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Abstract.  Orthotropic steel highway bridges exist almost everywhere in world, especially in Europe. The 
design of these bridges started very early in 20th century and ended with a conventional orthotropic steel 
bridge structure, which is today specified in DIN FB 103. These bridges were mostly built in 1960’s and 
exhibit damages in steel structural parts. The primary reason of these damages is the high pressure that is 
induced by wheel- loads and therefore damages develop especially in heavy traffic lanes. Constructive rules 
are supplied by standards to avoid damages in orthotropic steel structural parts. These rules are first given in 
detail in the standard DIN 18809 (Steel highway- and pedestrian bridges- design, construction, fabrication) 
and then in DIN- FB 103 (Steel bridges). Bridges built in the past are today subject to heavier wheel loads 
and the frequency of loading is also increased. Because the vehicles produced today in 21st century are 
heavier than before and more people have vehicle in comparison with 20th century. Therefore dimensioning 
or strengthening of orthotropic steel bridges by using stiffer dimensions and shorter spans is an essence. In 
the scope of this study the complex geometry of conventional steel orthotropic bridge is generated by FE- 
Program and the effects of cross beam web thickness and cross beam span on steel bridge are assessed by 
means of a parameter study. Consequently, dimensional and constructional recommendations in association 
with cross beam thickness and span will be given by this study. 
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1. Introduction 

 
In Germany there are a lot of orthotropic bridges, which shall be repaired and reinforced 

because of damages developed in steel structural parts. Most of these bridges were built in 1960s 
after World War II. Since then the weight of vehicles passing over these bridges, the traffic 
intensity and the frequency of passing of vehicles (loading frequency) have increased. As a result 
these bridges are loaded under loads which are much more than their design loads. The causes of 
damages developed in bridges are divided briefly into two main groups: qualitative and 
quantitative causes. Qualitative causes of damages are false workmanship, bad design of bridge 
(false engineering), and using inadequate or non-qualitative material. Quantitative causes are thin 
deck plate, thin or less longitudinal ribs, thin crossbeams or long span of cross beams. In this 
research the cross section of bridge is chosen as per DIN FB 103 (Deutshes Institut für Normung 
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Fachbericht (DIN FB) 103 2003). The traditional load bearing parts of steel orthotropic bridge as 
per DIN FB 103 is given in Fig. 1. A lot of researches investigated quantitative causes of damages 
in steel orthotropic bridges to specify constructional rules or give recommendations to engineers 
(Fettahoğlu 2012, Fettahoğlu and Bekiroğlu 2012, Günther et al. 1985, Jong 2007, Kozy et al. 
2011, Medani 2006, Miki 2006, Sim et al. 2009, Xiao et al. 2006, Xiao et al. 2008, Ya et al. 2011). 
In the scope of this study first, the span of cross-beam varies, while other dimensions / lengths / 
spans remain constant. Second, cross-beam web thickness varies, as other dimensions / lengths / 
spans remain constant. By this way, the quantitative causes of damages; thin cross-beam web and 
cross beam of long span, are analyzed. 

 
 

2. FE – Model, materials and loading 
 
The FE model of Huurman et al. (2002) inspired the researcher to create FE- model of the 

bridge used in this study. However, in the FE- model used in this study stiffened main girder and 
pedestrian road are also generated, which are not included in the FE- model of Huurman et al. 
(2002). As a result not the same mesh, but a similar one is used, which embraces the corner details 
shown in Figs. 2(a) and (b). The comparison of two FE- models is given in Figs. 2 and 3. 

Because of the number of nodal unknowns the dimensions of the bridge used in this research 
 
 

Fig. 1 Traditional load bearing parts of steel orthotropic bridge 

 

(a) (b) 

Fig. 2 (a) Connection of cross-beam to main girder; (b) Connection of deck plate to pedestrian road 
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Fig. 3 Huurman’s et al. (2002) FE- model to analyze orthotropic steel bridges 
 
 
are chosen as short as possible. As a result the bridge spans 6 m and has stiffened main girders at 
supports, normal main girders at field (outside support areas), 2 exterior- 5 interior ribs, 1 rib on 
main girder and 1 rib in pedestrian road. To decrease further the number of nodal unknowns solely 
the quarter of the bridge shown in Figs. 6(a) and (b) is modeled by means of FE- program 
(ANSYS 2010) using SHELL 181 shell element formulation. Both geometric and material 
nonlinearity of this element are taken into account in this study. The material nonlinearity of steel 
is incorporated into FE- simulations using Bilinear-Kinematic-Hardening law, which conforms to 
prEN 1993-1-5: 2004(E) Table C2.c. and given in Fig. 4. This theory comprises yield function, 
hardening and flow rules. Here, only general nonlinearity equations are given, more details about 
geometric and material nonlinearity can be found in (Mendelson 1968), (Cook et al. 1989) and 
(Simo and Taylor 1985). 

