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Abstract.  The paper considers the free vibration analysis of FGM grid systems. Up to now, very little 
work has been done on this type of system and the paper aspires to fill this gap. Based on the hybrid-stress 
finite element formulation free vibration solutions for FGM grid systems of various aspect ratios, different 
types of gradations functions, and support conditions are determined. The tabulation of these results, not 
available thus far, should be useful to designers and researchers who may use them. 
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1. Introduction 

 
Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth 

and continuous variations in both compositional profile and material properties. This continuity 
prevents the material from having disadvantages of composites such as delamination due to large 
interlaminar stresses, initiation and propagation of cracks at the interfaces and so on. Thus use of 
structures like beams, plates and shells, which are made for functionally grade materials (FGMs), 
have found a wide range of applications in engineering such as electronics, optics, biomedicine, 
and aerospace. To understand the behavior of such systems gained importance. 

There have been extensive research carried out in the past years to investigate the behavior and 
design of FG structures but the literature on the analysis of FG beams is limited when compared 
with FG plates and shells. 

Chakraborty et al. (2003) proposed a new beam finite element based on the first-order shear 
deformation theory to study the thermoelastic behavior of functionally graded beam structures. 
They carried out static, free and wave propagation analysis to examine the behavioral difference of 
functionally graded material beam with pure metal or pure ceramic. Ching and Yen (2005) 
presented numerical solutions for two-dimensional FG solids such as simply supported FG beams 
using a meshless local Petrov-Galerkin method. They later used the same meshless method to 
calculate the transient thermoelastic deformations of FG beams under a nonuniformly convective 
heat supply (2006). Qian and Ching (2004) used a meshless method to study the free and forced 
vibration of an FG cantilever beam. Xiang and Yang (2008) studied the free and forced vibration 
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of an FG beam with variable thickness under thermally induced initial stresses based on the 
Timoshenko beam theory. Sankar (2001) gave an elasticity solution based on the Euler–Bernoulli 
beam theory for functionally graded beam subjected to static transverse loads by assuming that 
Young’s modulus of the beam vary exponentially through the thickness. Şimşek and Kocatürk 
(2009) investigated the free vibration characteristics and the dynamic behavior of a functionally 
graded simply supported beam under a concentrated moving harmonic load by using Lagrange’s 
equations under the assumptions of the Euler-Bernoulli beam theory. Chakraborty and 
Gopalakrishnan (2003) analyzed the wave propagation behavior of FG beam under high frequency 
impulse loading, which can be thermal or mechanical, by using the spectral finite element method. 
Aydogdu and Taskin (2007) investigated the free vibration behavior of a simply supported FG 
beam by using Euler–Bernoulli beam theory, parabolic shear deformation theory and exponential 
shear deformation theory. Zhong and Yu (2007) presented an analytical solution of a cantilever FG 
beam with arbitrary graded variations of material property distribution based on two-dimensional 
elasticity theory. Ying et al. (2008) obtained the exact solutions for bending and free vibration of 
FG beams resting on a Winkler–Pasternak elastic foundation based on the two-dimensional 
elasticity theory by assuming that the beam is orthotropic at any point and the material properties 
vary exponentially along the thickness direction. Kapuria et al. (2008) presented a finite element 
model for static and free vibration responses of layered FG beams using an efficient third order 
zigzag theory for estimating the effective modulus of elasticity, and its experimental validation for 
two different FGM systems under various boundary conditions. Yang and Chen (2008) studied the 
free vibration and elastic buckling of FG beams with open edge cracks by using Euler–Bernoulli 
beam theory. Li (2008) proposed a new unified approach to investigate the static and the free 
vibration behavior of Euler–Bernoulli and Timoshenko beams. In a recent study by Yang et al. 
(2008), free and forced vibrations of cracked FG beams subjected to an axial force and a moving 
load were investigated by using the modal expansion technique. Anandrao et al. (2012) studied the 
free vibration and thermal post-buckling of shear flexible FGM beams using finite element 
formulation based on first order Timoshenko beam theory by considering classical boundary 
conditions. Tajalli et al. (2013) developed a formulation for Timoshenko beams made of 
functionally graded materials based on the strain gradient theory, and investigated the static 
bending and free vibration of a FG simply supported beam. Atmane et al. (2011) presented a 
theoretical investigation in free vibration of sigmoid functionally graded beams with variable 
cross-section by using Bernoulli-Euler beam theory. Pradhan and Chakraverty (2013) investigated 
the free vibration analysis of functionally graded material beams subjected to different sets of 
boundary conditions by using the classical and first order shear deformation beam theories. Li and 
Batra (2013) derived analytical relations between the critical buckling load of a FGM Timoshenko 
beam and that of the corresponding homogeneous Euler-Bernoulli beam subjected to axial 
compressive load for different edge conditions. 

