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Abstract.  Point bending is commonly used for cambering and curving steel girders to large radii. In this 
system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required 
vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This 
paper derives closed form solutions that relate loads to permanent deformations for horizontally curving 
wide flange steel beams based on their post-yield response. These solutions are presented in a parametric 
form to identify the relationship between key variables and their impact on the accuracy of the curving 
operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired 
circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are 
spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid 
damaging the steel section. This leads to optimization of the point bending operation for inducing a circular 
profile in wide flange steel beams of any size. 
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1. Introduction 

 
Point bending is used in building construction for cambering and curving steel girders. In 

cambering, the girder is bent about its strong axis to induce a vertical curve (Fig. 1(a)) to 
compensate for dead / live load deflection. In curving, the steel girder is bent about its weak axis 
(Fig. 1(b)) to induce a horizontal curve to match a specific geometric and/or architectural profile. 
This profile is typically circular. 

The desired profile is obtained by a single application of mechanical loads at selected points, 
usually at the third points (Bjorhovde 2006). Point bending systems are ideal for large radii 
(Alwood 2006) because the parabolic deformed shape induced by applied loading closely matches 
the required circular profile. 

Recently, the authors formalized the point bending procedure for cambering wide flange steel 
girders by deriving closed-form solutions that relate applied loads to permanent deformations and 
curvatures (Gergess and Sen 2010) based on the plastification of steel (Moen and Via 2011), Fig. 2. 
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This paper extends this solution to applications for inducing a horizontal profile, that is, weak 
axis bending. 
 
 

 

(a) Strong axis bending (Cambering) 
 

 

(b) Weak axis bending (Curving) 

Fig. 1 Curving wide flange steel girders (King 2005) 
 
 

 

* yield plateau: length varies from 10 to 20 times the yield strain y 

** typical value used by fabricators before steel properties are reduced (Lange 2009) 

Fig. 2 Idealized stress-strain curve for Grade 250 and 345 steel (Moen and Via 2011) 
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2. Approach 
 
Closed-form solutions relating point loads to residual deformations were previously derived 

(Gergess and Sen 2011). These solutions are re-cast in a parametric form to limit the number of 
variables and simplify the solution. The intent is to provide practical solutions that can be readily 
used to predict the magnitude of the required load and ensure that the corresponding deformations 
and strains fall within permissible code limits (AISC 2011). Residual deformations are then plotted 
to determine the sensitivity of the solution to variations in the magnitude of the parameters. 

To make the solution useable, the non-linear solution focuses on available AISC rolled wide 
flange sections (W1100 × 499 to W100 × 19.3, Fig. 3) (AISC 2011) corresponding to Grade 250 
and Grade 345 steel, as well as Grade 415 steel that is representative of the measured yield stress 
value for Grade 345 steel (Brockenbrough 2003). Maximum strains are limited to 3% (Fig. 2), a 
typical value used by fabricators before steel properties are reduced (Lange and Grages 2009). 
This allows the analysis to be conducted based on elastic-perfectly plastic stress-strain behavior 
and ensures that the yield stress in tension and compression remain the same (e.g., Bauschinger 
effects do not have to be considered). 

 
 

3. Description of the point bending system 
 

Point bending uses mechanical loads to develop the required curved profile. Point bending 
machines consist of a steel frame in which the hydraulic jacks are horizontally mounted on one 
side of the flanges with a reaction beam supported on two points placed on the opposite side of the 
flanges (Bjorhovde 2006) (Fig. 4(a)). 

 
3.1 Girder geometry 
 
The design length of the fabricated straight girder is defined as L. The actual length of the 

 
 

Fig. 3 Cross-section of a rolled W shape (AISC 2011) 
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* Length L’ = L + 2b 

(a) Point bending steel rolled shapes (weak axis bending) 
 

 

* Actual length L’= L + 2b 

(b)  Development of curved shape based on point bending 

* Actual girder length is L’ = L + 2b (b  0.05L e.g., L’  1.1L). Dimension b to be trimmed after 
completing the cold curving operation (Alwood 2006) 

Fig. 4 Idealization of the point bending operation 
 
 

girder, L’, is longer to satisfy placement requirements within the bending machine (Alwood 2006). 
Thus, L’ = L + 2b, where the dimension b is the distance from the end supports of the reaction beam 
to the end of the girder (Fig. 4(a)). The distance b is usually set at 0.05L so that L’  1.1L. The 
overhang length is trimmed after the point bending operation is completed (Alwood 2006). 

