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Abstract.  An analytical and experimental investigation is performed into the mechanical behavior of 

carbon-fiber/epoxy woven coned annular disk springs. An analytical approach is presented for predicting the 

deformation behavior of disk springs of specially orthotropic laminates with arbitrary geometric parameters. In 

addition, an analytical methodology is proposed for obtaining the deformation behavior of a stack of disk springs. 

The methodology is capable of accounting for parallel and series arrangements for uniform and irregular stacks. 

Element and assembly experimental results are used to validate the proposed method showing how to achieve 

flexible spring rates at various deflections ranges. This manuscript also provides guidelines for design and validation 

of disk spring assemblies. 
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1. Introduction 

 

Since the introduction of fiber reinforced composites, researchers have been quick to 

investigate the various possibilities of incorporating them in mechanical springs. Fiber composites 

give the possibility to optimize the design of the structure by aligning the high strength fibers in 

the direction of highest stresses. For example, Cho et al. have shown in this journal how optimum 

design can be achieve in fiber-reinforced tire belt structure (Cho et al. 2013). This motivation was 

driven by the possibility of robust light-weight replacements of metallic components. Elliptical 

springs comprising layers of composite materials arranged in non-uniform longitudinal dimensions 

can be used to obtain spring behavior (Mallick 1985, Huchette and Hall Jr. 1976). Mahdi et al. 

(2006) investigated the use of the elliptical spring configurations using woven roving composites. 

They demonstrated the influence of the ellipticity ratio on the spring rate and the performance of 

the springs through the failure history. The use of nickel–titanium alloy wires in altering the spring 

rates at elevated temperatures in composite circular rings was also investigated (Wong et al. 2004). 

Tse et al. (1994) investigated the behavior of composite circular rings under uniaxial compression 

using the equivalent flexural rigidity approach. In another approach they investigated the stress 

and strain distributions of a mid-plane symmetric laminated circular ring under uniaxial loading 
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using a strain energy approach (So et al. 1991). Chiu et al. (2009)studied the fatigue behavior of 

hybrid helical composites springs. Composite materials have also been proposed to create 

high-energy, compact storage in composite sulcated springs (Scowen and Hughes 1985, 

Thompson et al. 1992). In a sulcated spring, an elongated strip of composite materials is arranged 

in a zig-zag fashion acting as a flexible spring element. Leaf springs have also been proposed 

using composites (Suprith et al. 2013, Subramanian and Senthilvelan 2011). Composite coil 

springs using carbon fiber have also been investigated for weight reduction purposes under static 

and dynamic conditions (Hendry and Probert 1986, Çalım 2009, Hwan et al. 2010). However, the 

challenge in these is in controlling the interlaminar stresses produced during compression of the 

springs. Additional challenges in helical springs also relate to the effects of warping on the natural 

frequencies (Yu and Hao 2013). Other researchers have also investigated the fiber paths in 

composite conical shells under compression (Naderi et al. 2014, Topal 2013). Their results showed 

that the tailoring of fibers in the composite can improve the composite buckling strength. 

Stacks of composite disk springs have also been proposed to achieve spring behavior. In this 

implementation, composite disk springs are proposed taking advantage of the superior behavior of 

composites under flexural loading conditions. The springs are assembled in parallel or series 

combinations to achieve various spring rate and deflection characteristics. The development of 

disk springs can be traced to the early work by Almen and Laszlo (1936) who presented formulas 

for the load-deflection characteristics of cone shaped annular disk springs with particular 

application to metal disc springs with linear elastic material behavior. Curti and Montanini (1999) 

studied the effect of friction on the behavior of composite disk springs. The effect of material 

nonlinearity on the load-deflection curve and the stress field in disc springs was investigated to 

resolve some of the contradictions in the analytical presentations (Curti and Raffa 1992). Dharan 

and Bauman (2007) presented an experimental investigation of several prototype disk springs and 