The aim of this paper is to study the influence of aspect ratio, number of divisions, type of 
gradations functions, type boundary conditions on the free vibration of FGM grid systems. Both 
power law and exponential law are taken for the variation of the material properties through the 
depth of the beam. A hybrid-stress beam finite element is developed and used in this study. 
 
 
2. Modeling of FGM properties 

 
Different types of gradations laws are available in the literature. In this study power law and  
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Fig. 1 Functionally graded grid system 
 
 
exponential law gradation have been considered in order to calculate the material properties of FG 
structures. FGM consisting of two constituent materials has been considered. The top surface is 
assumed to be steel and bottom surface is assumed to be Al2O3. The region between the two 
surface consists of a combination of the two materials with continuously varying mixing ratios of 
two materials. 

The power law, for commonly adopted Voight-type estimate, having all the desired properties 
are introduced by Wakashima et al. (1990) is given by 
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P (z) denotes a typical material property (E, G, ρ). Pt and Pb are the corresponding material 

properties of the top-most and bottom-most surfaces of the beam, and k is the non-negative 
power-law exponent which defines the material profile through the thickness of the beam. 

The exponential law is given by Kim and Paulino (2002) 
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It is evident from Eqs. (1) and (2) that when z = ‒h / 2, P = Pb and when z = h / 2, P = Pt. 
The typical FGM grid system taken into consideration is depicted in Fig. 1. 
 
 

3. Finite element formulations 
 

Hybrid-stress finite elements have been developed for the improved analysis based on a 
modified complementary energy principle in which the intraelement equilibrating stresses and 
displacements compatible over the entire volume of an element or at the element boundary only 
are interpolated independently. The element stiffness matrix is obtained using Hellinger-Reissner 
variational principle in which stresses and displacements are assumed independently, Pian and 
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Chen (1983), Darilmaz (2012), and Timoshenko beam theory is used. Hellinger-Reissner 
variational principle establishes the master fields. Two slave strain fields appear, one coming from 
displacements and one from stresses. 

For a typical beam element whose longitudinal axis is x, and y and z are principal centroidal 
axes, the Hellinger-Reissner functional can be written as 
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where {σ} is the vector of assumed stresses, [S] is the material compliance matrix relating strains, 
{ε}, to stress, [D] is the differential operator matrix corresponding to the linear strain-displacement 
relations and L is the length of structure 
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In Eq. (3), the load potential is omitted as it is not required for formulating the element stiffness 
matrix. 

The assumed stress field is described in the interior of the element as 
 

}]{[}{  P                                 (6) 
 
and a compatible displacement field is described by 
 

}]{[}{ qNu                                  (7) 
 
where [P] is a matrix which contains the polynomial terms of stress interpolation functions, [N] is 
a matrix of shape functions, and {β} and {q} are the unknown stress and nodal displacement 
parameters, respectively. 

Intra-element assumed stresses and compatible displacements are independently interpolated. 
Since stresses are independent from element to element, the stress parameters are eliminated at the 
element level and a conventional stiffness matrix results. This leaves only the nodal displacement 
parameters to be assembled into the global system of equations. 