The general equation of nodal unknowns are given as 
 

     aFuK                               (1) 
 
 

Fig. 4 Stress strain relationship of steel 
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whereas 
 

[K] = Stiffness matrix, 
{u} = Displacements (nodal unknowns) vector, 
{Fa} = Load vector 
 
If [K] is a function of {u}, Eq. (1) becomes a nonlinear equation. The Newton- Raphson- 

Method makes the iterative solution of nonlinear equation system possible and given as, (Cook et 
al. 1989) 

       nr
i

a
i

T
i FFuK                           (2) 

 

     iii uuu 1                            (3) 
whereas 
 

[Ki
T] = Tangential stiffness matrix, 

i = Number of current iteration, 
[Fi

nr] = Vector of internal element forces derived from stresses. 
 
[Ki

T] and [Fi
nr] are functions of {ui}. The right side of Eq. (2) is residual-load vector. This 

vector is the measure of loads, which remains out of equilibrium. 
Material nonlinearity theory comprises yield function, hardening and flow rules. 
The yield criterion proposes a stress state, after which material starts to yield. This criterion is a 

yield function of stress tensor and equals to equivalent (von Mises) stress with Kinematic 
Hardening 
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As per von Mises-yield criterion yielding does not depend on hydrostatic stress. When the 
equivalent stress becomes equal to the uniaxial yield stress (σy), the material starts to yield. As a 
result yield criterion is given as 

            0
2

3
2/1





  y

T sMsF                   (10) 

152



 
 
 
 
 
 

Effect of cross-beam on stresses revealed in orthotropic steel bridges 

  

(a) (b) (c) 

Fig. 5 (a) 3D- Yield surface; (b) 2D- Yield surface; and (c) 2D moving of yield surface (hardening) 

 
Table 1 Material properties 

Yield stress of steel (fy) 355 N/mm2 Shear module (G) 81000 N/mm2 

Ultimate strength (fu) 510 N/mm2 Poisson ratio (υ) 0.3 

Elasticity module (E) 210000 N/mm2 Density (ρsteel) 78.5 kN/m3 

 
 

Fig. 5 illustrates yield surface in 2D and 3D spaces and its moving as per applied stress values 
(hardening). 

The direction and amplitude of plastic strain are determined using Eq. (11) 
 

 


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



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


 Q
d pl                            (11) 

whereas 
 

λ = Plastic constants, which sets the value of plastic strain. 
Q = Plastic potential function, which sets the direction of plastic strain. 
 
Here Q is equal to yield function given in Eq. (10) and plastic strain develops perpendicular to 

yield surface. Therefore this flow rule is called as Associative Flow Rule. The selected steel 
material is S 355. In accordance with Capital II of DIN FB 103 the yield stress and strength values 
are given in Table 1. 

The loading on the bridge is given in Fig. 6(a)). Here symmetry conditions according to 
midpoint of bridge are used to reduce the number of nodal unknowns. The maximum von Mises 
stress and displacement under this loading amounts 255.279 MPa and 1.729 mm respectively. The 
deformed shape of bridge is 150 times scaled up for a better illustration of the results and given in 
Fig. 6(b)). 

 
 

3. Effect of cross – Beam span on stresses revealed in steel bridge 
 

This chapter presents the results of the parameter study of cross-beam span, which emerges the 
effect of this span on the stress and displacements developed in steel structural parts. All 
dimensions of the bridge (except cross-beam span) defined in FE- model are kept constant, while 
cross-beam span increases. Cross-beam spans of simulations QABST2000, BB, QABST4000 and 
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(a) (b) 

Fig. 6 (a) Wheel loads on quarter of bridge; (b) displacement vector under wheel loads, when 
cross-beam span and web thickness are 3 m and 14 mm respectively 

 
 
QABST5000 are 2, 3, 4 and 5 m respectively. The results of simulations are given in figures, in 
which max. von Mises stress and displacement values on load bearing steel parts are presented. In 
figures deformed shape is given at the left side, whereas von Mises stress values are given at the 
right side. In the left figure vertical deformations are given based on nodal (averaged) values. Here 
MX means max. vertical displacement, whereas MN means min. vertical displacement. The 
symbol UZ designates the point where max. von Mises stress occurs. For instance in the left figure 
the value of UZ designates the point of max. von Mises stress. In the right figure max. von Mises 
stress value is given based on element results (non averaged value). Briefly, the place and 
elevation of max. von Mises stress is pictured in the left figure and the value of this von Mises 
 
 

(a) (b) 