compared the results to comparable steel springs. The design equations for steel disk springs were 

modified for a quasi-isotropic composite lay-up. Several prototype disc springs were manufactured 

and tested, and compared with the performance of equivalent steel springs. The flexibility of disk 

springs allows for customization of spring stiffnesses to suit different applications. The mechanical 

deformation in disk springs is primarily in flexure, contrast this with the large interlaminar stress 

conditions produced when spiral springs are used where multi-mode deformation modes such as 

torsion are seen to occur. Significant weight savings can be realized using disk springs by using 

materials with high specific stiffness and strength. The disk spring stacks also benefit from the 

inherent flexibility in fiber reinforced composite design. 

In this study, an analytical and experimental investigation is performed into the mechanical 

behavior of initially coned annular fiber reinforced composite disk springs. A carbon-fiber/epoxy 

woven composite is used to validate an analytical approach for these springs incorporating the 

material properties of specially orthotropic laminates. We also present a method to determine the 

linear and nonlinear behavior of even and non-even spring stacks containing the series and parallel 

elements. The design of the spring stack is typically performed in two parts. The first is the design 

of a single disk and the second is the design and arrangement of the spring stack comprising 

various units. 
 
 

2. Analytical model 
 

The development of the analytical method for characterizing the spring deformation is divided 

into two sections. The first portion involves characterization of the individual disk springs 
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Fig. 1 Schematic of disk spring showing all the key dimensions 

 

 
extending from the original equations derived by Almen and Laszlo (1936) for specially 

orthotropic cross-ply laminates. This is followed by an approach to couple the stiffness 

contributions of parallel and series arrangements of the individual disk elements to the entire stack 

assembly. The load versus deflection relationship in a single annular-disk spring loaded at the 

inner edge and supported by the outer edge, is governed by the following relation (Fig. 1) (Almen 

and Laszlo 1936) 
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where P is the axial load, E is the modulus of elasticity, δ is the axial deflection, v is the Poisson’s 

ratio, h is the free height of the disk, t is the thickness, a is the outer radius of the disk. In this 

equation, the constant M is a function of α, the ratio of the outer to inner radius, (α = a / b) 
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In the case of a specially orthotropic laminate, the laminate bending moduli and Poisson ratio 

are used and can be determined by 

22
3

2
122211 )(12

Dt

DDD
Eb

x


                             (3) 

 

11
3

2
122211 )(12

Dt

DDD
Eb

y


                             (4) 

 

3

6612

t

D
Gb

xy                                  (5) 

 

22

12

D

D
vb

xy                                   (6) 

 

where the D11, D12, D22 and D66 are coefficients from the bending stiffness matrix obtained from 

the classical lamination plate theory. The modulus in Eq. 1 is modified to account for the average 

modulus for the disk spring. In composite laminates and specifically orthotropic laminates, the 
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elastic modulus, E will vary depending on the angle, θ, away from the primary axis 
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To account for the changing modulus, the modulus in Eq. (1) is modified to the average 

modulus for the disk spring, Eds, which is found by integrating Eq. (7) around the spring boundary 

to obtain 








2

0

d)(
2

1
EEds                            (8) 

 

Substituting this into Eq. (1) yields a new equation for the load versus deflection of the 

composite disk spring of a specially orthotropic composite 
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Similarly, the instantaneous spring rate, r, and strain energy, V can be expressed as 
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Individual disk springs, or elements, can be arranged and grouped as described in Fig. 2. A 

group of two or more elements in parallel is a unit. A group of two or more units in series is a 

stack. The orientation and number of units in a stack alter the stiffness and load bearing capacity as 

 

 

 

Fig. 2 Terminology in a disk spring assembly 
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Fig. 3 Effect of series and parallel arrangements on spring deflection (experimental results) 

 

 
shown in Fig. 3. When elements are stacked in parallel, the maximum loading capacity of the 

assembly is the addition of its individual elements but the deflection of the assembly is the same as 

that of a single element. For a series configuration, the maximum load is equal to a single elements 

but the maximum deflection of the assembly is equal to the maximum deflection of the elements 

combined. Since many practical applications require a large number of disks in each spring stack, 

a short hand notation was developed to designate how the stack is presented. Chevron brackets 

(“<” or “>”) maybe used to represent a limited number of springs, but it quickly gets difficult to 

account for a large number of disks using this notation. The alternative notation works as follows. 