Substituting the stress and displacement approximations Eq. (6), Eq. (7) in the functional Eq. 
(3) 

]][[][
2

1
]][[][  HqG TT

HR                         (8) 
 

where 
 


L

T dxPSPH ]][[][][                             (9) 

 

 
L

T dxNDPG ]][[][][                            (10) 

398



 
 
 
 
 
 

Vibration analysis of functionally graded material (FGM) grid systems 

Now imposing stationary conditions on the functional with respect to the stress parameters {β} 
gives 

]][[][][ 1 qGH                            (11) 
 

Substitution of {β} in Eq. (8), the functional reduces to 
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where 

][][][][ 1 GHGK T                              (13) 
 
is recognized as a stiffness matrix. 

The field variables (σ and u) take independent variations for the stationarity of  ΠRH. The 
strain vector ε is derived from u using strain-displacement relations. Independently assumed 
generalized stress field can conveniently be written in terms of axial, shear, torsion and bending 
actions as 

 zyxzy
T MMMQQN ,,,,,}{                         (14) 

 
Generalized geometric strain vector derived from displacements can be defined similarly as 

 

 zyxyzxy
T  ,,,,,}{                           (15) 

 
Utilizing the strain-displacement relations the generalized strain components in the present 

beam model can be written as 
 

  zyxyz
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where the prime indicates differentiation with respect to the axial coordinate x. 

The matrices of interpolation functions for element displacements, stress resultants are 
polynomial function of the coordinate x. For displacement interpolation functions the compatible 
displacement functions are used. That is with natural coordinate ξ = 2x / L, the interpolation 
functions for two-noded beam element 
 

2/)1(2/)1( 21   NN                       (17) 
 

For internal force field, the stress parameters are chosen in such a way that the stress 
equilibrium conditions are satisfied within the element. And also it is recognized that the number 
of stress modes m in the assumed stress field should satisfy 
 

prnm                                 (18) 
 
with n the total number of nodal displacements, r the number of rigid body modes and p the 
number of zero-energy modes in an element. If Eq. (16) is not satisfied, use of too few coefficients 
in {β}, the rank of the element stiffness matrix will be less than the total degrees of deformation 
freedom and the numerical solution of the finite element model will not be stable and produces an 
element with one or more mechanisms. 
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Increasing the number of β’s by adding stress modes of higher-order term, each extra term will 
add more stiffness and stiffens the element, Pian and Chen (1983), Darilmaz (2011). Resulting in 
the least number of parameters the [P] matrix is obtained as 
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4. Element mass matrix 

 
The problem of determination of the natural frequencies of vibration of a grid system reduces 

to the solution of the standard eigenvalue problem [K] ‒ ω2[M] = 0, where  is the natural circular 
frequency of the system. Making use of the conventional assemblage technique of the finite 
element method with the necessary boundary conditions, the system matrix [K] and the mass 
matrix [M] for the entire structure can be obtained. 

Element mass matrix is derived from the kinetic energy expression 
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where }{q  denotes the velocity components and [R] is the inertia matrix. 

The nodal and generalized velocity vectors are related with the help of shape functions 
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Substituting the velocity vectors in the kinetic energy, Eq. (17) yields the mass matrix of an 

element. 
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where [m] is the element consistent mass matrix and is given by 
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Table 1 Properties of metallic (Steel) and ceramic (Al2O3) phases 

Material Young’s modulus, E (GPa) Poisons’ ratio, v 

Al2O3 390 0.25 

Steel 210 0.3 
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Fig. 2 Variation of the Young’s modulus through the thickness of the FG section 
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Fig. 3 FGM Grid Systems 
 
 
5. Numerical results 

 
In this section five different grid systems are considered by using the above formulation to 

study the influence of aspect ratio (L1 / L2), type of gradations functions, support condition on the 
free vibration of FGM grid system. It is assumed that the top and the bottom faces of the beams are 
steel and Al2O3, respectively. The constituent material properties corresponding to each phase are 
given in Table 1 and constant density is assumed for FGM grid system. 

