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Abstract.  In this paper, the exact closed-form solutions for torsional analysis of heterogeneous 
magnetostrictive circular cylinder are derived. The cylinder is subjected to the action of a magnetic field 
produced by a constant longitudinal current density. It is also acted upon by a particular kind of shearing 
stress at its upper base. The rigidity of the cylinder is graded through its axial direction from one material at 
the lower base to another material at the upper base. The distributions of circumferential displacement and 
shear stresses are presented through the radial and axial directions of the cylinder. The influence of the 
magnetostrictive parameter is discussed. The effects of additional parameters are investigated. 
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1. Introduction 

 
Magnetostrictive materials develop many mechanical deformations when subjected to magnetic 

fields. This phenomenon is due to rotation of small magnetic fields in the material, which are 
randomly oriented when the material is not exposed to a magnetic field. Orientation of this small 
area of the imposition of the magnetic field creates a strain field. As the intensity of the magnetic 
field is increased, more magnetic domains orientate themselves so that their principal axes of 
anisotropy are collinear with the magnetic field in each region and finally saturation is achieved. 

Magnetostrictive materials have been used as members in functionally graded materials (FGM) 
for mechanical engineering applications (Wojciechowski 2000). Multilayered composites 
consisting of piezoelectric and magnetostrictive layers are predicted to have important applications 
in various devices (Ryu et al. 2002) and show a strong magnetoelectric effect which is not present 
in the individual phases (Wan et al. 2003). Different methods are used to study the transient 
responses of laminated magnetostrictive plates under thermal vibration. The analytical solutions 
for FGM shells of embedded magnetostrictive layers under vibration are derived (Pradhan 2005). 
The generalized differential quadrature (GDQ) method is used to study the laminated magneto- 
strictive plates under thermal vibrations (Hong 2007, 2009, 2010). The transient responses of 
multilayered magneto-electro-elastic hollow sphere composed of piezoelectric and 
magnetostrictive layers are investigated (Wang and Ding 2007). The dynamic behavior of a 
multilayered, perfectly bonded piezoelectric-magnetostrictive composite hollow cylinder under 
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radial deformation is investigated (Wang et al. 2009). A dynamic solution for the propagation of 
harmonic waves inhomogeneous magneto-electro-elastic plates composed of piezoelectric and 
magnetostrictive materials is presented (Wu et al. 2008). 

The torsional surface wave propagation in elastic and viscoelastic cylinders is available in the 
literature. Singh and Yadava (1971) have dealt with the torsional oscillation in a viscoelastic 
hollow cylinder in magnetic field. Arain and Ahiri (1981) have investigated the magneto-elastic 
torsional waves in a composite inhomogeneous cylindrical shell under initial stress. Tarn and 
Chang (2005) have presented the thermoelectroelastic analysis of piezoelectric circular cylinders 
under extension, torsion, bending, pressuring, shearing, and temperature changes. Taliercio (2010) 
has solved the torsion problem for hollow circular elastic cylinders analytically. Kakar (2014) has 
investigated the torsional wave propagation in inhomogeneous viscoelastic cylindrically 
aeolotropic material permeated by an electro-magneto field. 

Many investigations have been done for inhomogeneous media. Among them, for purely elastic 
cylinders, the special case that the material properties vary as a power law dependence on the 
radial or axial coordinate has been studied (Zenkour 2006a, b, 2011, 2012). The present work is a 
predictive assessment of the shearing stresses in and a circumferential displacement of a 
heterogeneous magnetostrictive circular cylinder. A unified governing equation will be first 
derived from the basic equilibrium equations taking into account the inclusion of the magnetic 
intensity. Applying the mixed boundary and curved surface conditions to obtain the analytical 
solution according to three familiar cases. A number of numerical examples are given and the 
effect of different parameters is discussed. 
 
 
2. Basic equations 

 
Let us consider a magnetostrictive, heterogeneous cylinder of radius b and of length l subjected 

to a torsional deformation due to a shearing force at its end z = 0. The cylindrical polar coordinates 
(r, θ, z) are used as coordinates of reference with positive direction on the z-axis along the axis of 
the cylinder as shown in Fig. 1. The present cylinder is subjected to the action of a circumferential 
magnetic field produced by an axial current of constant density J0. 
 
