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Abstract.   In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally 
graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are 
studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness 
direction according to a simple power law distribution in terms of the volume fractions of the constituents, 
and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on 
Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential 
equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is 
simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved 
analytically using the variational iteration method (VIM). Some new results for the nonlinear natural 
frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of 
vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity 
are presented for future references. Results show that the thermal loading has a significant effect on the 
vibration and post-buckling response of FG beams. 
 
Keywords:    functionally graded beams; thermal and axial loadings; nonlinear free vibration; post- 
buckling; Galerkin method; variational iteration method 

 
 
1. Introduction 

 
In microscopically inhomogeneous functionally graded materials (FGMs), material properties 

vary smoothly and continuously from one surface to the other by gradually changing the volume 
fraction of their constituent materials. Due to their unique advantages, these materials are able to 
withstand severe high-temperature environment while maintaining structural integrity. Therefore, 
they have received considerable attention in many industries, especially in high-temperature 
applications such as space shuttle, aircraft, and etc. 

Noda (1991) and Tanigawa (1995) reported that the weakness of the fiber reinforced laminated 
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composite materials, such as debonding, huge residual stress, locally largely plastic deformations, 
etc., can be avoided or reduced in FGMs. The considerable advantages offered by FGMs over 
conventional materials and the need of overcoming the technical challenges involving high 
temperature environments have prompted an increased use of FGM structures. FGMs were 
initially designed as thermal barrier materials for aerospace structures and fusion reactors where 
extremely high temperature and large thermal gradient exist. With the increasing demand, FGMs 
have been widely used in general structures. Hence, many FGM structures have been extensively 
studied, such as functionally graded (FG) beams, plates, shells, etc. 

Furthermore, due to huge application of beams in different fields such as civil, marine and 
aerospace engineering, it is necessary to study their dynamic behavior at large amplitudes which is 
effectively nonlinear and therefore, is governed by nonlinear equations. Nonlinear free vibrations 
and buckling analysis of isotropic and composite beams have received a good amount of attention 
in the literature. 

Fang and Wickert (1994) investigated the static deformation of micro-machined beams under 
in-plane compressive stresses in both the pre-buckling and post-buckling domains. They 
considered the mid-plane stretching and the imperfection of the beam. A closed-form analytical 
solution using a complete elliptic integral is obtained. Lacarbonara (1997) studied the thermal 
post-buckling and vibrations of imperfect fixed-fixed beams. A solution was assumed for the 
post-buckling and a relationship between the critical thermal load and the imperfection amplitude 
is obtained. Hatsunaga (2001) presented natural frequencies and buckling stresses of simply 
supported laminated composite beams taking into account the effects of the transverse shear and 
the rotary inertia. Nonlinear modal analysis approach based on invariant manifold method is 
utilized to obtain the nonlinear normal modes of a clamped–clamped beam for large amplitude 
displacements by Xie et al. (2002). Vaz and Solano (2003) investigated the buckling response of a 
geometrically nonlinear hinged-hinged slender elastic rod (elastica) subjected to a uniform 
temperature gradient. Guo and Zhong (2004) have investigated nonlinear vibrations of thin beams 
based on sextic cardinal spline functions, a spline-based differential quadrature method. Nonlinear 
normal modes of vibration for a hinged-hinged beam with fixed ends have been evaluated 
considering both the continuous system and finite element models by Carlos et al. (2004). 
Sapountzakis and Tsiatas (2007) investigated the flexural buckling of composite Euler-Bernoulli 
beams of arbitrary cross sections. The resulting boundary-value problems were solved using the 
boundary element method. Aydogdu (2007) investigated the thermal buckling of cross-ply 
laminated beams with different boundary conditions. Nayfeh and Emam (2008) obtained a 
closed-form solution for the post-buckling configurations of beams composed of isotropic 
materials with various boundary conditions. Jun et al. (2008) investigated the free vibration and 
buckling behaviors of axially loaded laminated composite beams having arbitrary lay-up using the 
dynamic stiffness method taking into account the influences of axial forces, Poisson effect, axial 
deformation, shear deformation, and rotary inertia. 

