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Abstract.  The lowest critical value of the compressive force acting in the plane of symmetrically 
laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with 
different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method 
(FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated 
Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS 
employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results 
than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of 
proper plates that is typically conducted at preliminary structural design stage of composite vessels. 
Non-dimensional values of critical buckling loads are also provided for practical use for designers. 
 
Keywords:    critical buckling load; finite differences method; the Galerkin method; parametric study; 
symmetrically laminated quasi-isotropic plates 

 
 
1. Introduction 

 
Composite materials are currently being used in many engineering structures. They are 

increasingly preferred in naval architecture due to the progress being made in both the specific 
materials being used and novel production technologies. They have superior mechanical properties 
such as high specific strength and high specific rigidity, while offering freedom for particular 
design requirements by allowing the adjustment of their chemical components and orientation 
angles (Reuben 1994). There are several applications of composites in marine engineering (Shenoi 
and Wellicome 1993a, b). Mouritz et al. (2001) showed the application of composite materials to 
submarines and navy ships. 

Ships are formed by plates and shells whose thickness is relatively small in comprasion to other 
dimensions like the length and width and are stiffened by structural elements using beams and/or 
girders. A ship moving through waves is likely to bend longitudinally depending on the loading 
conditions, which means that the ship will alternately sag or hog. When the ship is in a sagging 
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condition, the deck must resist compressive loads. In hogging conditions the bottom is under axial 
compressive loads. Deck, side and bottom plating of ships are supported by longitudinal and 
transversal stiffeners or girders that may be considered as thin plates. Therefore, it is reasonable to 
use Classical Laminated Plate Theory (CLPT) for the buckling analysis of orthotropic plates, 
which is presented by Reddy (2004). Szilard (2004) calculated the critical buckling loads of 
isotropic and orthotropic rectangular plates under the effect of in plane forces using the Galerkin 
Method and the Finite Differences Method (FDM). 

Due to the current restrictions in production of composite marine structures, composite 
materials composed of thermosetting resin and laminates generally use orientation angles of 0°, 
90°, 45° and -45°. The structure is referred to as a symmetrical laminate, provided that laminates at 
both side of the mid plane of symmetry and are of equal distance from the mid plane, and further 
that they have the same orientation angle. Symmetrically laminated structures are preferred in 
practice, since they do not have any distortions during the cooling stage after the hot curing 
process (ASM Handbook 2001, Powell 1994, Mallick 1997). 

Darvizeh and Darvizeh (2002) examined buckling analysis of orthotropic composite plates for 
different boundary conditions using the Differential Quadrature Method (DQM) and the Finite 
Element Method (FEM). Hu et al. (2003) focused on buckling of a symmetrically laminated 
rectangular plate subject to parabolic variation of axial loads using the Rayleigh–Ritz method. 
Buckling load values were obtained based on CLPT. They performed stability analysis for 
composite plates with laminate configurations of [0°, 0°], [0°, ± 15°], [0°, ± 30°], [0°, ± 45°], [0°, ± 

60°], [0°, ± 75°], [0°, ± 90°]. Baltaci et al. (2007) carried out buckling analysis of composite 
circular plates based on CLPT and the First Order Shear Deformation Theory (FSDT) using FEM. 
They examined [± 45°]2s, [± 45°, ± 45°]2s, [90° / 0°2 / 90°]s, [90° / 0°]2s, [90° / 0°]4, [90° / 0°2 / 90°]2, 
[± 45°, ± 45°]2s, [± 45°]4 laminated plate types. Özben (2009) calculated analytically critical 
buckling load values of composite plates with different boundary conditions as well as using FEM. 
In his research critical buckling load values of symmetrical and anti-symmetrical composite plates 
were obtained for various plate edge ratio and fiber orientation angles. He calculated critical 
buckling load of composite plates with lamination angles of [0° / 0°], [0° / 15°], [0° / 30°], [0° / 45°]. 
Panda and Ramachandra (2010) examined non-dimensional buckling load coefficients of 
rectangular composite plates under parabolic compression for different edge conditions using the 
Galerkin Method and FEM. They examined cross-ply plates [0° / 90° / 0°]. Felix et al. (2011) 
investigated the buckling and vibration of a clamped orthotropic rectangular thin plate subject to a 
linearly varying in-plane load using the Ritz method and FEM. Rajasekaran and Wilson (2013) 
studied buckling and vibration of rectangular isotropic plates with various boundary conditions by 
using the finite difference technique. Recently, Altunsaray and Bayer (2013) investigated the 
deflection and free vibration of symmetrically laminated quasi-isotropic thin rectangular plates for 
different boundary conditions based on CLPT using the Galerkin Method, the Least Square 
Method and FEM. 