 
3.2 Load application 
 
The point bending set-up for weak axis bending is shown schematically in Fig. 4(a) where two 

equal concentrated loads P, distant a’ from the supports, are applied incrementally until the desired 
curved profile is attained (Fig. 4(b)). 
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3.3 Idealization of curved shape 
 
Point loads (Fig. 4(a)) are typically applied at the third point (a’ = L / 3, Fig. 4(a)) to ensure a 

smooth parabolic shape (Fig. 4(b)) (Bjorhovde 2006). In cambering, this profile almost exactly 
compensates for dead and live load deflections; however, it is less than ideal where the required 
curve is an arc of a circle as shown in Fig. 5. 

For a girder length L and desired radius of curvature R, the mid-span ordinate (which 
corresponds to the maximum induced deformation) is the key variable. From geometry, δmax = 
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R  (AISC 2011). At a distance x from the girder end, the ordinates can be 

calculated using the equations given in Fig. 5 for both circular and parabolic shapes. The mismatch 
between the circular and parabolic curves is most noticeable for small radii mainly for span length 
to radius of curvature ratio (L / R) larger than 1.5 (as shown in Section 6.1 in the paper). 
Consequently, the applicability of the point bending technique is recommended for L / R  1.5. 
Note that there are alternative bending techniques such as three-roller bending and heat curving 
that may be used for smaller radii (Bjorhovde 2006). 

 
 

4. Analytical solution 
 
The maximum deflection (max in Fig. 5) corresponds to the residual displacement following 

application and release of the point loads (Fig. 4(b)). For cambering (Gergess 2010), AISC sets 
limits on the minimum camber radius R as a function of the girder depth to avoid excessive 
straining of the extreme fibers of the section. These limits do not apply for curving because the 
required bending loads are smaller (due to weak axis bending compared to strong axis bending in 
cambering). However, the lateral stability requirements in curving are quite different. Unlike 
cambering where the web is considered to be stiffened by the top and bottom flanges, in curving 
the flange is considered to be un-stiffened because there are no flexural stresses at the flange/web 
junction, Fig. 6 (Bjorhovde 2006). 

Local flange buckling can be avoided by controlling the magnitude and spacing of the applied 
loads. The recommended spacing between the point loads is based on the lateral bracing limit Lp 
set by AISC. For girders where the flexural capacity is governed by plastic bending (Wong and 
Driver 2010), it is given by Eq. (1) as (AISC 2011) 
 

y
fp F

E
b.L 2550                               (1) 

 
where bf is the flange width, E is the modulus of elasticity and Fy is the yield stress. 

The magnitude of the load applied to each flange (Pflange = P / 2) is limited to the allowable 
strength for the limit state of flange local buckling (AISC 2011) and is given by Eq. (2) as 
 

yfyfflange Ft.PFt.P 22 57753                         (2) 
 
where Fy is in MPa, tf (flange thickness) in mm and Pflange (load per flange) in N. 
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Fig. 5 Idealized curved shape (Bjorhovde 2006) 
 
 
In case the flange buckling criteria (Eqs. (1) and (2)) are not satisfied, temporary transverse 

stiffeners can be provided at intermediate points along the girder length and removed later. 
 
4.1 Induced deformations 
 
The applied post-yield loads induce permanent deformations in the girder. Expressions for the 

inelastic load P, the induced inelastic p, elastic e and residual deformations res were previously 
derived (Gergess and Sen 2011). In these expressions, the key variables are the girder flange 
dimensions (flange width bf and thickness tf , Fig. 3), the girder length L (that is also the distance 
between the reaction arms of the bending frame, Fig. 4), the offset of the load points a’ (Fig. 4), 
the point at which yield is initiated x2 (Fig. 6), the steel grade Fy and the modulus of elasticity E 
(Fig. 2). It should be noted that the restraining effect of the web on the post-yield loads and 
deformations of the steel girder is neglected since its stiffness in weak axis bending is small in 
comparison to that of the flanges. 