Starting at the bottom of the stack, count the number of elements in each unit of adjacent parallel 

disk springs. Separate each unit by a dash symbol “‒” to indicate that they are in a series 

combination. For example, the combination of disks represented with chevron brackets (<< > <<< 

>>) will have the notation “2-1-3-2”. Next, indicate the orientation of the starting spring using the 

chevron symbols “<” or “>”. For example, a group of two parallel springs in series with a group of 

three parallel springs can have the notation “< 2-3” << >>>) or “> 2-3” (>> <<<) depending on the 

orientation. If there is a reoccurring sequence in the stack, bracket the reoccurring sequence and 

indicate the number of them using a subscript. There are two type of sequences used: repeating and 

symmetrical. If the sequence is repeating, use an “r” in the subscript of the stack notation. For 

example, (<< >>> << >>>) has the notation of “(< 2-3)2r”. If the sequence is symmetric about the 

center of the stack, indicate this using an “s” in the subscript notation. For example, (<< >>> <<< 

>>) will be notated as “(< 2-3)2s”. 

The linear behavior of a spring stack is determined using an analogy to the analysis of electrical 

resistors. The equation to describe the spring constant of the entire stack, Ktotal and the height of 

the overall stack, L, are given by Schnorr (2003) 
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])1([ tNHNL ps                           (13) 

 

where K is the spring constant of a single disk element, Np is the number of elements in a unit, Ns 

is the number of units stacked in series. H is the total height of a single disk (h + t), and t is the 

thickness of a single disk. Substituting Eq. (12) into Eq. (13) in terms of either Np or Ns will 

produce the number of disks and stacking direction needed to achieve the desired stiffness in the 

desired stiffness in the desired height of the overall stack, L. Eqs. (12) and (13) can be used to 

determine the stiffness when all the units in a stack contain the same number of elements. The 

equations above are limited in their assumption of linear load-displacement behaviors. There may 

be situations where a progressively higher stiffness is needed with increased deflection or where a 

bump-stop action is desired. This design requires a more precise approach to characterize the 

non-linear load-deflection behavior of a stack of disk springs. 

Different flattening “stages” occur within a stack when its units do not all have the same 

number of elements. As a stack is loaded, each unit will carry the same load, but the deflection 

within each is dependent on that specific stiffness of each unit. Stage zero describes the 

compression of the stack while none of the disks have been fully compressed. Stage one begins 

when all of the units with a single disk are completely compressed. Stage two begins when the 

units with two disks are completely compressed and so on. A new stage begins at the maximum 

deflection of the previous stage. For example, a stacking sequence (< 1-1-2) will have 3 units (1, 1, 

and 2) and two stages of compression. During stage zero the stack will experience deflection, but 

none of the disks will be fully compressed. Because the (< 1-1) section of the stack has a higher 

compression rate and lower stiffness than the (< 2) section, it will fully compress first with a 

deflection of 2h. The compression of the “1 element units” signifies the start of stage one. During 

stage one, the (< 2) section of the stack will continue to compress to a maximum deflection of h. 