In recent years, Pirbodaghi et al. (2009) have used the first-order approximation of the 
homotopy analysis method to investigate the nonlinear free vibration analysis of Euler-Bernoulli 
beam. Emam (2009) presented the static and dynamic response of geometrically imperfect 
composite beams. Results showed that the imperfection has a significant effect on the static and 
dynamic response of composite beams. Malekzadeh and Vosoughi (2009) studied nonlinear free 
vibration analysis of laminated composite thin beams on nonlinear elastic foundation (including 
shearing layer) with elastically restrained against rotation edges by Differential Quadrature (DQ) 
approach. Gupta et al. (2009) studied the nonlinear free vibration analysis of isotropic beams using 
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simple iterative finite element formulation. An exact solution for the post-buckling of a 
symmetrically laminated composite beam with fixed-fixed, fixed-hinged, and hinged-hinged 
boundary conditions is presented by Emam and Nayfeh (2009). Recently, Gupta et al. (2010a, b) 
recently applied the concept of coupled displacement field (CDF) criteria to investigate the 
post-buckling behavior of isotropic and composite beams, respectively. Gunda et al. (2010) 
employed Rayleigh-Ritz method to study large amplitude vibration analysis of laminated 
composite beam with symmetric and asymmetric layup orientations. 

More recently, the large amplitude vibration and post-buckling analysis of FG beams have 
attracted a huge number of research efforts. Ke et al. (2010) used the direct numerical integration 
method together with Runge-Kutta numerical technique to find the nonlinear vibration response of 
FGM beams with different end supports. Simsek (2010) studied the nonlinear forced vibration of 
the Timoshenko FG beams under action of moving harmonic load. 

Ait Atmane et al. (2011) presented a theoretical investigation in free vibration of sigmoid FG 
beams with variable cross-section by using Bernoulli-Euler beam theory. Ma and Lee (2011) 
presented a further discussion of nonlinear mechanical behavior for FGM beams under in-plane 
thermal loading. Fallah and Aghdam (2011) presented simple analytical expressions for large 
amplitude free vibration and post-buckling analysis of FG beams resting on nonlinear elastic 
foundation subjected to axial force. Fallah et al. (2011) presented simple analytical expression for 
large amplitude thermo-mechanical free vibration analysis of symmetrically laminated composite 
beams. Recently, Bouremana et al. (2013) presented a new first shear deformation beam theory 
based on neutral surface position for FG beams. Bouderba et al. (2013) developed a simple 
trigonometric shear deformation theory to investigate thermo-mechanical behavior of simply 
supported FG plates resting on a Winkler–Pasternak elastic foundation. Kettaf et al. (2013) studied 
the thermal buckling behavior of FG sandwich plates using a new hyperbolic displacement model. 
Free vibration of FGM box beam was investigated by the formulation of an exact dynamic 
stiffness matrix on the basis of first-order shear deformation theory by Ziane et al. (2013). 
Yaghoobi and Torabi (2013a, b) presented analytical studies on large amplitude vibration and 
post-buckling of perfect and imperfect FG beams resting on non-linear elastic foundation, 
respectively. 

The primary purpose of the present paper is to investigate the influences of thermal effect on 
nonlinear vibration and post-buckling analysis of beams made of FGMs resting on nonlinear 
elastic foundation subjected to axial force. Analytical expressions for nonlinear natural frequencies 
and buckling load of the FG beams are determined using the variational iteration method (VIM) 
given by He (1999). 
 
 
2. Basic idea of variational iteration method 

 
To illustrate the basic concept of the technique, we consider the following general differential 

equation 
)(xgNuLu                              (1) 

 

where L is a linear operator, N a nonlinear operator, and g(x) is the forcing term. According to 
variational iteration method, we can construct a correct functional as follows 
 

 

x

nnnn dttgtuNtLuxuxu
0

1 ))()(~)(()()( 
               

 (2) 
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where λ is a Lagrange multiplier, which can be identified optimally via variational iteration 
method. The subscripts n denote the nth approximation, nu~  is considered as a restricted variation, 
that is, 0~ nu ; and (2) is called as a correct functional. The solution of the linear problems can 
be solved in a single iteration step due to the exact identification of the Lagrange multiplier. In this 
method, it is required first to determine the Lagrange multiplier λ optimally. The successive 
approximation un+1, n ≥ 0 of the solution u will be readily obtained upon using the determined 
Lagrange multiplier and any selective function u0, consequently, the solution is given by 
 




n
nuu lim

                             
 (3) 

 
 

3. Problem statement 
 

Consider a straight FG beam of length L, width b and thickness h rests on an elastic nonlinear 
foundation and subjected to an axial force of magnitude P  as shown in Fig. 1. 