To reduce the number of variables, these equations are re-cast in a parametric form and the 
relationships between key variables established. 
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4.2 Parameters 
 
Two parameters  and  are defined. Parameter  is the ratio of the offset of the load points a’ 

to the bending span L ( = a’ / L), usually set at one third the span length for inducing circular 
curves (Bjorhovde 2006). Parameter  is the ratio of the distance where yield initiates (x2) to the 
offset of the load points a’ ( = x2 / a’), Fig. 6. 

 
4.3 Inelastic loads 
 
The expression for the post-yield load P for the two flanges (based on elasto-plastic analysis) 

(Gergess 2011) re-cast using parameters  and  is given by Eq. (3) as 
 

)3/1for (
3

22

 
χL

btF
P

τχL

btF
P ffyffy                     (3) 

 

4.4 Residual deformation res 

 
The closed form equation for the residual deformation res that develops after release of the 

post-yield load is obtained by subtracting the elastic deformation e due to unloading from the 
inelastic deformation p (Craig 2011). 
 
 

 
 

Stress diagram: 
2/0

inelastic   yield   elastic

222       Lxxxxxx 
 

* Note: x2 = 2L / 3 when the section becomes fully plastic at mid-span 

Fig. 6 Stress variation with the bending span L 
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The residual deformation res normalized with respect to the girder length squared to flange 
width ratio (L2 / bf) is presented in a parametric form in Eq. (4) so it can be plotted as a function of 
parameters  and  
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Setting  as 0.33, Eq. (4) is re-written in Eq. (5) for  = 1/3 as follows 
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Note that in Eqs. (4) and (5) both the inelastic deformation p that develops during loading and 
the elastic deformation e that develops during unloading are labelled. 

 
 

5. Parametric analysis 
 
The mathematical derivations show that  and  are the only parameters that vary in the closed 

form expressions for induced deformations (Eqs. (4)-(5)). The parameter  is one third the girder 
length L and  varies from 2/3 to 1 (so that the term under the square root in Eqs. (4) and (5) is 
real). 

The variation of res /
 (L2 / bf) in Eq. (5) with  is plotted in Fig. 7. The ordinate of the plot res / 

(L2 / bf) is multiplied by 10,000 for clarity. The variation in  is shown in increments of 0.005 
starting at  = 0.667 and ending at  = 0.695 to highlight its contribution to the point bending 
operation (values for  larger than 0.695 are not shown as they are insignificant). 

Fig. 7 contains three plots, corresponding to the three different steel grades (Grades 250, 345 
and 415) considered in this paper. It may be seen that at  = 0.667, res / (L

2 / bf)  10,000 is 42 for 
Grade 250, 59 for Grade 345 and 71 for Grade 415 steel. These values reduce significantly at  = 
0.695 to res / (L

2 / bf)  10,000 = 2.7 for Grade 250, 3.7 for Grade 345 and 4.4 for Grade 415 steel, 
that is, a 4% increase in  (from 0.667 to 0.695) can reduce deformations res (e.g., radii of 
curvatures R) almost 16 fold. This quantifies the sensitivity of an increase in deformation to the 
onset of yield in the post-yield range. 

Since the point load P is inversely proportional to  (Eq. (3)), the curving radius can be reduced 
dramatically by minor increases in the bending load P in the post-yield regime. The analytical 
solution reflects ideal conditions that are not completely realizable in practice in part because 
actual material properties vary (Brockenbrough 2003). Nonetheless, it gives a good indication on 
the magnitude of the loads required for curving. 
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6. Range of curvatures, loads and strains 
 
Based on the parametric analysis and the variation of res / (L

2 / bf) with  in Fig. 7, the ranges 
for curvatures, strains and loads are set as follows: 

 
6.1 Curvature 
 
As shown in Fig. 5, a circular shape is approximated by a parabola. The accuracy of this 

approximation depends on the radius of curvature, that is, the larger the radius, the better the 
approximation. By comparing deformations at intermediate points using the closed form 
expressions for circular and parabolic deformed shapes in Fig. 5, it was found that they are 
identical for L / R  1, 1% different for L / R = 1.5, 3% different for L / R = 1.75 and 15% different 
for L / R = 2. Consequently, this approach is considered to be reasonably accurate if the ratio of the 
girder length L to the radius of curvature R is limited to 1.5 (L / R  1.5). 

