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Abstract.  In the current study, we consider a new class of analytical periodic solution for free nonlinear 
vibration of mechanical systems. Hamiltonian approach is applied to analyze nonlinear problems which 
occur in dynamics. The proposed method doesn’t have the limitations of the classical methods and leads us 
to a high accurate solution by only one iteration. Two well known examples are studied to show the 
convenience and effectiveness of this approach. Runge-Kutta’s algorithm is also applied and the results of it 
are compared with the Hamiltonian approach. High accuracy of the proposed approach reveals that the 
Hamiltonian approach can be very useful for other nonlinear practical problems in engineering. 
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1. Introduction 

 
Many engineering problems can be parted into linear or nonlinear according to the type of 

differential equations of motion. Nonlinear oscillators systems are used in many subjects of 
mechanical and civil engineering. In recent years many researchers have been focused on 
obtaining new approximations for nonlinear problems because of advantages of numerical 
methods. In fact, it is too difficult to find an exact solution for nonlinear governing equations. 

Perturbation technique is one of the well-known analytical methods. They are not applicable for 
strongly nonlinear equations, and to eliminate the imperfections, novel techniques have been 
developed and are well documented in open literature, for instance, for instance; Homotopy 
perturbation method (Bayat et al. 2013a, 2014a), Hamiltonian approach (He 2010, Xu 2010, Bayat 
et al. 2014b, c, d, e, f, g, Bayat and Pakar 2013b), Energy balance method (Jamshidi and Ganji 
2010, Mehdipour 2010), Variational iteration method (Dehghan and Tatari 2008), Amplitude 
frequency formulation (He 2008), Max-Min approach (Shen and Mo 2009, Zeng and Lee 2009), 
Variational approach (He 2007, Bayat and Pakar 2012, Bayat et al. 2012, Bayat and Pakar 2013a, 
Shahidi et al. 2011, Pakar and Bayat 2013), and the other analytical and numerical (Bayat and 
Abdollahzade 2011, Pakar et al. 2011, 2014a, b, Xu and Zhang 2009, Alicia et al. 2010, Kuo and 
Lo 2009, Wu 2011, Odibat et al. 2008, Liu et al. 2013, Rajasekaran 2013, Akgoz and Civalek 
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2013). 
In this paper, we introduce the solution procedure of Hamiltonian approach and then we apply 

the method for two strong nonlinear problems. We have presented some comparisons between 
analytical and numerical solutions to show the accuracy of this new approach. It has been 
indicated that the numerical results of other methods are trigger same conclusion; while 
Hamiltonian approach is much easier, more convenient and more efficient than other approaches 
 
 
2. Basic idea of Hamiltonian approach 

 
Previously, He (2002) had introduced the Energy Balance method based on collocation and the 

Hamiltonian. This approach is very simple but strongly depends upon the chosen location point. 
Recently, He (2010) has proposed the Hamiltonian approach to overcome the shortcomings of the 
energy balance method. This approach is a kind of energy method with a vast application in 
conservative oscillatory systems. In order to clarify this approach, consider the following general 
oscillator 
 

0),,(    f                               (1) 
 

With initial conditions 
 

.0)0(   ,)0(   A                           (2) 
 

Oscillatory systems contain two important physical parameters, i.e., the frequency ω and the 
amplitude of oscillation A. It is easy to establish a variational principle for Eq. (1), which reads 
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where T is period of the nonlinear oscillator, ∂F / ∂θ = f. 

In Eq. (3), 2

2

1  is kinetic energy and F(θ) potential energy, so the Eq. (3) is the least Lagran- 

gian action, from which we can immediately obtain its Hamiltonian, which reads 
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From Eq. (4), we have 
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Eq. (5) is, then, equivalent to the following one 
 

0













T

H

A
                               (7) 

or 

0
)/1(
















H

A
                              (8) 

 
From Eq. (8) we can obtain approximate frequency–amplitude relationship of a nonlinear 

oscillator. 
 