 

 
Fig. 1 The geometry and coordinates of a typical heterogeneous circular cylinder 
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Stress-strain relations may be reduced to express the shear stresses σθz and σrθ in terms of their 
strains εθz, εrθ and the magnetic field H (Hr, Hθ, Hz) as (Mukhopadhyay 1980) 
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where q is the usual magnetostrictive constant and G(z) is the modulus of rigidity. 
It is assumed that the cross-section of the layer is not rotated and the displacements in the radial 

and axial directions are vanished, that is 
 

.0),,(,0  zr uzrvuu                           (2) 
 

Then, the strains εθz and εrθ may be given by 
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In addition, the magnetic intensity field is given by 

 

).,.,0( 00 HrJH                                (4) 
 

The equations of equilibrium σij,j = 0, with neglecting the body forces may be reduced to 
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Substituting Eqs. (1), (3) and (4) into Eq. (5), yields 
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The modulus of rigidity G(z) is given by 

 

,ln,)(
1

2/
1 










G

G
neGzG lnz                          (7) 

 

where G1 is the shear modulus of the first material at lower base and G2 is the shear modulus of the 
second material at upper base. Therefore, Eq. (6) tends to 
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The mixed boundary conditions for the present problem are given by 
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where Ω is the angular displacement of the cylinder. The curved surface r = b of the cylinder is 
free from mechanical reactions, that is 

.0| brr                              (10) 
 
 

3. Solution of the problem 
 

A solution of a linear partial differential equation, Eq. (8), is a function v(r, z) of two 
independent variables that possesses all partial derivatives occurring in the equation and that 
satisfies the equation in some region of the rz-plane. 

Substituting v(r, z) = u(r)w(z) into the partial differential equation, Eq. (8), yields 
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Since the left-hand side of the last equation is independent of z and is equal to the right-hand 
side, which is independent of r, we conclude that each side of the equation must be a constant. As 
a practical matter it is convenient to write this real separation constant as ‒μ. From the two 
equalities we obtain the two linear ordinary differential equations 
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We have three cases for μ: zero, positive, or negative; that is, μ = 0, μ = λ2 > 0, and μ = ‒λ2 < 0, 
where λ > 0. 

 
3.1 Case I (μ = 0) 
 
The differential equations in Eq. (12) can be solved by integration. The solutions are u = c11r + 

c12/r and w = c13 + c14e
‒nz/l. However, u(r) is divergent at r = 0. The associated coefficient c12 is 

forced to be zero to obtain a physically meaningful result when there is no source or sink at r = 0. 
Thus a particular product solution for the given PDE, Eq. (8) is 
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where c11c13 and c11c14 are replaced by A and B, respectively. The corresponding stresses are 
expressed as 
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The second boundary condition presented in Eq. (9) should be integrated between the limits r = 
0 and r = b. So, both mixed boundary conditions give 
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Therefore, the circumferential displacement v and the shear stress σθz can be determined easily 
for this case. From Eqs. (13)-(15), one gets 
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So, the displacement is given in terms of a constant value of the magnetic field. However, the 
shear stress is independent of the magnetic field. 

 
3.2 Case II (μ = λ

2) 
 
The general solutions of Eqs. (12) are 
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where J1(λr) and Y1(λr) are the Bessel functions of the first and second kind, respectively, and n1, 

n2 = .4
2
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where A = c21c23, B  = c21c24, C  = c22c23 and D = c22c24. However, Y1(λr) is divergent at r = 0. 
The associated coefficient c22 is forced to be zero to obtain a physically meaningful result when 
there is no source or sink at r = 0. Thus, the circumferential displacement becomes 
 

  ).( 1
// 11 rJeBeAv lznlzn                         (20) 

 

The corresponding stresses are expressed as 
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in which 
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The surface condition given in Eq. (10) yields 
 

. ,3 ,2 ,1,0)(2  kbJ k                        (23) 
 

The first mixed condition, given in Eq. (9), gives 
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From the second mixed condition given in Eq. (9), one obtains 
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Multiplying both sides of the above equation by rJ1 (λkr) and integrating between the limits r = 
0 and r = b, we get 
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Solving Eqs. (24) and (27) for kA  and kB , one get 
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With the aid of the above equation, one can obtain the final forms of the circumferential 
displacement and shearing stresses. It is to be noted that, the magnetic field affects the shearing 
stress σθz to the extent of the addition of a term varying linearly with the radial distance. 