When this is complete, the stack will be fully compressed. The equation to characterize the 

load-displacement curve of a stack of disk springs extends from Eq. (1). When Eq. (1) is plotted, it 

shows the load-displacement profile for a single disk element. The proposed approach will be 

similar, but instead of a single element being graphed, every unit will be graphed. Using Eqs. (1) 

and (12), each unit’s load-deflection profile is defined by 
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where δ′ and xst are determined by 
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where xst is equal to the number of units with the same number of elements that are already 

flattened, U, multiplied by the free height of a single disk, h. The variable xst is the compressible 

height of the previous stage used to offset the next stage. Therefore, xst is zero during stage zero 

loading because no disk has completely flattened. Npi is the number of elements in the ith unit, and 

Kt / Ki is a stiffness ratio which determines the compression rate of the ith unit compared to the 

overall stack. 
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The load-deformation curves for each unit are then used to construct a load-deflection profile 

for each stage. The load-deflection profile of each stage is determined by taking the average of the 

unit profiles still compressing during that stage 
 

 




n

i

pistK

K

s
n

Nx
P i

t

1

,,,
                        (17) 

 

Ps is the load-deflection and the subscript “S” indicates the number of flattening stages, n is the 

number of units in the stack. The following example illustrates this process. In the stacking 

sequence of (< 1-1-2), assuming a free height of 2.4 mm (0.093 in), we can create its 

load-displacement graph using Eqs. (14) and (17). A load-displacement profile is generated for 

every stage a stack experiences. The number of stages is equal to the number of types of units. 

When the profiles for each stage are complete, they are combined to form the overall stack 

load-displacement profile. Since there are only two types of units in this example (i.e., 1 and 2 

element units), there will be two stages. Fig. 4(a) shows the load-displacement profile for stage 

 

 

  

 (a)   (b)  

    
 

 

(c) 

Fig. 4 (a) All the units in stage zero compression and their average; (b) the unit in stage one 

compression and its average; (c) combination of stage zero and stage one compression to 

form the load-displacement profile of the stack. The solid line is the effective curve. 
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zero, when none of the units have fully compressed. All three unit profiles are graphed using Eq. 

(14). The average of all three unit profiles (Eq. (17)) is the overall stack load-displacement profile 

in stage zero. Fig. 4(b) shows the stage one profiles. During stage one, the “1 element units” have 

fully compressed and only the “2 element unit” continues to deflect. Because this is the only unit 

still compressing, the overall stack profile is the same as the 2 element unit curve in stage one. Fig. 

4(c) combines the stage zero and stage one average profiles together. The resulting graph shows 

two lines intersecting one another. The solid lines are the effective curve which is used to describe 

the characteristics of the stack. The intersection point is the transition from one stage to another. It 

should be noted that although group (< 1-1) is said to flatten at xst equal to 4.72 mm (0.186 in) (its 

free height), it will actually deflect to 5.3 mm (0.21 in), where stage zero intersects stage one, 

before flattening because of the distributed deflection. 
 

 

3. Experimental method 
 

Carbon fiber/epoxy composite springs were fabricated using the Toray T700SC-12K-50C fiber 

with #2510 epoxy resin (Toray Industries; Chuo, Japan). The material was procured as a 

pre-impregnated (prepreg) plain weave (0-90° orientation) sheet form possessing an area weight of 

190 g/m2. This material’s elastic properties were measured using the procedures in ASTM D3039 

(ASTM 2007) on flat plates tested in the axial and transverse directions (Table 1). The plates were 

manufactured using a similar procedure to that used in the manufacturing of the disks. The 

properties obtained from the coupon specimens are used for the validation of the analytical method 

presented. The prepreg was cut into donut-shaped pieces with inner and outer diameters of 25.4 

and 57.2 millimeters (1.00 and 2.25 inches), respectively, as shown in Fig. 5: (a) The eight layers 

were then collated as shown in along the 0° axis; (b) Each stack was then placed in one of the 

aluminum molds for curing; (c) The aluminum mold allowed for a 10 degree incline. Twenty 

springs were cured at a time; (d) The composite prepreg disks were cured using a press-claving 

approach where uniform heat and pressure are applied per the recommended 121°C (250°F) cure 

cycle. The springs were then removed from the molds (e-f) and machined to their nominal inner 

and outer diameters of 29.2 and 55.9 mm (1.15 and 2.20 in), respectively. 

