Poisson’s ratio ν Density ρ (kg/m3)

Metal 
Aluminum (Al) 70 0.3 2707 

Stainless steel (SUS304) 207.78 0.28 8166 

Ceramic 

Zirconia (ZrO2) 151 0.3 3000 

Silicon nitrate (Si3N4) 322.27 0.28 2370 

Alumina (Al2O3) 380 0.3 3800 

 
Table 2 Sets of support condition 

CCCC  ***
0

*
0000 yxyx vuwvu   at x = 0, a and y = 0, b 

SSSS 
 **

000 yy vwv  at x = 0, a; 

 **
000 xx uwu  at y = 0, b 

SCSC 
 **

000 yy vwv   at x = 0, a; 

 ***
0

*
0000 yxyx vuwvu  at y = 0, b 

HHHH 
 **

0000 yy vwvu   at x = 0, a; 

0**
0000  xx uwvu  at y = 0,b 
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Fig. 3 Non-dimensional linear frequency parameter of a simply-supported square FG (Al/ZrO2) 
spherical panel (R / a = 50, a / h = 100) for different mesh size 

701



 
 
 
 
 
 

Vishesh R. Kar and Subrata K. Panda 

Table 3 Comparison of linear frequency parameter )/( cc Eh    for a simply-supported FG (Al / 
Al2O3) spherical panel (a / b = 1, a / h = 10) 

R / a n 0 0.5 1 4 10 ∞ 

1 
Present 0.1078 0.0834 0.0719 0.0526 0.0457 0.0381 

Matsunaga(2008) 0.09782 0.09782 0.09047 0.07453 0.06677 0.05577 

2 
Present 0.0744 0.0568 0.0486 0.0364 0.0324 0.0263 

Matsunaga(2008) 0.07514 0.06569 0.06006 0.05034 0.04643 0.03826 
 

2x2 3x3 4x4 5x5 6x6 7x7

1.0

1.1

1.2

1.3

1.4

1.5

F
re

q
u

en
cy

 R
at

io
  


nl
 /


) 

Mesh Size

 W
max

/h = 0.2  nl /)Sundararajan et al. (2005)= 1.0057, nl /)
Present

= 1.0132

 W
max

/h = 0.4  nl /)Sundararajan et al. (2005)= 1.063, nl /)
Present

= 1.0513

 W
max

/h = 0.6  nl /)Sundararajan et al. (2005)= 1.1654 nl /)
Present

= 1.1102

 W
max

/h = 0.8  nl /)Sundararajan et al. (2005)= 1.3031 nl /)
Present

=1.1848

 W
max

/h = 1.0  nl /)Sundararajan et al. (2005)= 1.4666 nl /)
Present

= 1.2754

 

Fig. 4 Convergence and comparison of frequency ratios of a simply-supported square FG 
(SUS304 / Si3N4) flat panel (a / h = 10, n = 2) for different amplitude ratios 
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Fig. 5 Influence of power-law index on frequency ratio of simply-supported square FG spherical panel 
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Fig. 6 Influence of thickness ratio on frequency ratio of simply-supported square FG spherical panel 

 
 

Fig. 5 shows the frequency ratio of a simply-supported square FG (Al / ZrO2) spherical panel (R 

/ a = 5, a / h = 10) for different amplitude ratios and power-law indices (n = 0.5, 2, 10). It is observed 
that the frequency ratio decreases with increase in power-law indices that means the nonlinearity is 
higher for ceramic rich phase (high stiffness) and lower for metal rich phase (low stiffness). 