 
3.3 Case III (μ = ‒ λ

2) 
 
The general solutions of Eq. (12) are 
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where I1(λr) and K1(λr) are the modified Bessel functions of the first and second kind, respectively, 

and m1, m2 = .4
2
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  lnn  It is clear that the modified Bessel function K1(λr) is 

divergent at r = 0, so the associated coefficient c32 is forced to be zero to obtain a physically 
meaningful result when there is no source or sink at r = 0. Thus, the circumferential displacement 
becomes 
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where Â = c31c33 and B̂ =c31c34. The corresponding stresses are expressed as 
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in which 

).()(
2

)( 012 rIrI
r

rI 


                        (32) 

 
The surface condition given in Eq. (10) yields 
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The first mixed condition, given in Eq. (9), gives 
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  ).()( ˆˆ
001

1
21

1 rfHqrJrImBmA
l

G

k
kk 





                  (35) 

 
Multiplying both sides of the above equation by rI1 (λkr) and integrating between the limits r = 

0 and r = b, we get 
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Solving Eqs. (34) and (37) for kÂ  and kB̂ , one gets 
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Similarly, one can obtain the final forms of the circumferential displacement and shear stresses. 

Once again, the magnetic field affects also the shearing stress σθz to the extent of the addition of a 
term varying linearly with the radial distance. 

 
 

4. Applications 
 
The complete solution corresponding to all cases studied may be presented here by introducing 

the following dimensionless forms 
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Then, the final form of the displacement and stresses according to Case I are given by 
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Also for Case II one gets 
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Finally, the displacement and stresses according to Case III are given by 
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5. Numerical results 

 
We restrict our attention to the most important problem that presented in Case II. Eq. (23) has 

an infinite number of roots, the first nonzero positive root, λ = 5.13562230184068/b, is used here. 
The inhomogeneity parameter G = G2/G1 is considered here. Numerical results for the dimension- 
less displacement and stresses are presented in Figs. 2-11. Different values of the aspect ratio S = 
a/b, the inhomogeneity parameter G, and the length-to-radius ratio L = l/b as well as the magne- 
tostrictive parameter q, are all used in the figures. It is assumed, except otherwise stated, that S = 
0.2, L = 3, and G = 0.5. 

The dimensionless circumferential displacement VV 310 and shear stresses ),( 1223  = 
100 ),( 1223    are plotted according to the following data 
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Fig. 2 Effect of the magnetostrictive parameter q on the shear stress σ23 along the radial and 
through the axial directions 

 
 

Fig. 3 Effect of the inhomogeneity parameter G on the circumferential displacement V along the 
radial and through the axial directions 

 
 

Fig. 4 Effect of the inhomogeneity parameter G on the shear stress σ23 along the radial and 
through the axial directions 
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Fig. 5 Effect of the inhomogeneity parameter G on the shear stress σ12 along the radial and 
through the axial directions 

 
 

Fig. 6 Effect of the aspect ratio S on the circumferential displacement V along the radial and 
through the axial directions 

 
 

Fig. 7 Effect of the aspect ratio S on the shear stress σ23 along the radial and through the axial directions 
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Fig. 8 Effect of the aspect ratio S on the shear stress σ12 along the radial and through the axial directions 

 

Fig. 9 Effect of the length-to-radius ratio L on the circumferential displacement V along the 
radial and through the axial directions 

 
 

Firstly, the effect of the magnetostrictive parameter q on the shear stress σ23 is presented in Fig. 
2. The shear stress σ23 is plotting along the radial and through the axial directions. The little 
variation of q has highly sensitive on the plots of σ23. The shear stress σ23 is increasing as q 
increases. The stress may be vanish on 0.3 < R < 0.8 for different values of q. The shear stress σ23 
is more sensitive to the inclusion of q with the increasing of the radial and axial distances. Also, 
the shear stress σ23 may be changing its direction from negative to positive at some axial positions 
for magnetostrictive cylinders. However, it is still negative for a non-magnetostrictive cylinder (q 
= 0). In what follows, the value of the magnetostrictive parameter q = 0.1 is used for deducing the 
shear stress σ23 only. 