Stacking of the disk springs in series or parallel arrangements results in variable stiffness and 

deflection ranges of the spring stack. Adding elements in series increases the deflection and 

reduces the spring rate. Adding an element in parallel increases the spring rate while keeping the 

same deflection. Fig. 6 shows a stack of disks along with a cross-sectional microstructure image 

cut radially from the outer to the inner diameter. The microstructure image shows low porosity and 

limited amount of fiber waviness. The compression tests on the single elements and stacks were 

conducted by compressing a spring disk between two flat steel platens. Friction between the 

contact areas is neglected for individual tests. Four individual disk elements were tested. The 

compression rate was 1.02 mm/min (0.04 in/min) until the disk became completely flattened. The 

potential for sagging was also investigated by cycling a representative disk spring to 1334 N (300 

lbf) at a rate of 0.01 Hz for 50 cycles. This compression load was approximately twice that to 

 

 
Table 1 Material properties in tension of unidirectional 8 ply carbon-fiber/epoxy laminates 

E1, GPa (Msi) E2, GPa (Msi) v12 G12, GPa (Msi) Ply thickness mm (in) 

57.98 (8.41) 56.33 (8.17) 0.037 4.00 (0.58) 0.2159 (0.0085) 
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(a) (b) (c) 
 

 

 

 

 

 

(d) (e) (f) 

Fig. 5 Steps in fabrication of carbon-fiber/epoxy disk springs 

 

 

Fig. 6 Arrangement of composite disk springs in a test stack including microstructure details. In the 

microstructure: Left = towards inner diameter (ID); Right = towards outer diameter (OD) 

 

 
create flattening and was chosen to simulate overloading. Four stack configurations were tested by 

switching the end disk direction. 
 

 

4. Results and discussion 
 

The theoretical model presented shows good correlation to the experimental results. The 

experimental results of the compression test for the individual disk springs are shown in Fig. 7.The 

graph contains results from four test specimens and the theoretical prediction using Eq. (9). 

Individual disks with similar sizes and slight geometrical differences are tabulated in Table 2. 

ID OD 

Microstructure through the thickness of one 

spring element 
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Even though we show good correlation for this set, future investigators may wish to further 

examine different springs with different free heights or geometrical dimensions. From these tests 

shown, the spring constant was determined from the linear region of each disks load-deflection 

profile. The theoretical model was generated using the average dimensions from the four tested 

springs to ensure a repeatable representation. One theoretical prediction is included based on the 

average disk dimensions to illustrate the scatter in the results. In the linear region, there is little 

scatter and divergence, but the divergence from linearity is evident beyond the linear region. This 

maybe attributed to slight changes in the geometrical dimensions as noted in Table 2 and can be 

seen in Fig. 7. It can be seen that the theoretical predictions correlate well with the actual test data. 

The prediction of the maximum load shows minor divergence due to variability in the thickness of 

each composite disk. The analytical expression, Eq. (9) shows, a very slight change in thickness 

will result in a large change in the load bearing capacity. Eq. (9) is also used to investigate the 

effects of the free height on the load displacement relationships. This was investigated by varying 

the free height of five disks while holding the thickness and the inner and outer diameters constant 

(Fig. 8). It should be noted that although the scale is set from 0 to 2.54 millimeter (0 to 0.1 inch), 

the deflection to flattening of each disk is at their free height. Two types of trends can be seen in 

this graph; a nonlinear and linear one. When the free height is small, the disk spring will exhibit a 

linear load-displacement until flattening. As the free height increases, it gradually becomes more 

nonlinear. 
 