The beam is supported on an elastic foundation with cubic nonlinearity and shearing layer. In 
this study, material properties are considered to vary in accordance with the rule of mixtures as 
 

CCMM VPVPP                             (4) 
 
where P and V are material property and volume fraction, respectively and subscripts M and C 
refer to the metal and ceramic constituents, respectively. The material properties of the form P that 
are highly temperature-dependent can be written as 
 

 3
3

2
21

1
10 1 TPTPTPTPPP  
                     (5) 

 
where P0, P-1, P1, P2 and P3 are the coefficients of the temperature T and are unique to each 
constituent. In this paper, Poisson’s ratio, ν, is assumed to be a constant value of 0.28. 

Simple power law distribution from pure metal at bottom face ( 2hz  ) to pure ceramic at 
the top face ( 2hz  ) in terms of the volume fractions of the constituents is assumed. 
 
 

Fig. 1 Schematic of the FG beam with nonlinear foundation 
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n
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CM VV 1                              (6b) 
 

where n is the volume fraction exponent. The value of n equal to zero represents a fully ceramic 
beam. The mechanical and thermal properties of FGMs are determined from the volume fraction 
of the material constituents. We assume that the non-homogeneous material properties such as the 
modulus of elasticity (E) and the thermal expansion coefficient (α) and mass density (ρ) can be 
determined by substituting Eq. (6) into Eq. (4) as 
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The force and moment resultants per unit length, based on classical theory of beams in a 
Cartesian coordinate system, can be written as 
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in which w  and u  are the transverse and axial displacements of the beam along the z  and x  
directions, respectively. Where A11, B11, D11, E11 and F11 are given as follows 
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After some mathematical simplifications, the governing equation of nonlinear free vibration of 
an FG beam in terms of transverse displacement can be written as 
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in which comma denotes derivative with respect to x  or t . Furthermore, I1 and wF  are the 
inertia term and reaction of the elastic foundation on the beam which are defined as 
 

zdzI
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 (11) 
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xxSNLLw wkwkwkF
,

3 
                      

 (12) 
 

where Lk  and NLk  are linear and nonlinear elastic foundation coefficients, respectively and Sk  
is the coefficient of shear stiffness of the elastic foundation. The in-plane inertia and damping are 
assumed to be negligible and the distributed axial force is zero. 

For the subsequent results to be general, we use the following non-dimensional variables are 
used 
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where AIr   is the radius of gyration of the cross section. Using Eqs. (10) and (12) together 

with the dimensionless variables defined in Eq. (13), the dimensionless form of the governing 
equation becomes 
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Assuming w(x, t) = V(t)ϕ(x) where V(t) is an unknown time-dependent function and ϕ(x) is the 

first eigenmode of the beam presented in Table 1 which must satisfy the kinematic boundary 
conditions. Applying the Galerkin method, the governing equation of motion is obtained as 
follows 
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It is worth mentioning that for isotropic and symmetrically laminated beams, the coefficient 
V2(t), α2 is vanished i.e., the governing equation exhibits only cubic nonlinearity. However, the 
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Table 1 Trial functions for FG beam with various boundary condition 

Boundary condition )(x  Value of q
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

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
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L
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analysis of nonlinear vibrations for perfect or imperfect FG beams is thus significantly different 
from that of isotropic and symmetrically laminated beams, since the bending-stretching coupling 
(the constant B11) induces the quadratic term V2(t). 