 

3. Basic idea of Runge-Kutta’s method 
 

For the numerical approach to verify the analytic solution, the fourth RK (Runge-Kutta) 
method has been used. This iterative algorithm is written in the form of the following formulation 
 

00 )(  ),,(   ttf                             (9) 
 
θ is an unknown function of time t which we would like to approximate. Then RK4 method is 

given for this problem as below 
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for n = 0, 1, 2, 3, . . . , using 
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where θn+1 is the RK4 approximation of θ(tn+1). The fourth-order Runge-Kutta method requires 
four evaluations of the right hand side per step h. 

 
 

4. Applications 
 
In order to assess the advantages and the accuracy of the Hamiltonian approach, we will 

consider the following examples: 
 
4.1 Example 1 
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Fig. 1 Pendulum attached to rolling wheels that are restrained by a spring 
 
 

An example of a single degree of freedom conservative system has been considered that is 
described by an equation as follows. A rigid rod is rigidly attached to the axle as shown in Fig. 1. 
The wheels roll without slip as the pendulum swings back and forth. The wheel is restrained by a 
spring which is fixed to a wall on the other side .Only the ball on the end of the pendulum has 
appreciable mass and it may be considered a particle. The equation governing would be (Nayfeh 
1993) 
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With initial conditions 
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Here, by using the Taylor’s series expansion for cos(θ(t)), sin(θ(t)) and by some manipulation 
in Eq. (12) we can re-write Eq. (12) in the following form 
 

 





 






 














 

6

1
sin

6

1
sin

24

1

2

1
12 242        (14) 

where 
222 ,,,, krmglmrlmrml                    (15) 

 
The Hamiltonian of Eq. (14) is constructed as 
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Integrating Eq. (16) with respect to t from 0 to T/4, we have 
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Assume that the solution can be expressed as 
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Substituting Eq. (18) into Eq. (17), we obtain 
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Solving the above equation, an approximate frequency as a function of amplitude equal to 
 

42

2

16643232

882

AA

A









                     (21) 

 
By substituting Eq. (15) in to Eq. (21) we have 
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According to Eqs. (18) and (22), we can obtain the following approximate solution 
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
















 t

mrlAmrml

krlgmA
At

2222

22

)8(3232

8)8(2
cos)(                 (23) 

 
4.2 Example 2 
 
In this problem we have a rigid frame (Fig. 2) which is forced to rotate at the fixed rate . 

While the frame rotates, the simple pendulum oscillates.The governing equation is 
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by using the Taylor’s series expansion for cos(θ(t)), sin(θ(t)) and applying them in Eq. (24) we can 
re-write Eq. (24) in the following form 
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The Hamiltonian of Eq. (25) is constructed as 
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Integrating Eq. (26) with respect to t from 0 to T/4, we have 
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Fig. 2 Rotating frame connected to a pendulum 
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Table 1 Comparison of time history response of Hamiltonian approach with Runge-Kutta (example 1) 