Frequency parameter is non-dimensionalized as ./)/( 2
1 tEhL    

It is assumed that the material properties of the beam vary continously in the thickness 
direction according to the power-law and exponential form. Fig. 2 shows the variation of Young’s 
modulus of FGM grid system. 

Six different grid systems are taken into consideration, Fig. 3. In each case width of the beams 
is adjusted for keeping the total amount of material constant. For example the width of beam at M4 
system sistem ¼ of the width of beam at M1 system. For M1 system the h / b and b / L1 ratios are 
0.5 and 0.1, respectively. Each line segment is modeled by using 20 finite elements. The same 
mesh is also used for ANSYS solutions. 

The numerical examples are conducted for three different aspect ratios, and two different 
support conditions. 
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Fig. 4 Typical first mode shape of grid systems (L1 / L2 = 1.0), Simply Supported 
 

  

Fig. 5 Typical first mode shapes of grid systems (L1 / L2 = 1.0), Fixed 
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Fig. 6 Variation of frequency parameter λ (L1 / L2 = 1.0), with number of beams in one direction: 
(a) simply supported; (b) fixed 

 

  

Fig. 7 Typical first mode shape of grid systems (L1 / L2 = 2.0), Simply Supported 

 
Table 2 Frequency parameter λ (L1 / L2 = 1.0), Simply Supported 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 Steel (ANSYS) 

M1 0.101 0.107 0.113 0.106 0.090 0.125 0.089 

M2 0.109 0.117 0.123 0.115 0.099 0.136 0.098 

M3 0.110 0.117 0.124 0.116 0.098 0.137 0.096 

M4 0.108 0.115 0.122 0.114 0.097 0.135 0.094 

M10 0.103 0.110 0.116 0.108 0.092 0.128 0.091 

M20 0.101 0.108 0.114 0.107 0.090 0.126 0.089 
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Table 3 Frequency parameter λ (L1 / L2 = 1.0), Fixed 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 

M1 0.225 0.240 0.253 0.237 0.201 0.281 

M2 0.237 0.253 0.268 0.250 0.212 0.296 

M3 0.235 0.251 0.265 0.248 0.210 0.293 

M4 0.233 0.248 0.262 0.245 0.208 0.290 

M10 0.227 0.242 0.256 0.239 0.203 0.283 

M20 0.226 0.241 0.254 0.238 0.202 0.281 

 
 
Table 4 Frequency parameter λ (L1 / L2 = 1.0), Simply Supported 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 

M1 0.241 0.256 0.270 0.253 0.215 0.300 

M2 0.260 0.277 0.293 0.274 0.232 0.324 

M3 0.261 0.279 0.295 0.275 0.233 0.326 

M4 0.259 0.276 0.292 0.273 0.231 0.323 

M10 0.250 0.267 0.281 0.264 0.223 0.312 

M20 0.248 0.264 0.278 0.261 0.221 0.309 

 
 
Table 5 Frequency parameter λ (L1 / L2 = 1.0), Fixed 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 

M1 0.521 0.555 0.585 0.548 0.465 0.649 

M2 0.564 0.601 0.635 0.594 0.503 0.703 

M3 0.567 0.604 0.638 0.597 0.506 0.706 

M4 0.564 0.601 0.635 0.594 0.503 0.703 

M10 0.556 0.592 0.625 0.585 0.496 0.692 

M20 0.554 0.590 0.622 0.583 0.494 0.690 

 
 
Table 6 Frequency parameter λ (L1 / L2 = 3.0), Simply Supported 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 

M1 0.408 0.434 0.458 0.429 0.364 0.508 

M2 0.471 0.502 0.530 0.496 0.421 0.587 

M3 0.477 0.509 0.538 0.503 0.426 0.595 

M4 0.476 0.507 0.535 0.501 0.424 0.593 

M10 0.466 0.496 0.523 0.490 0.416 0.580 

M20 0.463 0.493 0.520 0.487 0.413 0.576 
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Fig. 8 Typical first mode shape of grid systems (L1 / L2 = 2.0), Fixed 
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Fig. 9 Variation of frequency parameter λ (L1 / L2 = 1.0), with number of beams in one direction: 
(a) simply supported; (b) fixed 