The beam centroid is subjected to the following initial conditions 
 

aV )0(                              (18a) 
 

0
)0(


dt

dV

                           
 (18b) 

 

where a denotes the non-dimensional maximum amplitude of oscillation with respect to the 
mid-surface. From Eq. (16), the post-buckling load-deflection relation of the FG beam can be 
obtained as 
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It should be noted that neglecting the contribution of V in Eq. (19), the linear buckling load can 
be determined as 
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4. Implementation of VIM 

 
Eq. (16) can be simplified as 
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In order to solve Eq. (21) using VIM, we construct a correction functional, as follows 
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Its stationary conditions can be obtained as follows 
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Thus the Lagrangian multiplier can therefore be identified as 
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As a result, we obtain the following iteration formula 
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From the initial conditions in Eq. (18), that we have it in point t = 0 an arbitrary initial 
approximation can be obtained 

)cos()(0 tatV 
                         

 (26) 
 

This initial approximation is a trial function and it is used to obtain a more accurate 
approximate solution of Eq. (16). Here ω, is the nonlinear frequency. Expanding the non-linear 
part, we have 
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In order to ensure that no secular terms appear in the next iteration, the coefficient of )cos( t  
must vanish. Therefore 
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The nonlinear to the linear frequency ratio can be determined as 
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Using the variational formula (25), we have 
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Table 2 Temperature dependent coefficients of the constituent materials of the FG beams 

Material  P0 P-1 P1 P2 P3 

Si3N4 

E (Pa) 348.43e + 9 0.0 ‒ 3.070e ‒ 4 2.160e ‒ 7 ‒ 8.946e ‒ 11 

α (K-1) 5.8723e ‒ 6 0.0 9.095e ‒ 4 0.0 0.0 

ρ (kg/m3) 2370.0 0.0 0.0 0.0 0.0 

SuS304 

E (Pa) 201.04e + 9 0.0 3.079e ‒ 4 ‒ 6.534e ‒ 7 0.0 

α (K-1) 12.330e ‒ 6 0.0 8.086e ‒ 4 0.0 0.0 

ρ (kg/m3) 8166.0 0.0 0.0 0.0 0.0 
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Then first-order approximate solution is obtained as 
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Accordingly, inserting Eq. (32) into Eq. (19) the post-buckling load-deflection can be obtained. 
 
 

5. Results and discussion 
 
In this section we present the results with VIM, described in the previous section for solving Eq. 

(16). The temperature coefficients corresponding to Si3N4 and SuS304 are listed in Table 2. 
Moreover, for all numerical results reported here, the following values of variables were used 
unless otherwise indicated by the graphs or tables. 
 

)(1.0),(1,50,50,50,1,2,1 mhbmLkkkPna NLSL 
 

 
To test the validity and accuracy of the method used in this study, the variation of the 

non-dimensional amplitude versus time for a specific value of dimensionless maximum amplitude 
i.e., a = 1 obtained by VIM and well-established Runge-Kutta method are displayed in Fig. 2. This 
figure shows very good agreement between VIM and numerical solution. 

When the beam’s temperature difference is dropped i.e., T = 0 K the present analytical 
expression gives frequency ratio (ωNL / ωL) for FG beams without thermal loading. We did check 
our solution with published data for frequency ratio for both clamped-clamped (CC) and simply 
supported (SS) FG beams as shown in Table 3, further vouching for the accuracy of the VIM 
procedure. 
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         (a) 

 

 
         (b) 

Fig. 2 Variation of the non-dimensional amplitude versus t: (a) simply supported; (b) clamped-clamped 
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Table 3 Frequency ratio (ωNL / ωL) of FG beams without thermal load 

 A 
ωNL / ωL 

Gunda et al. (2010) Ke et al. (2010) Fallah and Aghdam (2011)
Present 

SS 

0 1.000 1.000 1.000 1.000 

0.5 1.009 1.006 1.007 1.006 

1 1.036 1.031 1.032 1.031 

1.5 1.079 1.072 1.072 1.072 

2 1.137 1.128 1.130 1.128 

CC 

0 1.000 1.000 1.000 1.000 

0.5 1.014 1.014 1.014 1.013 

1 1.053 1.053 1.053 1.053 

1.5 1.116 1.116 1.115 1.116 

2 1.198 1.198 1.198 1.198 

 
 

After these verifications, we investigate the influences of thermal effect, foundation parameters, 
axial force, vibration amplitude, end supports, such as SS and CC, and material inhomogenity on 
the nonlinear free vibrations and post-buckling behaviors of FG beams. Figs. 3 and 4 demonstrate 
the effects of linear foundation parameter together with the temperature difference for SS and CC 
FG beams, respectively. 