Fig. 6 shows the effect of thickness ratios on the frequency ratios of a square simply-supported 
FG (Al / ZrO2) spherical shell panel (R / a = 5, n = 2) for different amplitude ratios. It is interesting 
to observe that, as the thickness ratio increases from 5 to 20, the frequency ratios increase for each 
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Fig. 7 Influence of curvature ratio on frequency ratio of simply-supported square FG (Al / ZrO2) 

spherical (a / h = 10) panel (n = 2) 
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Fig. 8 Influence of support condition on frequency ratio of square FG (Al / ZrO2) spherical panel 
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Fig. 9 Influence of aspect ratio on frequency ratio of simply-supported FG spherical panel 
 
 
amplitude ratios. It is also noted that the frequency ratios are decreasing at a / h = 100. This is 
because of the fact the responses in small strain and large rotation and/or translational problem 
may not follow a monotonous behaviour. 

Fig. 7 shows the effect of curvature ratios on the frequency ratios of a simply-supported square 
FG (Al / ZrO2) spherical panel (n = 2, a / h = 10). It is observed that the frequency ratio decreases 
with the increase in curvature ratios because as the curvature ratio increases the panel becomes flat. 
It is also well known that the shell structures have higher membrane stiffness as compared to the 
flat panel and the amplitude of vibration have less effect on the curved panel in comparison to flat 
panel. 
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Fig. 8 presents the frequency ratios of a square FG (Al / ZrO2) spherical panel (n = 2, a / h = 100, 
R / a = 50) for different types of support conditions and amplitude ratios. It is observed that the 
responses are following the expected line for every linear case whereas the nonlinearity effect is 
predominant for hinged support (HHHH). It can also be observed that the frequency ratio increases 
smoothly up to Wmax / h = 1.2 for each case and it suddenly drops for higher amplitude. This type of 
non-repetitive behaviour can only be observed by taking full nonlinearity in geometry as in the 
present case. 

Fig. 9 shows the variation of frequency ratios of a simply-supported FG (Al / ZrO2) spherical 
panel (n = 2, a / h = 100, R / a = 50) for different aspect ratios at different amplitude ratios. It can be 
observed that the frequency ratio decreases with increase in aspect ratios for all the values of 
amplitude ratios. This is true that aspect ratio has a considerable effect on stiffness matrix and as 
the aspect ratio increases the panel loses its geometry from square. In addition to that, nonlinear 
vibration is not only the functions of linear stiffness and mass matrix but also depending upon 
nonlinear stiffness matrix and their corresponding amplitude ratios. Hence, the effects can be 
observed for better understanding. 

 
 

4. Conclusions 
 
The nonlinear free vibration behaviour of FG spherical shell panel are analysed based on the 

HSDT mid-plane kinematics (nine degree-of-freedom per node) by taking the geometric 
nonlinearity in Green-Lagrange sense. The FGM properties are taken as the function of thickness 
coordinate based on power-law distribution of the volume fractions and invariant with the 
temperature. Finally, to achieve the true flexure of the panel all the nonlinear higher order terms 
are taken in the present formulation. Finite element steps are employed by using a nine node 
isoparametric Lagrangian element to obtain the elemental equations. The governing equations of 
vibrated FG panel have been obtained using Hamilton’s principle and solved using direct iterative 
method. The accuracy of the developed nonlinear model has been shown through the convergence 
and comparison. In order to demonstrate the influences of different material and geometrical 
parameters have been illustrated by solving some new examples. It is observed that, the frequency 
ratios are increasing with increase in amplitude ratios and thickness ratios whereas decreasing with 
increase in power law indices, curvature ratios and aspect ratios. 
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Appendix A 
 
Linear mid-plane strain terms 
 

0
,x xu  ,   

0
,y yv  ,   

0
, ,xy y xu v   ,   

0
,xz x xw   ,    

0
,yz y yw   , 

1
,x x xk  ,  

1
,y y yk  ,  

1
, ,xy x y y xk    ,  

1 *
02 /xz x xk u R  ,  

1 *
02 /yz y yk v R  , 

2 *
0,x xk u ,   

2 *
0,y yk v ,  

2 * *
0, 0,xy y xk u v  ,  

2 * *
03 /xz x xk u R  ,  

2 * *
03 /yz y yk v R  , 

3 *
,x x xk  ,   

3 *
,y y yk  ,  

3 * *
, ,xy x y y xk    , 

3 * /xz x xk R  ,    
3 * /yz y yk R  . 