Fig. 7 Cross-beam span is 2 m: (a) vertical displacements of deck plate and main girder. Max. 
displacement = + 0.308787 mm. Min. displacement = – 1.135 mm; (b) max. von 
Mises-stress = 136.602 MPa 
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stress is given in the right figure. Max. values of von Mises stresses are the indicators of potential 
damages, so that these values are used in the assessment of results. The wheel loads are located 
direct on one web of interior rib, which exists next to main girder. On the other web of interior rib 
there is no load. This loading condition leads bending and twisting of this rib, which is welded to 
cross-beam at lateral sides, to deck plate at top and goes through cut- out of cross-beam at the 
bottom. The max. von Mises stress rises at this cut- out of cross-beam. Results of these FE- 
analysis are given below in Figs. 7 to 18. 

 
 

 

(a) (b) 

Fig. 8 Cross-beam span is 2 m: (a) vertical displacements of ribs. Max. displacement = + 0.352126 
mm. Min. displacement = – 0.81561 mm; (b) max. von Mises-stress = 150.785 MPa 

 
 

 

(a) (b) 

Fig. 9 Cross-beam span is 2 m: (a) vertical displacements of cross-beam. Max. displacement = – 
0.031811 mm. Min. displacement = – 0.697488 mm; (b) max. von Mises-stress = 186.149 
MPa 
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(a) (b) 

Fig. 10 Cross-beam span is 3 m: (a) vertical displacements of deck plate and main girder. Max. displacement 
= + 0.77646 mm. Min. displacement = – 1.729 mm; (b) max. von Mises-stress = 126.652 MPa 

 

(a) (b) 

Fig. 11 Cross-beam span is 3 m: (a) vertical displacements of ribs. Max. displacement = + 0.787684 mm. 
Min. displacement = – 1.67 mm; (b) max. von Mises-stress = 255.279 MPa 

 

 
(a) (b) 

Fig. 12 Cross-beam span is 3 m: (a) vertical displacements of cross-beam. Max. displacement = – 0.159623 
mm. Min. displacement = – 0.945902 mm; (b) max. von Mises-stress = 201.549 MPa 
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(a) (b) 

Fig. 13 Cross-beam span is 4 m: (a) vertical displacements of deck plate and main girder. Max. displacement
= + 1.169 mm. Min. displacement = – 2.939 mm. These values excess the contour limits (– 1.8 mm
and + 0.9 mm) and displayed with gray colour; (b) max. von Mises-stress = 119.256 MPa 

 

(a) (b) 

Fig. 14 Cross-beam span is 4 m: (a) vertical displacements of ribs. Max. displacement = +1.128 mm. Min.
displacement = – 2.855 mm. These values excess the contour limits (– 1.8 mm and + 0.9 mm) and 
displayed with gray colour; (b) max. von Mises-stress = 341.398 MPa 

 

 
(a) (b) 

Fig. 15 Cross-beam span is 4 m: (a) vertical displacements of cross-beam. Max. displacement = – 0.331533 
mm. Min. displacement = – 1.179 mm; (b) max. von Mises-stress = 204.471 MPa 
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(a) (b) 

Fig. 16 Cross-beam span is 5 m: (a) vertical displacements of deck plate and main girder. Max. displacement 
= + 1.422 mm. Min. displacement = – 4.293 mm. These values excess the contour limits (– 1.8 mm 
and + 0.9 mm) and displayed with gray colour; (b) max. von Mises-stress = 119.182 MPa 

 

 

(b) 

(a) (c) 

Fig. 17 Cross-beam span is 5 m: (a) vertical displacements of ribs. Max. displacement = + 1.367 mm. Min. 
displacement = – 4.197 mm. These values excess the contour limits (– 1.8 mm and + 0.9 mm) and 
displayed with gray colour; (b) max. von Mises-stress = 355.099 MPa; and (c) distribution of plastic 
strain 

 
 
4. Effect of cross – Beam web thickness on stresses revealed in steel bridge 

 
This chapter investigates the change in stresses of steel structural parts, if cross-beam web 

thickness changes. For that reason, all other dimensions of the bridge defined in FE- model keep 
constant, while cross-beam web thickness increases from 14 mm to 16, 18 and 20 mm respectively. 
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 (a) (b) 

Fig. 18 Cross-beam span is 5 m: (a) vertical displacements of cross-beam. Max. displacement = – 0.579947 
mm. Min. displacement = – 1.448 mm; (b) max. von Mises-stress = 213.529 MPa 

 

 
(a) (b) 

Fig. 19 Cross-beam web thickness is 14 mm: (a) vertical displacements of cross-beam. Max. displacement = 
– 0.159623 mm. Min. displacement = – 0.945902 mm; (b) max. von Mises-stress = 201.549 MPa 