Time 
Case 1 

Time 
Case 2 

HA RK4 Error HA RK4 Error 

0 0.5236 0.5236 0.0000 0 0.7854 0.7854 0.0000 

0.05 0.4974 0.4995 0.0043 0.1 0.5934 0.6203 0.0433 

0.1 0.4213 0.4281 0.0157 0.2 0.1114 0.1230 0.0938 

0.15 0.3031 0.3126 0.0304 0.3 -0.4251 -0.4651 0.0860 

0.2 0.1545 0.1613 0.0419 0.4 -0.7538 -0.7610 0.0095 

0.25 -0.0096 -0.0105 0.0860 0.5 -0.7141 -0.7239 0.0136 

0.3 -0.1727 -0.1808 0.0451 0.6 -0.3253 -0.3509 0.0730 

0.35 -0.3185 -0.3286 0.0306 0.7 0.2224 0.2604 0.1458 

0.4 -0.4324 -0.4391 0.0151 0.8 0.6615 0.6871 0.0372 

0.45 -0.5030 -0.5049 0.0037 0.9 0.7772 0.7771 0.0001 

0.5 -0.5232 -0.5233 0.0000 1 0.5130 0.5359 0.0427 

0.55 -0.4911 -0.4934 0.0048 1.1 -0.0019 -0.0209 0.9080 

0.6 -0.4097 -0.4165 0.0162 1.2 -0.5159 -0.5621 0.0822 

0.65 -0.2873 -0.2961 0.0299 1.3 -0.7777 -0.7812 0.0044 

0.7 -0.1361 -0.1414 0.0373 1.4 -0.6594 -0.6696 0.0153 

0.75 0.0287 0.0314 0.0859 1.5 -0.2188 -0.2218 0.0137 

0.8 0.1907 0.2001 0.0471 1.6 0.3288 0.3855 0.1472 

0.85 0.3335 0.3440 0.0304 1.7 0.7157 0.7363 0.0281 

0.9 0.4429 0.4494 0.0143 1.8 0.7527 0.7520 0.0009 

0.95 0.5080 0.5097 0.0032 1.9 0.4218 0.4338 0.0277 

1 0.5222 0.5222 0.0000 2 -0.1152 -0.1636 0.2956 

*Case 1:  m = 10, l = 1.5, r = 0.5, g = 10, A = π/6, k = 1200 
*Case 2:  m = 5, l = 0.8, r = 0.3, g = 10, A = π/4, k = 500 

 
 
Table 2 Comparison of time history response of Hamiltonian approach with Runge-Kutta (example 2) 

Time 
Case 1 

Time 
Case 2 

HA RK4 Error HA RK4 Error 

0 1.0472 1.0472 0.0000 0 0.5236 0.5236 0.0000 

0.5 0.9706 0.9682 0.0024 1 0.4762 0.4703 0.0125 

1 0.7519 0.7452 0.0090 2 0.3426 0.3293 0.0403 

1.5 0.4233 0.4163 0.0167 3 0.1469 0.1394 0.0537 

2 0.0326 0.0324 0.0081 4 -0.0754 -0.0666 0.1319 

2.5 -0.3627 -0.3556 0.0200 5 -0.2840 -0.2653 0.0705 

3 -0.7051 -0.6972 0.0113 6 -0.4412 -0.4283 0.0302 

3.5 -0.9442 -0.9407 0.0037 7 -0.5185 -0.5166 0.0036 
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Table 2 Continued 

Time 
Case 1 

Time 
Case 2 

HA RK4 Error HA RK4 Error 

4 -1.0452 -1.0450 0.0002 8 -0.5019 -0.5011 0.0016 

4.5 -0.9932 -0.9918 0.0014 9 -0.3944 -0.3872 0.0187 

5 -0.7959 -0.7903 0.0070 10 -0.2155 -0.2103 0.0250 

5.5 -0.4821 -0.4755 0.0139 11 0.0024 -0.0071 1.3435 

6 -0.0978 -0.0970 0.0079 12 0.2199 0.1969 0.1169 

6.5 0.3008 0.2937 0.0242 13 0.3976 0.3767 0.0555 

7 0.6554 0.6465 0.0139 14 0.5032 0.4961 0.0143 

7.5 0.9141 0.9094 0.0052 15 0.5178 0.5190 0.0024 

8 1.0391 1.0386 0.0004 16 0.4386 0.4371 0.0034 

*Case 1:  A = π/3, β = 0.5 
*Case 2:  A = π/6, β = 0.9 

 
 