 
Nonlinear mid-plane strain terms 
 

4 2 2 2
, , , ?  ?+ + ?x x x xu v w  , 

4 2 2 2
, , , ?  ?+ +?y y y yu v w   

4
, , , , , ,+ xy x y x y x yu u v v w w   , 

4
, ,+  xz x x x yu v   , 

4
, ,+  yz y x y yu v    

, , , ,
5

, /x x x x x xx x y xu v w Rk     , , , , ,
5

,  /x x y y y y y y yy u v w Rk     , 

, , , , , , , , , ,
5 + / /+x x x y y x x x y y y y x x y y y xy xu u v v w R wk R        , 

0 0

5 * *
, , , , 2 2x xxz x x x y x yk u u v v       , 

0 0

5 * *
, , , , 2 2y yyz x x x y y yk u u v v       , 

0

* * 2 2 2 2
, 0, , 0, ,

6 *
, ,? // 슬 ?x x x x xx x x x y x x xk u u v v w u R R        

0

* * 2 2 2
, 0, , 0

6 * 2
, , , ,슬? ?/y y y y y x y y yy y y yk u u v v w v R R       , 

0 0

* * * *
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0 0
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0 0

* *
, , , , 0, 0,
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8 * * * *
, ,

* * * *
0, 0, 0 03 3 2 2xz x yx x x x y xk vu u v      ,   8 * * * *

, ,
* * * *
0, 0, 0 03 3 2 2yz x yy y x y y yk vu u v      , 

* * * 2
0, 0,

9 * * *
, , 0?   = + + /x x x y x xx x xk u v u R   ,    

* * * 2
0, 0,

9 * * *
, , 0?   = + + /y x y y y yy y yk u v Rv   , 

* * * * *9 * * * * * *
, ,

*
0, 0, 0, 0,, 0, 0  + + + + / /xy x y x x y yx y x y x y xx yy x yu u u Rk v Rv vR R       , 

9 * * * *
, , 3  3= +xz x x x y x yk     ,  

9 * * * *
, , 3  3= +yz x y x y y yk     , 

= 

= 
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1  2
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10 * 2 * 2 * 2
, , ?  ?= ) + ?) / )x x x y xx xk R   ,   

10 * 2 * 2 * 2
, , ?  ?= ) + ?) / )y x y y yy yk R   , 

10 * * * * * *
, , , ,  = + /xy x x x y y xx y y y yx R Rk       . 

 
where, the expressions of u,x , u,y , v,x , v,y , w,x and w,y are 
 

, 0 0/ /x xu u x w R    ,    , 0 0/ /y xyu u y w R     

, 0 0/ /x xyv v x w R    ,   , 0 0/ /y yv v y w R    , 

, 0 0/ /x xw w x u R    ,   , 0 0/ /y yw w y v R    .                                A(1) 
 
Individual terms of matrix [B] 
 
[B]1,1 = / x  , [B]1,3 = 1/ xR , [B]2,2 = / y  , [B]2,3 = 1/ yR , 

[B]3,1 = / y  ,  [B]3,2 = / x  ,  [B]3,3 = 2 / xyR , [B]4,1 = 1/ xR ,  [B]4,3 = / x  , [B]4,4 = 1, 

[B]5,2 = 1/ yR , [B]5,3 = / x  ,  [B]5,5 = 1,  [B]6,4 = / x  , [B]7,5 = / y  , [B]8,4 = / y  , 

[B]8,5 = / x  , [B]9,4 = 1/ xR , [B]9,6 = 2,  [B]10,5 = 1/ yR , [B]10,7 = 2,  [B]11,6 = / x  , 