 

 
(a) (b) 

Fig. 20 Cross-beam web thickness is 16 mm: (a) vertical displacements of cross-beam. Max. displacement =
– 160758 mm. Min. displacement = – 0.89795 mm; (b) max. von Mises-stress = 180.448 MPa 
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(a) (b) 

Fig. 21 Cross-beam web thickness is 18 mm: (a) vertical displacements of cross-beam. Max. displacement = 
– 0.162599 mm. Min. displacement = – 0.858806 mm; (b) max. von Mises-stress = 163.540 MPa 

 

 

(a) (b) 

Fig. 22 Cross-beam web thickness is 20 mm: (a) vertical displacements of cross-beam. Max. displacement = 
– 0.164775 mm. Min. displacement = – 0.825762 mm; (b) max. von Mises-stress = 149.661 MPa 

 
 
Here the cross-beam span is always taken as 3 m in all simulations. Results show that any change 
in cross-beam web thickness has almost no effect on deck plate and rib stresses. The change of 
stresses in cross-beam itself are given in Figs. 19 to 22. 
 
 
5. Discussions 

 
While cross-beam span increases, the deflections of deck plate, especially direct under wheel 

loads, increases heavily, nevertheless they still remain in elastic range. Max. von Mises-Stress 
emerges at the top face of deck plate, when cross-beam span is 2, 3 and 4 m. At cross-beam span 
of 5 m, max. von Mises-Stress emerges at the bottom face of deck plate direct under wheel loads. 
Stresses in deck plate decrease inverse proportional to cross-beam span, until it takes the value of 
5 m. Apparently, the stresses in deck plate will increase proportional to cross-beam span after 5 m 
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span value, since the sign of bending moment under wheel loading changes. at 5 m span of 
cross-beam. As a result local effects (stresses & deflections) will be higher at cross-beam span of 6 
m than cross-beam span of 5 m. With respect to stresses and deflections emerge in ribs, cross- 
beam span is of great importance, since the max. value of von Mises-Stress (indicator of damage) 
takes values from 150.785 MPa to 355.099 MPa, while cross-beam span rises from 2 to 5 m. As 
cross-beam span increases, twisting of the rib, which is under wheel load, becomes larger and 
 
 

 

Fig. 23 Variation of max. von Mises-Stress & deflection in deck plate depending on cross-beam span 

 

 

Fig. 24 Variation of max. von Mises-Stress & deflection in ribs depending on cross-beam span 

 

 

Fig. 25 Variation of max. von Mises-Stress & deflection in cross-beam depending on cross-beam span 
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Fig. 26 Variation of max. von Mises-Stress & deflection in cross-beam depending on cross-beam web 

thickness 
 
 
results in higher stresses at rib to cross-beam connection. For instance at the cross-beam span of 2 
m, twisting of the rib is very small, so that the bending is dominant on the deformed shape of the 
rib. This result can be obviously seen from the comparison of Figs. 8 and 17. Regarding 
cross-beam itself, increasing its span yields in increase of dead load on cross-beam and the 
moment arm of wheel loads. These effects cause slight increases of stresses and deflections in 
cross-beam itself. 

Because of increasing cross-beam web thickness, there exist almost no change in stresses and 
deflections develop in deck plate and ribs. The increase and so strengthening cross-beam web 
causes decreasing of shear force and so decreasing of tooth stresses in cross-beam web. The 
amount of this decrease in stress and deflection values is illustrated in Fig. 26 below. 

 
 

6. Conclusions 
 
It is seen from the results that the increase of cross-beam span from 2 m to 5 m causes very 

slight decrease of deck plate stresses, but heavily increase of deck plate deflections. With regard to 
steel load bearing parts of bridge all these stresses and deflections stay in elastic limits and have no 
hazard on the bridge. Nevertheless, the excessive deflections of deck plate can result in irreversible 
vertical displacements in asphalt wearing courses lying on deck plate and as a result rut formations 
can occur in asphalt. In terms of longitudinal ribs, stresses and deflections are highly affected by 
cross-beam span. At 5 m of cross-beam span rib material starts to yield. A cross-beam span 
between 3 and 4 m is recommended for the bridge analyzed in this study. Too small cross-beam 
spans like between 2 and 3 m are found to be very conservative under wheel loads. Regarding 
cross-beam itself, the increase of its span leads to slight increase of stresses and deflections in 
cross-beam. Therefore it is concluded that the stresses in cross-beam are allowed not to be 
considered, when determining cross-beam span of the bridge. As for cross-beam web thickness, it 
has no effect on the stresses develop in deck plate and ribs, but has effect on the stresses develop 
in cross-beam itself, as expected. 
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