The expression for res in Fig. 4(b) (max in Fig. 5) is recast as a function of the flange width to 
the radius of curvature ratio (bf / R) so that the range of curvatures for standard AISC rolled W 
shapes (AISC 2011) can be determined. This is given by Eq. (6) which is a function of L / R and 
res / (L

2 / bf) 
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If L / R in Eq. (6) is set to its limiting value of 1.5 (L / R  1.5), the limit on the flange width to 
radius of curvature ratio (bf / R) is given by Eq. (7) 
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Consequently, the limit on the radius is given by expressing R from Eq. (7) as a function of bf 
in Eq. (8) 

)//(/15.0 2
fresf bLbR                            (8) 

 

This makes R a function of the normalized residual deformation res / (L
2 / bf) and the flange 

width bf. For rolled W shapes (AISC 2011), the flange width bf varies from 100 mm (W150 × 13) 
to 457 mm (W920 × 1191). Fig. 7 shows that res / (L

2 / bf)  104 varies from 2.7 to 42 for Grade 
250, 3.7 to 59 for Grade 345 and 4.4 to 71 for Grade 415 steel. 

Based on the upper-bound values of res / (L
2 / bf) (that is, 42, 59 and 71 multiplied by 10-4), 
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Fig. 7 Plots for Residual deformations ( = 1/3) 
 
 
limits on the radii of curvature are set as: R  16.5 m (Grade 250), R  12 m (Grade 345) and R  
10 m (Grade 415) steel for bf = 457 mm and R  4 m (Grade 250), R  3 m (Grade 345) and R  
2.5 m (Grade 415) steel for bf = 100 mm. Table 1 summarizes the range of curvatures that can be 
induced for the upper-bound and lower-bound values of res / (L

2 / bf) using point bending for 
curving the girder about its weak axis. 
 

6.2 Strain 
 
The residual strain is calculated from its usual relationship with curvature 1 / R   / y = 1 / R 

where y is taken at the flange tip (y = bf / 2) (Fig. 3). Substituting  by bf / 2R in Eq. (7) results in 
the following expression for the maximum residual strain 
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Based on the upper-bound values of res / (L
2 / bf) (that is, 42, 59 and 71 multiplied by 10-4), 

limits on residual strains are set as:  = 3.325  42  10-4 = 0.014 for Grade 250,  = 3.325  59  
10-4 = 0.02 for Grade 345 and  = 3.325  71  10-4 = 0.024 for Grade 415 steel. 

It is customary to express post-yield strains as multiples of the initial yield strain εy (Fig. 2). 
The yield strain values for the three grades of steel considered in this paper are 0.00125 for Grade 
250, 0.00173 for Grade 345 and 0.00208 for Grade 415 steel. Using these values, the corresponding 
maximum strains ( = 0.014 for Grade 250,  = 0.02 for Grade 345 and  = 0.024 for Grade 415 
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steel) work out to approximately 11.5εy, the same value for all three steel grades. This is because 
the yield stress Fy is a common factor in the expression for res / (L

2 / bf) in Eq. (5). 
While the permanent residual strain () develops after removal of the point loads, the actual 

strain that develops during loading is greater (labeled as max) because there is no elastic rebound. 
max can be determined by an expression similar to Eq. (9) except that the residual deformation res 
is replaced by the inelastic deformation component (p) in Eq. (5). p is 1.1 times the residual 
displacement res (determined mathematically from Eq. (5) as the ratio of the inelastic deformation 
component p to the elastic deformation component e for  = 0.667). Thus, max = 1.1 = 1.1  
11.5y = 12.65y for Grade 250, 345 and 415 steel. This maximum strain falls within the yield 
plateau of conventional steel at 10 to 20y (Salmon 2010) thus ensuring that steel is not strained 
into the strain hardening range e.g., the change in the mechanical properties of steel is not 
substantial (Barnshaw 2009). According to fabricators, steel sections can be curved up to 
approximately 3% strain without compromising their performance (Lange and Grages 2009). This 
limit corresponds to 24y for Grade 250, 17.4y for Grade 345 and 14.5y for Grade 415 steel and is 
larger than the maximum value (max = 12.65y) specified in this paper. 