[B]12,7 = / y  , [B]13,6 = / y  , [B]13,7 = / x  , [B]14,6 = 1/ xR , [B]14,8 = 2,  [B]15,7 = 1/ yR , 

[B]15,9 = 2,  [B]16,8 = / x  , [B]17,9 = / y  , [B]18,8 = / y  , [B]18,9 = / x  , 

[B]19,8 = 1/ xR , [B]20,9 = 1/ yR .                                                  A(2) 
 
Individual terms of matrix [A] 
 
[A]1,1 = ,? xu , [A]1,3 = ,½ xv , [A]1,5 = ,? xw , [A]2,2 = ,? yu , [A]2,4 = ,½ yv , [A]2,6 = ,? yw , 

[A]3,1 = , yu , [A]3,3 = , yv , [A]3,5 = , yw , [A]4,1 = x , [A]4,3 = y , 

[A]5,2 = x , [A]5,4 = y , [A]6,1 = ,x x , [A]6,3 = ,y x , [A]6,5 = /x xR , 

[A]7,2 = ,x y , [A]7,4 = ,y y , [A]7,6 = /y yR , [A]8,1 = ,x y , [A]8,2 = ,x x , [A]8,3 = ,y y , 

[A]8,4 = ,y x , [A]8,5 = /y yR , [A]8,6 = /x xR , 

[A]9,1 = *
02u , [A]9,3 = *

02v , [A]9,7 = x , [A]9,9 = y , 

[A]10,2 = *
02u , [A]10,4 = *

02v , [A]10,8 = x , [A]10,10 = y , 

[A]11,1 = 
*

0,xu , [A]11,3 = 
*

0,xv , [A]11,5 =
*

0 /  xu R , [A]11,7 = ,½ x x , [A]11,9 = ,½ y x , 

[A]12,2 = 
*

0,yu , [A]12,4 = 
*

0,yv , [A]12,6 =
*

0 /  yv R , [A]12,8 = ,½ x y , [A]12,10 = ,½ y y , 

[A]13,1 = 
*

0,yu ,  [A]13,2 = 
*

0,xu ,  [A]13,3 = 
*

0,yv , [A]13,4 = 
*

0,xv , 

[A]13,5 =
*

0 /  yv R , [A]13,6 =
*

0 /  xu R , [A]13,7 = ,x y  , [A]13,9 = ,y y , 

[A]14,1 = *3 x , [A]14,3 = 
*3 y , [A]14,7 = *

02u , [A]14,9 = *
02v , [A]14,11 = x , [A]14,13 = y , 

[A]15,2 = *3 x , [A]15,4 = 
*3 y , [A]15,8 = *

02u , [A]15,10 = *
02v , [A]15,12 = x , [A]15,14 = y , 

[A]16,1 = 
*

,x x ,  [A]16,3 = 
*

,y x ,  [A]16,5 = * /x xR , 

[A]16,7 = 
*

0,xu ,  [A]16,9 = 
*

0,xv ,  [A]16,19 = 
* 2

0 /  xu R , 
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[A]17,2 = 
*

,x y ,  [A]17,4 = 0,   [A]17,6 =
* /y yR , 

[A]17,8 = 
*

0,yu ,  [A]17,10 = 
*

0,yv ,  [A]17,20 = 
* 2

0 /  yv R , 

[A]18,1 = *
,x y ,  [A]18,2 = *

,x x ,  [A]18,3 = *
,y y ,  [A]18,4 = 

*
,y x , 

[A]18,5 =
* /y yR , [A]18,6 =

* /x xR , [A]18,7 = 
*

0,yu ,  [A]18,8 = 
*

0,xu , 

[A]18,9 = 
*

0, yv ,  [A]18,10 = *
0,xv ,  [A]18,19 = 

*
0 /  x yv R R , [A]18,20 = 

*
0 /  x yu R R , 

[A]19,7 = 
*3 x , [A]19,9 = 

*3 y , [A]19,11 = 
*