Assume that the solution can be expressed as 
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Solving the above equation, an approximate frequency as a function of amplitude equal to 
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Fig. 3 Comparison of analytical solution with the RK4 solution for A = π/3, g = 10, m = 5, l = 1, r = 
0.3, k = 1000: (a) time history response of displacement; (b) time history response of velocity 
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Hence, the approximate solution can be readily obtained 
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Fig. 4 Comparison of analytical solution with the RK4 solution for A = π/6, g = 10, m = 10, l = 1.5, r = 
0.2, k = 800: (a) time history response of displacement; (b) time history response of velocity 
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Fig. 5 Effect of spring stiffness and length of pendulum on Phase plan for cases: (a) A = π/3, g = 10, m 
= 5, l = 1, r = 0.3, k = 1000; (b) A = π/6, g = 10, m = 10, l = 1.5, r = 0.2, k = 800 

 
 

0.0 0.5 1.0 1.5 2.0

5

10

15

20

25

30

N
on

li
ne

ar
 fr

eq
ue

nc
y

l

 r = 0.2
 r = 0.4
 r = 0.6
 r = 0.8
 r = 1.0

0.0 0.5 1.0 1.5

3.5

4.0

4.5

5.0

N
on

li
ne

ar
 fr

eq
ue

nc
y

Amplitude

 k = 600
 k = 800
 k= 1000
 k = 1200
 k = 1400

(a) (b) 

Fig. 6 (a) Effect of radius on nonlinear frequency base on length for A = π/6, g = 10, m = 10, k = 
800; (b) Effect of spring stiffness on nonlinear frequency base on amplitude for l = 1, r = 
0.2, g = 10, m = 10 

 
 
5. Results and discussions 

 
In this section to verify the results of Hamiltonian approach we have prepared tables for two 

different cases for examples 1 and 2. Tables 1 and 2 show the comparisons of Hamiltonian 
approach and Runge-Kutta’s algorithm. 

Figs. 3, 4 and 8, 9 show the displacement and velocity time history of the problems. The 
motions of the problems are periodic and it is a function of initial conditions. 

The effect of spring stiffness and length of pendulum on Phase plan for cases are shown in Fig. 
5 for example 1. Fig. 6 is considered the effect of radius on nonlinear frequency base on length and  
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Fig. 7 3D plot, effect of various parameter of system on nonlinear frequency 
 
 
also the effect of spring stiffness on nonlinear frequency base on amplitude. Fig. 7 is sensitive 
analysis on the nonlinear frequency shows the effect of various parameters of the system. 

Fig. 10 is the effect of various parameter of  on the Phase plane curve and the nonlinear 
frequency of the system in example 2. Fig. 11 is a sensitive analysis which shows the effect of β 
and amplitude on nonlinear frequency of system. It has been obviously seen that one of the most 
advantages of analytical methods is to see the effect of important parameters on the response of the 
systems. We can easily find out that the nonlinear frequency of the systems have been effected by 
which parameters. The new proposed method has a good agreement with the numerical methods 
and it is valid for large amplitudes and whole domain. 
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Fig. 8 Comparison of analytical solution with the RK4 solution for A = π/9, β = 0.2: (a) time history 
response of displacement; (b) time history response of velocity 
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Fig. 9 Comparison of analytical solution with the RK4 solution for A = π/4, β = 0.6: (a) time history 
response of displacement; (b) time history response of velocity 
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Fig. 10 Effect of various parameter of  on: (a) phase plane; (b) nonlinear frequency 

 
 
6. Conclusions 

 
It has been applied a simple and accurate analytical method called Hamiltonian approach for 

two strong nonlinear problems. The results were compared with the numerical solutions using 
Runge-Kuttas algorithm. The Hamiltonian approach has a very good agreement with the numerical 
one. Some patterns were also presented to show the accuracy of this new approach. The 
Hamiltonian approach does not require any linearization or small perturbation, and adequately 
accurate to both linear and nonlinear problems. This new approach can be easily extended to 
nonlinear problems to see the effects of important parameters. 
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Fig. 11 3D plot, effect of β and amplitude on nonlinear frequency of system 
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