 

   

Fig. 10 Typical first mode shape of grid systems (L1 / L2 = 3.0), Simply Supported 

 

   

Fig. 11 Typical first mode shape of grid systems (L1 / L2 = 3.0), Fixed 

 
Table 7 Frequency parameter λ (L1 / L2 = 3.0), Fixed 

 k = 1 / 3 k = 1 k = 3 exp Steel Al2O3 

M1 0.722 0.770 0.812 0.760 0.644 0.900 

M2 0.967 1.031 1.089 1.018 0.863 1.205 

M3 1.028 1.096 1.158 1.083 0.918 1.282 

M4 1.038 1.107 1.169 1.093 0.926 1.294 

M10 1.037 1.104 1.165 1.091 0.925 1.292 

M20 1.035 1.102 1.163 1.089 0.923 1.289 
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Fig. 12 Variation of frequency parameter λ (L1 / L2 = 3.0), with number of beams in one direction: 
(a) simply supported; (b) fixed 

 
 

Variation of frequency parameter (λ) with number of elements (n) in one direction is plotted in 
Figs. 6, 9 and 12. The first mode shapes are also depicted in Figs. 4, 5, 7, 8, 10 and 11. 

Nondimensional frequency parameters, ,/)/( 2
1 tEhL    are calculated and given in tabular 

form in Tables 2 to 7. 
In order to validate the element behavior for fully steel material, and L1 / L2 = 1.0 aspect ratio, 

results are compared with ANSYS commercial finite element program results. It can be seen from 
Table 2 that although the presented element shows a stiffer behavior, the results are found to be in 
good agreement. 

The following observations can be made from the solutions. Indiviual or combined variation of 
aspect ratios, material distribution and type of support condition is found to have great influence 
on the vibration of grid systems. 

Frequency parameters obtained from fixed support solutions are higher than the simply support 
solutions, as expected. 

The working range of k are taken as 1/3-3, any value outside this range are producing an FGM 
having too much of one phase. This can be also observed from the solutions that frequency 
parameter λ increase with the power-law exponent k. The results are getting closer to the full Al2O3 
solutions. 

It can be observed that among different types of material gradations functions, nondimensional 
parameter predicted by k = 3 are the highest k = 1 / 3 and lowest ones, respectively. For all cases, 
power law k = 1 and exponential function results are close to each other. 

It can be observed from the Figs. 10 and 11 for M1 grid system support condition and aspect 
ratio has a great influence on mode shape. The number of elements has an influence on mode 
shape in high aspect ratios. 

 
 

6. Conclusions 
 
An investigation of free vibration of FGM grid systems is presented. The analysis is carried out 

by using a hybrid stress beam finite element. It is assumed that the material properties of the 
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beams vary continously in the thickness direction according to the exponential law and the 
power-law form. The effects of aspect ratio, type of gradations functions, type of support 
conditions are discussed. It is observed that the above mentioned effects play very important role 
on the free vibration behavior of the FGM grid systems. The tables given in this study combines 
the configurations of grid systems which are mostly used in practice, and will help a practicing 
engineer to choose an optimum solution considering both economy and other practical limitations. 
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Kutlu Darılmaz 

Nomenclature 
 
 

b :  width 

h :  thickness 

k :  power-law exponent 

E :  modulus of elasticity 

L1, L2 :  length of the grid system 

V :  volume 

λ :  frequency parameter 

[D] :  differential operator matrix 

[G] :  nodal forces corresponding to assumed stress field 

[K] :  stiffness matrix 

[N] :  interpolation matrix for displacement field 

[P] :  interpolation matrix for stress 

[S] :  material compliance matrix 

{q} :  nodal displacement vector 

{u} :  displacement field 

{β} :  stress parameters 

{σ} :  stress field 

}{  :  internal forces 

{ε} :  strain field 

}{  :  strain components 

}{  :  rotation 
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