The effect of inhomogeneity parameter G is presented in Figs. 3-5. The displacement and 
stresses are sensitive to the variation of G especially at the inner and outer surfaces of the cylinder. 
Fig. 3 shows that, as G decreases the absolute value of the displacement is increasing along the 
radial direction and is decreasing through the axial direction. It is to be noted that the displacement 
V vanishes at 746.0R and at Z = 1 and this irrespective of the value of G. The circumferential 
displacement V has its maximum absolute value at R = 0.359 and at the lower base of the cylinder. 
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Fig. 4 shows that the absolute value of the shear stress σ23 is increasing as G increases. The shear 
stress vanishes on 0.58 < R < 0.63 according to the value of G. However, the variation of G has no 
effect on the shear stress σ23 at the position 746.0R  in which .149.023   Also, the shear 
stress σ23 has the same value (σ23 = ‒0.6813) at the lower base of the cylinder and this irrespective 
the value of G. Fig. 5 shows that the shear stress σ12 increases as G increases for Z < 0.345 and 
vice versa for Z ≥ 0.345. The maximum value of σ12 occurs at R = 0.595 on the lower base. 

The effect of aspect ratio S = a/b is presented in Figs. 6-8. The displacement and stresses are 
very sensitive to the variation of S. The absolute values of the displacement and stresses are 
increasing as S increases. The displacement V vanishes at R   0.746 (see Fig. 6(a)) while the 
variation of S has no effect on the shearing stress σ23 at the same position 746.0R  in which σ23 

  0.149 (see Fig. 7(a)). Fig. 6 shows that the maximum values of V occur at R = 0.359 on the 
lower base of the cylinder. Fig. 7 shows that the shear stress σ23 vanishes on 0.58 ≤ R ≤ 0.72 
according to the value of S. Fig. 8 shows that the shear stress σ12 increases as S increases along the 
radial and through the axial directions, especially at the lower base of the cylinder. The maximum 
 
 

Fig. 10 Effect of the length-to-radius ratio L on the shear stress σ23 along the radial and through 
the axial directions 

 

Fig. 11 Effect of the length-to-radius ratio L on the shear stress σ12 along the radial and through 
the axial directions 
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value of σ12 occurs at R = 0.595. Generally, the sensitivity of S on the displacement and shear 
stresses is more pronounced at the lower base of the cylinder. 

Finally, the effect of the length-to-radius ratio L = l/b is presented in Figs. 9-11. The 
displacement and stresses are also sensitive to the variation of L. The absolute values of the 
displacement and stresses are increasing as L increases along the radial direction. As discussed 
before, the circumferential displacement V vanishes at R   0.746 while the variation of L has no 
effect on the shearing stress σ23 at the same position in which σ23   0.149. The displacement V has 
its maximum value at R = 0.359 on the upper base of the cylinder. However, the maximum value 
of σ23 is occurred at the upper base (Z = 1) and outer surface (R = 1) of the cylinder. As L increases, 
through the axial direction of the cylinder, V is decreasing while σ23 is increasing. In addition, the 
shear stress σ12 vanishes only at the outer curved surface of the cylinder (R = 1) as well as at the 
upper base of the cylinder. Once again, Fig. 11 shows that the shear stress σ12 decreases as L 
increases for Z < 0.345 and vice versa for Z ≥ 0.345. The maximum value of σ12 occurs at R = 
0.595 on the lower base. 

 
 

6. Conclusions 
 
Different analytical solutions of the circumferential displacement and shear stresses are given 

in terms of the radial and axial co-ordinates of the heterogeneous magnetostrictive circular 
cylinder. The results are very sensitive to the variation of different parameters such as the aspect 
ratio, the length-to-radius ratio and the inhomogeneity parameter. Also, the shear stress is very 
sensitive to the variation of the magnetostrictive parameter. Irrespective of the values of 
parameters used, the circumferential displacement V vanishes at R   0.746 and on the upper base 
of the cylinder. The maximum absolute value of V is occurred at R = 0.359 on the lower base of 
the cylinder. The maximum value of the shear stress σ23 is occurred at the curved surface of the 
cylinder, especially on the upper base of the cylinder. It has the same value, σ23   0.149 at R   

0.744, and this irrespective to the values of the parameters used. However, it has the same value, 
σ23 = ‒0.6813 at the lower base of the cylinder for R = 0.5, S = 0.2, and all values of other 
parameters. Finally, the maximum value of σ12 is occurred at R   0.595, especially at the lower 
base of the heterogeneous magnetostrictive circular cylinder. The exact closed form solutions 
presented here may be used for future comparison purposes of similar problems of homogeneous 
(G = 1) and/or of non-magnetostrictive material (q = 0) cylinders. 
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