 
6.3 Range of point loads P 
 
The maximum bending load P is dictated by flange buckling (AISC 2011) where the limiting 

flange buckling load (Pflange = P / 2) is given by Eq. (2). For the range of AISC rolled W shapes, tf 
varies from 4.95 mm for W150  13 to 125 mm for W360  1086. Substituting the two extreme 
values for tf and the steel yield stress, a limiting load range can be calculated that is summarized in 
Table 1. 

It may be seen from Table 1 that the limiting load P (per girder) varies from 46 kN (tf = 4.95 
mm for W150  13, Grade 250) up to 48500 kN (tf = 125 mm for W360  1086, Grade 415). In 
practice, fabricators prefer to set a limit of 10000 kN (1000 metric tons), a typical value of 
hydraulic jacks’ capacity. 
 
 
Table 1 Range of radii of curvatures and point loads 

Ranges Grade 250 Grade 345 Grade 415 

 0.667    0.695 0.667    0.695 0.667    0.695 

res / (L
2 / bf) 104 3  res / (L

2 / bf)  104  42 4  res / (L
2 / bf)  104  59 5  res / (L

2 / bf)  104  71

bf / R  104 20  (bf / R  104)  279 27  (bf / R  104)  392 33  (bf / R  104)  472 

bf (mm) 100  bf  457 100  bf  457 100  bf  457 

R (m) 

4  R  50 
for bf = 100 mm 
16.5  R  229 

for bf = 457 mm 

3  R  41 
for bf = 100 mm 

12  R  186 
for bf = 457 mm 

2.5  R  30 
for bf = 100 mm 

10  R  138 
for bf = 457 mm 

tf (mm) 4.95  tf  125 4.95  tf  125 4.95  tf  125 

Limits on bending 
loads P (kN) 46  P  29000 63  P  40000 76  P  48500 
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7. Optimization of point bending set-ups 
 
7.1 Set-ups 
 
Point bending makes use of dual load (Fig. 4(a)) applications to induce curvatures. A girder of 

length L is placed horizontally in a steel frame (Fig. 4, selfweight is neglected) where loads are 
applied using hydraulic jacks until the desired curve is attained (Fig. 4(b)). The longitudinal arms 
of the frame spaced at L constitute the end supports (placed symmetrically at a distance b from the 
ends, Fig. 4(a)). Based on common practice, b is set at 0.05L (L = 1.1L). 

 
7.2 Point loads and induced residual deformations 
 
The maximum residual deformation that develops at mid-span of the girder of length L is 

approximated as 
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Rres  (Fig. 5) where R is the desired radius. From Fig. 7, 

the onset of yield (parameter ) can be depicted as a function of the steel grade and the ratio res / 
(L2 / bf)  10,000 (normalized residual deformation with respect to the girder length squared to 
flange width ratio). The point load per girder (P) is then determined from Eq. (3) as a function of 
the yield stress (Fy), flange thickness (tf), flange width (bf), girder length (L) and parameter  (P = 
Fyt fb f

2 / L). 
 
7.3 Limits 
 
Limits on point loads spacing and magnitude are based on AISC to prevent localized damage 

(Eq. (1): 
y

f F

E
b.

L
2550

3
 and Eq. (2): P  7.5tf

2Fy) and avoid using stiffeners to control lateral 

buckling during bending (White 2008). 
Limits on the desired radius of curvature (R) are set based on geometric idealization between 

parabolic and circular shapes (Eq. (7): L/R  1.5 and bf / R  6.65  (res / (L
2 / bf)). In case these 

conditions are not satisfied, the point bending operation can be accomplished in stages e.g., the 
point loads are reconfigured to induce half the curvature (that is twice the radius 2R) in each stage. 
In this case, residual stresses that build-up during the first load stage are neglected as they may be 
released by heat treatment (Spoorenberg et al. 2010). 