It would appear that critical buckling load values of symmetrically and anti-symmetrically 
laminated orthotropic composite plates and cross-ply plates with different shapes and boundary 
conditions has been sufficiently well investigated by using a number of different numerical 
methods. Although Galerkin Method, FDM and FEM are quite well known numerical methods 
used for the solution of engineering problems, to the best knowledge of the authors, there have not 
been many attempts to use these methods for the buckling of quasi-isotropic thin rectangular plates 
laminated with some combinations of orientation angles of 0°, -45°, 45° and 90°, for different 
aspect ratios. Therefore, in this particular study, it is intended to present the comparison of the 
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Galerkin Method, FDM and FEM for analysis of the critical buckling loads of symmetrically 
laminated quasi-isotropic thin rectangular plates with all edges simply supported. Fourteen 
different types of lamination (0°, -45°, 45° and 90°) quasi-isotropic plates are obtained for the 
critical buckling load as well as the non-dimensional critical buckling load so that they may be 
used practically for designers at the preliminary design stage. The main reason for considering 
only those fourteen lamination types out of total twenty four possibilities is that the critical 
buckling load values obtained by all the three methods employed are close and consistent. 

The plates laminated with orientation angles of 0°, 90°, 45° and -45° are under the effect of 
compressive load (Nx) through x axis (Fig. 1). The structure of a ship is referred to either 
longitudinally framed or laterally framed depending on the configuration of stiffeners. The critical 
buckling loads are parametrically calculated by considering the short edge of plates (b) is at x axis 
or y axis, in order to represent the longitudinal or lateral framing system of a ship, for 6 different 
aspect ratios and for 14 different types of lamination. Finite Differences Method (FDM) and 
Galerkin Method are used to solve the governing differential equation for Classical Laminated 
Plate Theory (CLPT). The results calculated are compared with those obtained by the software 
ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method are closer to 
FEM results than FDM results. 
 
 
2. Material and method 

 
2.1 Geometry of plates, material properties and lamination types 
 
The geometry of the plate is shown in Fig. 1. Aspect ratios used in parametrical analyses are 

given below in Table 1. Material properties of T300-934 carbon/epoxy (ides The Plastic Web 2013, 
About.com Composite / Plastic 2013) selected for this study are given in Table 2. 
Fourteen different types of lamination of quasi-isotropic plates considered in this study are shown 
in Table 3. The thickness of each laminate (t) is equal to 0.0002 meter and the thickness of the 
plate formed by 16 laminates (h) is equal to 0.0032 meter. 

 
 

Fig. 1 Plate Geometry 

 
Table 1 Aspect ratios 

 Aspect ratios 

a/b 1 1.2 1.4 1.6 1.8 2 

b/a 1 1.2 1.4 1.6 1.8 2 
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Table 2 Material properties of T300-934 carbon/epoxy (ides The Plastic Web 2013, About.com Composite / 
Plastic 2013) 

Longitudinal young modulus (E11) 148 × 109 (N/m2) 

Transversal young modulus (E22) 9.65 ×109 (N/m2) 

Longitudinal shear modulus (G12) 4.55 × 109 (N/m2) 

Longitudinal poisson ratio (12) 0.30 

Laminate thickness (t) 0.185 × 10-3 – 0.213 × 10-3 (m) 