It can be seen from these figures that all beams exhibit typical hardening behavior i.e. the 
frequency and post-buckling ratio decreases as the linear foundation parameter is increased. In 
addition, these figures show that the frequency ratio decreases as the temperature difference of the 
beam i.e., T increases. 

It can be observed from Figs. 5 and 6 that an increase in the value of shearing layer stiffness 
results in decreasing hardening characteristic of the beam i.e. decrease in the rate of ks increase in 
the non-linear frequency and post-buckling strength. Nevertheless, an increase in the value of 
non-linear foundation parameter results in increasing in the non-linear frequency and post- 
buckling strength. This interesting behavior is shown in Figs. 7 and 8. Figs. 5-8 show that 
increasing in the temperature difference causes decrease in the both frequency and post-buckling 
ratio of the FG beams. 

Moreover, the effect of axial force on the nonlinear natural frequency of SS and CC FG beams 
is presented in Figs. 9 and 10. Results in the figures reveal that as the value of P increases the 
frequency ratio also increases. 

The effect of the dimensionless maximum amplitude on SS and CC beams, illustrated in Figs. 
11 and 12, shows an increase in both the frequency and post-buckling ratio with the increase in a 
and decrease in T. 

The influences of material inhomogenity in terms of volume fraction exponent on the 
frequency and post-buckling ratio are presented in Figs. 13 and 14. It is interesting to note from 
these figures that the frequency and post-buckling ratio of the beam initially increases, and then 
decays by increasing in the value of n. It can be clearly seen from these figures that a decrease in 
the value of temperature difference causes an increase in the values of both frequency and 
post-buckling ratio of the beam. 
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        (a) 

 

 

        (b) 

Fig. 3 Effect of the linear foundation stiffness on SS FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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        (a) 

 

 

        (b) 

Fig. 4 Effect of the linear foundation stiffness on CC FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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        (a) 

 

 

        (b) 

Fig. 5 Effect of the shearing layer stiffness on SS FG beam: (a) frequency ratio; and (b) buckling load ratio
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        (a) 

 

 

        (b) 

Fig. 6 Effect of the shearing layer stiffness on CC FG beam: (a) frequency ratio; and (b) buckling load ratio
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        (a) 

 

 
        (b) 

Fig. 7 Effect of the nonlinear foundation stiffness on SS FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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        (a) 

 

 

        (b) 

Fig. 8 Effect of the nonlinear foundation stiffness on CC FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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Fig. 9 Effect of the axial load on frequency ratio of SS FG beam 
 
 

 

Fig. 10 Effect of the axial load on frequency ratio of CC FG beam 
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        (a) 

 

 

        (b) 

Fig. 11 Effect of the dimensionless maximum amplitude on SS FG beam: (a) frequency ratio; 
and (b) buckling load ratio 
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        (a) 

 

 

        (b) 

Fig. 12 Effect of the dimensionless maximum amplitude on CC FG beam: (a) frequency ratio; 
and (b) buckling load ratio 

772



 
 
 
 
 
 

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams 

 

 
        (a) 

 

 

        (b) 

Fig. 13 Effect of the volume fraction exponent on SS FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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         (a) 

 

 
         (b) 

Fig. 14 Effect of the volume fraction exponent on CC FG beam: (a) frequency ratio; and (b) 
buckling load ratio 
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6. Conclusions 
 
Large amplitude vibration and post-buckling behavior of FG beams rest on nonlinear elastic 

foundation subjected to thermo-mechanical loading with simply supported and clamped-clamped 
boundary conditions are investigated. This study is within the framework of Euler-Bernoulli beam 
theory and von-Karman type displacement-strain relationship. The convergence and accuracy of 
the method are investigated by comparing the results with those available from the literature and 
well-established Runge-Kutta numerical method. The effects of thermal loading, foundation 
parameters, axial force, vibration amplitude, end supports and material inhomogenity on the 
nonlinear dynamic behavior of the FG beams are discussed in detail. As a result, an increase in the 
values of linear and shear layers of foundation parameters decreases the frequency ratio of the FG 
beam. But, as the nonlinear foundation stiffness gets stronger the frequency ratio and 
post-buckling load are progressively increase. Moreover, the thermal loading was found to be 
significant when investigating the vibrations and post-buckling that take place in the vicinity of a 
deflected position. 
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