 
 

8. Application 
 
The inelastic response of wide flange steel beams curved by point bending is illustrated by a 

numerical application. In the example, a 10 m long, Grade 345 W410 × 60 girder is to be curved to 
a radius of 15 m. It is required to determine the optimal point bending set-up. The sensitivity of 
induced deformations to variation in loads is also illustrated by reducing the radius to 7.5 m (by 
half) and 5 m (by two third). 

 
8.1 Solution for R = 15 m 
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The girder cross-sectional properties are first obtained from the AISC Manual. These are the 
flange width bf = 17.8 cm, the flange thickness tf = 1.28 cm, the girder length L = 10 m (the actual 
girder length is set at L’ = 1.1L = 11 m for fitting purposes), the steel yield stress Fy = 345 MPa 
and the radius of curvature R = 15 m. 

Based on the given data, the maximum mid-span residual deformation corresponding to point 
loads applied at third-points (e.g., L/3 = 10 m / 3 = 3.33 m), is approximated as res  
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1115 = 0.858 m (Fig. 5). 

From Fig. 7, based on res / (L
2 / bf)  10,000 = 0.858 / (102 / 0.178)  10,000 = 15.3, parameter 

 is scaled as 0.67 (Grade 345). From Eq. (3), the point load P is calculated as P = Fyt fb f
2 / L = 

345  1000  0.0128  (0.1782^2) / 0.67  10 = 20.9 kN which is smaller than the limiting value 
of 7.5tf

2Fy equal to 7.5 × 12.82 × 345 / 1000 = 424 kN. Since the spacing between the loads (L / 3 = 

3.33 m) is larger than the limiting value 
y

fp F

E
b.L 2550

345

200000
0.1780.255 = 1.1 m, 

removable transverse stiffeners should be attached along the girder length during bending. 
The accuracy of the point bending operation is finally checked by ensuring that L/R = 10 / 15 = 

0.67  1.5 and bf /R = 0.178 / 15 = 0.012  6.65  (res / (L
2 / bf)) = 6.65  15.3  10-4 = 0.0102. 

 
8.2 Solution for R = 7.5 m 
 
If the radius of curvature R is reduced to 7.5 m, the residual deformation res increases to 
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115.7 = 1.91 m. From Fig. 7, based on res / (L2 / bf)  10,000 = 1.91 / (102 / 

0.178)  10,000 = 34, parameter  is scaled as 0.668 (Grade 345). From Eq. (3), the point load P is 
calculated as P = Fyt fb f

2 / L = 345  1000  0.0128  (0.1782^2) / 0.668  10 = 21 kN, almost 
equal to the 20.9 kN load used to induce the radius of 15 m. This highlights the sensitivity of the 
variation in the induced inelastic deformation to the bending loads. Transverse stiffeners are also 
needed for lateral stability requirements during bending since the spacing between point loads (L / 

3 = 3.33 m) is larger than the limiting value (Lp = 1.1 m). 
The accuracy of the point bending operation shows that the span length to radius of curvature 

ratio L / R = 10 / 7.5 = 1.33 is smaller than the limiting value of 1.5 and the ratio of the flange 
width to radius of curvature ratio bf  / R = 0.178 / 7.5 = 0.024  6.65  (res / (L

2 / bf)) = 6.65  34  
10-4 = 0.023, that is satisfactory according to Eq. (7). 