 
Table 3 Symmetrically laminated quasi-isotropic plate types 

LT1 [-452 / 452 / 02 / 902]s LT8 [452 / -452 / 02 / 902]s 

LT2 [-452 / 452 / 902 / 02]s LT9 [452 / -452 / 902 / 02]s 

LT3 [02 / -452 / 452 / 902]s LT10 [902 / -452 / 02 / 452]s 

LT4 [02 / -452 / 902 / 452]s LT11 [902 / -452 / 452 / 02]s 

LT5 [02 / 452 / -452 / 902]s LT12 [902 / 02 / 452 / -452]s 

LT6 [02 / 452 / 902 / -452]s LT13 [902 / 452 / -452 / 02]s 

LT7 [02 / 902 / -452 / 452]s LT14 [902 / 452 / 02 / -452]s 

 
 

2.2 Classical Laminated Plate Theory (CLPT) 
 
According to the Classical Laminated Plate Theory, because the bending-strain coupling matrix 

of symmetrically laminated plates Bij is zero, the governing differential equation of the 
symmetrically laminated composite plates under the effect of uniform axial load on x axis may be 
given as follows, Eq. (1) (Reddy 2004). 
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In the above Eq. (1) “w” represents the deflection function, while “Nx” represents the uniform 

axial load. The bending stiffness matrix elements D11, D12, D16, D22, D26 and D66 are calculated as 
shown below (Reddy 2004). 
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As shown below in Eq. (3), the elements of the ijQ  transformed reduced stiffness matrix in 

the above equation are calculated separately for each lamina by utilizing the ijQ  reduced stiffness 
matrix elements and the θ angle each lamina makes with the principal axis (Reddy 2004). 
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For orthotropic materials, the notation of the elements of the ijQ  reduced stiffness matrix in 
the above equation in terms of engineering constants is given below (Reddy 2004). 
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By substituting the engineering constants (E, G and v), the angles of the laminas and the 

distance of each lamina from the reference plane into the relative places in the Eqs. (2)-(3)-(4) , the 
bending stiffness matrix elements ijD  in Eq. (1) are determined. 

In the case of simply supported edges, deflection and bending moment along the edges of the 
plate are zero. 
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2.3 The Galerkin method 
 
In the Galerkin Method, solution is found by evanishing the integral of the multiplication of the 

error function )( R  with the i  terms of the coordinate (approach) function preselected for the 
solution of the problem. It is known as a highly robust method among the weighted residual 
methods (Reddy 2004). 

nidΩφε iR ,,2,1,0 
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                         (6) 

 

2.4 Application of the Galerkin method 
 
The differential equation used for the buckling of symmetrically laminated composite plates is 

given in Eq. (1) under the Section 2.2. In the Eq. (1), “w” indicates the deflection function, while 
Nx represents uniform axial compressive load. The bending stiffness matrix elements ijD  are as 
shown in Section 2.2. 

 The approach function satisfying the boundary conditions for simply supported edges given 
in Eq. (5) is shown below. 
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The approximate deflection function (w0) may be chosen as the multiplication of the approach 
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function with the unknown constants (ci). Only the first term of the deflection function (i = j = 1) 
is used for calculations. 

jiicw 0                              (8) 
 

In order to determine the critical buckling value (Nx), the error function )( R  obtained by 
substituting the approximate deflection function into the governing differential equation Eq. (1) is 
multiplied with the selected approach function and its integral is evanished. 
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where m and n indicate mode shapes and they were taken to be one (m = n = 1) for calculations. It 
is a simple eigenvalue problem and the critical buckling load (Nx) is found. 

 
2.5 Finite differences method 
 
Finite Differences Method, one of the numerical methods for approximate solutions, transforms 

the governing differential equation into algebraic equations by finite differences schemes. 
Variations in two directions exist for the plate differential equation (Szilard 2004). 

In this study, intervals between pivotal points in x and y directions (Δx and Δy) are taken to be 
a/3 and b/3 respectively as shown in Fig. 2. The governing differential equation for symmetrically 
laminated plates subjected to axial uniform compressive load in x direction was already given Eq. 
(1). 

The boundary conditions for simply supported edges were given by Eq. (5). In order to satisfy 
the boundary conditions, the values of w at pivotal points immediately outside the boundary are 
taken to be equal to the negative values of w at points immediately inside the boundary. 