02u , [A]19,13 = 
*

02v , [A]19,15 = x , [A]19,17 = y , 

[A]20,8 = 
*3 x , [A]20,10 = 

*3 y , [A]20,12 = *
02u , [A]20,14 = *

02v , [A]20,16 = x , [A]20,18 = y , 

[A]21,7 = 
*

,x x ,  [A]21,9 = 
*

,y x ,  [A]21,11 =
*

0,? xu , 

[A]21,13 =
*

0,? xv ,  [A]21,19 = 
* 2/  x xR ,  [A]21,21 =

* 2
0?  xu R , 

[A]22,8 = 
*

,x y ,  [A]22,10 = 
*

,y y ,  [A]22,12 =
*

0,? yu ,  [A]22,14 =
*

0,? yv , 

[A]22,20 =
* 2/  y yR , [A]22,22 =

* 2
0?  yv R , 

[A]23,7 = 
*

,x y , [A]23,8 = 
*

,x x ,  [A]23,9 = 
*

,y y ,  [A]23,10 = 
*

,y x , [A]23,11 = 
*

0,yu , 

[A]23,13 = 
*

0,yv ,  [A]23,19 = 
* /  y x yR R , [A]23,20 = 

* /  x x yR R ,  [A]23,21 = 
*

0 /  x yv R R , 

[A]24,11 = 
*3 x , [A]24,13 = 

*3 y , [A]24,15 = 
*

02u ,  [A]24,17 = 
*

02v , 

[A]25,12 = 
*3 x ,  [A]25,14 = 

*3 y , [A]25,16 = 
*

02u ,  [A]25,18 = 
*

02v , 

[A]26,11 = 
*

,x x , [A]26,13 = 
*

,y x , [A]26,21 = 
* 2/  x xR , 

[A]27,12 = 
*

,x y , [A]27,14 = 
*

,y y , [A]27,22 = 
* 2/  y yR , 

[A]28,11 = 
*

,x y , [A]28,12 = 
*

,x x , [A]28,13 = 
*

,y y , [A]28,14 = 
*

,y x , 

[A]28,21 = 
* /  y x yR R , [A]28,22 = 

* /  x x yR R , 

[A]29,15 = 
*3 x ,  [A]29,17 = 

*3 y ,  [A]30,16 = 
*3 x ,  [A]30,18 = 

*3 y , 

[A]31,15 =
*

,? x x ,  [A]31,17 =
*

,? y x ,  [A]31,23 =
* 2? /  x xR ,  

[A]32,16 =
*

,? x y ,  [A]32,18 =
*

,? y y ,  [A]32,24 =
* 2? /  y yR ,  

[A]33,15 = 
*

,x y ,  [A]33,17 = 
*

,y y ,  [A]33,23 = 
* /  y x yR R .                         A(3) 

 
Individual terms of matrix [G] 
 
[G]1,1 = / x  , [G]1,3 = 1/ xR , [G]2,1 = / y  , [G]2,3 = 1/ xyR , [G]3,2 = / x  , [G]3,3 = 2 / xyR , 

[G]4,1 = 1/ xyR , [G]4,2 = / y  , [G]4,3 = 1/ xyR , [G]5,1 = 1/ xR , [G]5,3 = / x  , 

[G]6,2 = 1/ yR , [G]6,3 = / y  , [G]7,4 = / x  , [G]8,4 = / y  , [G]9,5 = / x  , 

[G]10,5 = / y  , [G]11,6 = / x  , [G]12,6 = / y  , [G]13,7 = / x  , [G]14,7 = / y  , 

[G]15,8 = / x  , [G]16,8 = / y  , [G]17,9 = / x  , [G]18,9 = / y  , [G]19,4 = 1, 
[G]20,5 = 1,  [G]21,6 = 1,  [G]22,7 = 1,  [G]23,8 = 1,  [G]24,9 = 1.              A(4) 
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