 

Table 2 Results of single composite spring disk 

Sample 
ID, 

mm (in) 

OD, 

mm (in) 

Thickness, 

mm (in) 

Height, 

mm (in) 

Spring constant, 

N/m (lb/in) 

Max Load, 

N (lbf) 

SP#1 29.72 (1.170) 55.85 (2.199) 1.52 (0.060) 3.76 (0.1480) 465.3 (2657) 520 (117) 

SP#2 29.21 (1.150) 55.79 (2.196) 1.46 (0.058) 3.73 (0.1470) 453.9 (2592) 498 (112) 

SP#3 28.07 (1.105) 56.33 (2.219) 1.54 (0.061) 3.72 (0.1465) 442.0 (2524) 565 (127) 

SP#4 28.27 (1.113) 56.48 (2.224) 1.46 (0.058) 3.61  0.1420) 446.6 (2550) 485 (109) 
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Fig. 7 Prediction of load-deflection behavior of individual disk springs elements in [0]8 layup 

and comparison to experimental results 
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Fig. 8 Theoretical predictions of load-deflection curves with different free heights 

 

 

Fig. 9 Theoretical prediction of load-deflection curves for five different disk springs with 

different outer and inner radius properties 

 

 
The effects of the geometrical influences of the diameters on the deformation response are also 

investigated. The theoretical load-deflection curves for five different springs with different outer 

diameter to inner diameter ratios, α, are shown in Fig. 9. This ratio, α, was varied from 1.5 to 4.0 

while the thickness and free height were held constant. The lower the outer diameter-inner 

diameter ratio, α, the more load a spring can carry before reaching its fully compressed height. As 

the ratio continues to increase, the stiffness decreases. Thus, the spring diameters are shown to 

offer the flexibility to alter the load-deflection properties of a spring stack. 

In addition to the strength and fatigue requirements, the design of springs typically considers 

sagging effects. As springs sag with time, their ability to support the required forces is reduced. 

After initial loading, there is an offset in the displacement that can be attributed to sagging. The 

initial cycle induces some sagging, but this effect is diminished as further cycling is introduced as 

shown in Fig. 10. This may indicate that disc springs may need to be readjusted after some amount  
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Table 3 Behavior of spring stack containing 44 disks in series and parallel 

 Theoretical Actual % Error 

Stack height, mm (in) 129.03 (5.080) 123.90 (4.878) 3.98 % 

Spring constant, kN/m (lbf/in) 43.72 (249.64) 43.42 (247.92) 0.69 % 
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Fig. 10 Experimental results of sagging behavior of a typical composite disk spring 
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Fig. 11 Spring constant curve for 127 mm (5 in.) stacks with all equal groupings of parallel-series 

combinations 

 

 
of cycling to make sure the sagging effect is reduced. This is consistent with various studies that 

have considered the viscoelastoplastic behavior of composite materials including the Baushinger 

effects (Lee et al. 2004, Saleeb et al. 2003). The curves do not show a diminishing the stiffness 

response for the limited number of cycles considered. The analytical relationships for stack 
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Fig. 12 Spring constant ranges as a function of stacking height 

 

 
behavior were also investigated in the case of stacks containing multiple stage deformation 

behaviors. When determining the stack sequence for application, the spring is likely confined to a 

predetermined length. In these situations, having a wide range of spring constants is a huge benefit 

of disks springs. To demonstrate the variable stiffness values available within a given length of 

spring, Eqs. (12) and (13) were used to determine the theoretical spring constant ranges. The 

equations use only equal groups of parallel units. A stack containing 2 disks per unit and 22 units 

total was tested. The stack was loaded under compression and the linear spring constant was 

obtained from the linear slope of the load-deflection curve up to a deflection of 0.05 mm. The 

results of these measurements are shown in Table 3. The actual spring constant and theoretical 
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Fig. 13 Load-deflection curves for “2-3” parallel-series stack combinations 
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spring constant show good agreement. In addition to these results, a combination of elements in 

parallel and series were compared to evaluate the stack stiffness. Fig. 11 shows the spring constant 

variation for an overall stack height of 127 mm (5.0 in) as a function of the number of parallel and 

series disk selection. Similar curves were created for 25.4, 50.8, 76.2, and 101.6 mm (1.0, 2.0, 3.0, 

and 4.0 in) stack heights. These results are shown in bar form in Fig. 12 to indicate the large range 

of spring constants possible for each given spring length. It is believed that such presentation can 

be used in aiding the selection of disk springs for a given application. Different materials, layups, 

thicknesses and ply directions offer additional spring constant ranges and curves within each 

length specification. 