 
8.3 Solution for R = 5 m 
 
If the radius of curvature R is reduced to 5 m, the span length to radius of curvature ratio L / R = 

10 / 5 = 2 exceeds the limiting value of 1.5 specified in this paper. Consequently, point bending can 
be used only if the point loads are applied in two stages. In stage 1, the loads are applied to induce 
half the curvature (1 / R) e.g., twice the radius R (2  5 m = 10 m). In stage 2, they are applied to the 
already deformed shape from stage 1 to induce the remaining curvature. 
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The residual deformation res in each stage is calculated as a function of the radius R of 10 m 

induced in each stage 
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1110res = 1.34 m. From Fig. 7, based on res / (L

2 / bf) 

 10,000 = 1.34 / (102 / 0.178)  10,000 = 23.9, parameter  is scaled as 0.669 (Grade 345). From 
Eq. (3), the point load P is calculated as P = Fyt fb f

2 / L = 345  1000  0.0128  (0.1782^2) / 
0.669  10 = 21 kN, almost equal to the 20.9 kN load used to induce the radius of 15 m and 21 kN 
load to induce the radius of 7.5 m. Note that transverse stiffeners are needed for lateral stability 
requirements during bending as in the previous cases. 

The ratio of the flange width to radius of curvature ratio in each stage bf / R = 0.178 / 10 = 0.018 
 6.65  (res / (L

2 / bf)) = 6.65  23.9  10-4 = 0.016, that is satisfactory according to Eq. (7). 
 
8.4 Summary 
 
The numerical application predicts that for a 10 m long W410  60 girder made of Grade 345, 

two point loads of 20.9 kN each spaced at 3.33 m (one third the span length) will induce a radius R 
of 15 m. These loads increase marginally to 21 kN to induce a radius R of 7.5 m (50% reduction). 
This insignificant difference in loads is due to the sensitivity of the variation in the induced 
deformations to the yield onset (Fig. 7). In both cases, the bending loads were smaller than the 
maximum flange buckling load of 424 kN and the radii of curvature were within the limits 
specified for applicability of the proposed point bending procedure (L / R  1.5 and bf / R  6.65  
(res / (L

2 / bf)). 
For a radius of curvature of 5 m, the limit specified on the girder length to radius ratio (L / R = 

10 / 5 = 2  1.5) was not satisfied which necessitated performing the point bending operation in two 
stages. In each stage a radius R of 10 m (2  5 m) was induced using a bending load of 21 kN. Note 
that the effects of residual stresses that build up from the bending in the first stage were not 
considered (Spoorenberg et al. 2010). 

 
 

9. Conclusions 
 
This paper examines the post-yield response of symmetric, wide-flange steel girders subjected 

to point load bending about its weak axis. A general theoretical framework relating loads and 
residual deformations to cross-sectional properties is developed for inducing horizontal circular 
curves. Point bending systems were consequently optimized from parametric and sensitivity 
analyses. 

Based on the findings of this paper, it was shown that the most important variable that controls 
permanent residual deformations due to point loads is the location where yield initiates in the span 
shear span a’. This is given by distance x2 (shown in Fig. 6) and depending on the cross-section, x2 
varies from 0.667a to 0.695a. Within this range, a less than 1% reduction in x2 can reduce the 
radius of curvature by more than half its value. 

The theoretical solution focused on available AISC rolled wide flange sections (W1100 × 499 
to W100 × 19.3) to set curvature and strain limits that could be attained without overstraining or 
damaging the steel section. It was shown that radii of curvatures R as little as 16.5 m (Grade 250), 
12 m (Grade 345) and 10 m (Grade 415) for a flange width bf = 457 mm and R = 4 m (Grade 250), 
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3 m (Grade 345) and 2.5 m (Grade 415) for bf = 100mm can be induced with the maximum strain 
not exceeding 12.65 times the yield strain y. 

Overall, this paper shows that point bending is suitable for inducing parabolic deformed shapes 
that closely match circular curves if the girder length to radius of curvature ratio (L / R) is less than 
1.5 and the bending loads are placed at the third points of the girder. 

Finally, the analytical solutions presented in this paper are idealized and therefore their 
accuracy in predicting the deformation in the inelastic range cannot be exactly realized in practice 
even if actual (not nominal) material properties are used (Brocknebrough 2003). Nonetheless, the 
solutions facilitate understanding of the inelastic behavior of point load bending systems. This 
helps reduce trial and error in determining the capacity of hydraulic jacks and in evaluating 
alternative set-ups for the curving operation. 
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