The stacking order of the disk springs was also investigated experimentally and correlated to 

the theoretical approach. The following stacking orders were fully compressed and plotted in Fig. 

13 for comparison: (<< >>>), (<<< >>), (>> <<<), and (>>> <<). The results show that the 

 

 

 

(a) 
 

 

(b) 

Fig. 14 Prediction of nonlinear behavior of a composite disk stack using the enveloping method 
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loading sequence (3 springs on top or 2 springs on top) had limited effect on the curves. The 

orientation of the parallel groups with respect to one another, however, did prove to alter the 

loading curve. For this reason, the orientation of the groups is indicated using “<” and “>” as 

described in Step 2 of the stack notation process. The bottom up notation creates a more universal 

naming and shows a consistent response. The proposed models are also used to verify the behavior 

in irregular stacking of disk springs. The models and experiments were performed on two stacking 

configurations. The two different stacks were shown in the Fig. 14(a) (< 1-2-3) and Fig. 14(b) (< 

1-1-2-1-3-2-2-1) arrangements. The test data is plotted with the theoretical predictions using Eqs. 

14 and 17. The theoretical predictions use the three intersecting lines which represent each 

compression stage. The number of stages is always equal to the number of types of units within a 

stack as previously described. The stage zero line starting at 0 mm is the average 

load-displacement profile of all the units in the stack. Stage one is the average profile of the units 

containing 2 and 3 elements. Stage 2 consists of the units with 3 elements only. The proposed 

approach of enveloping the results from the compression stages of the different groups shows good 

correlation to the experimental results. Assuming the linear dependency between the unit and the 

stack stiffness may be the cause of some of the variations observed. The stiffness term in Eq. 14 

assumes that the ratio of deflection of each unit with respect to the entire stack remains constant. 

However, the stiffness of a unit will become non-linear as more load is applied. However, for most 

practical purposes, the springs are typically stressed in their linear region and the above 

assumptions shows reasonable approximation with the experimental response. 
 

 

5. Conclusions 
 

This research presents an analytical and experimental study in the behavior of specially 

orthotropic disk springs and stacks. An analytical approach is presented for predicting the 

deformation behavior of disk springs of specially orthotropic laminates with arbitrary geometric 

parameters. The study also investigated a methodology for obtaining the deformation behavior of a 

stack of disk springs directly accounting for the different stages of deformation. A naming 

convention was also introduced to clearly describe a stacking sequence for handling stacks with 

large numbers of disk elements. The stack naming is critical as testing indicated that the 

orientation of the parallel spring units can change the load-displacement behavior. The methods 

proposed are capable of accounting for parallel and series arrangements of uniform and irregular 

stacks. The methods were validated using experimental results from single element and uniform 

and irregular stack assemblies. The curves on the sagging behavior do not show a diminishing the 

stiffness response for the limited number of cycles considered. However, it is recommended that 

future studies consider the effects of fatigue on this behavior. The springs considered carry lower 

amounts of strain to become fatigue critical. Nonetheless, interaction at the boundaries and contact 

stresses may influence the fatigue behavior. The approach presented allows significant flexibility 

in the spring constant ranges by altering the outer diameter to inner diameter ratios, free height, ply 

direction, disk angle and number of layers for each individual disk. The stacking arrangement and 

unit grouping offer further flexibility. 
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