 
 

 

Fig. 2 Finite differences grid 
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The following central differences operators are used to obtain a finite difference scheme for the 

governing differential equation (Saracoglu and Özcelikörs 2011). 
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This is an eigenvalue problem and the critical buckling loads are calculated by substituting the 

above operators into Eq. (1). 
 
2.6 Finite Elements Method (FEM) software package ANSYS 
 
ANSYS software package employing Finite Elements Method (FEM) is run to check the results 

obtained by Galerkin Method and FDM. Shell element (SHELL 181) with four nodal points 
proposed by the software package is used. The ratio of the length of the short edge of the plate to 
the length of the nodal element is taken to be 20 for converging results. 

 
 

3. Results of parametric analyses 
 

In this section, using the parameters given in Section 2.1, the critical buckling loads of simply 
supported composite rectangular plates, which are found by GM and FDM, are presented to be 
compared with the results of ANSYS software. The effect of change in aspect ratio and orientation 
angle is shown in Fig. 3 and Table 4, when the short edge of plate is at y axis. The corresponding 
results, when the short edge of plate is at x axis, are given in Fig. 4 and Table 5. 

 

• It can be noticed from Tables 4-5 that the critical buckling loads of LT1, LT2, LT3, LT4, 
LT10 and LT11 coincide with LT8, LT9, LT5, LT6, LT14 and LT13 respectively. When the 
short edge is on the y axis, which corresponds to ‘longitudinal framing system’, the critical 
buckling loads increase in general, as the aspect ratio (a/b) increases. On the other hand, 
when the short edge is on the x axis, which corresponds to ‘lateral framing system’, the 
critical buckling loads decrease in general, as the aspect ratio (b/a) increases. This finding is 
consistent with the critical buckling load results of isotropic rectangular plates. The highest 
critical buckling load is reached with lamination type LT11 and LT13, when the short edge 
of plate is at y axis and the aspect ratio is equal to 2. The highest critical buckling load is 
reached with lamination type LT3 and LT5, when the short edge of plate is at x axis and the 
aspect ratio is equal to 2. It can be seen that the GM results are closer to FEM results than 
FDM results. 
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Fig. 3 Critical buckling load (N/m), short edge is on the y axis: (a) Galerkin Method; (b) Finite 
Elements Method (FEM); (c) Finite Differences Method (FDM) 
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• When a second term is included in the approximate deflection function, the results of GM 
did not change significantly. When the interval between pivotal points is reduced, the results 
of FDM did not improve significantly, either. However, it is interesting to see that the GM 
results are upper bound, while the FDM results are a lower bound, as expected. 

• The critical buckling loads calculated by GM for carbon/epoxy, whose material properties 
are given in Section 2.1, are presented in non-dimensional form as a function of plate short 
edge (b or a), laminate thickness (t) and transversal Young modulus (E22) in Table 6. 
Provided that the unit of length is meter, the non-dimensional values are given as 

,
22

3

2
*
0

Et

b
NN x when the short edge of plate is ‘b’, as ,

22
3

2
*
0

Et

a
NN x when the short edge 

of plate is ‘a’. A number of parameters are taken into account in production of composite 
vessels. Savings of time, material, manpower and cost may be gained at the preliminary 
design stage of such vessels by providing tables of non-dimensional buckling loads obtained 
by parametrical analyses to determine the most proper plate configuration. 

• It is unfortunate that the findings are not compared with those published in the literature, 
because the authors were unable to find any results obtained by similar methods for this 
particular problem dealt with. 

 
 
Table 4 Critical buckling load (N/m), short edge is on the y axis 

a/b Method 

Plate types 

LT1 LT2 LT3 LT4 LT5 LT6 LT7 

Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m)

1 

Galerkin 202359.7 202359.7 159863.1 151363.8 159863.1 151363.8 134365.1

FDM 184529.9 184529.9 145777.6 138027.2 145777.6 138027.2 122526.3

FEM (ANSYS) 194881.0 194846.0 155872.0 143071.0 155872.0 143071.0 133201.0

1.2 

Galerkin 203598.9 210152.7 146146.1 141209.4 146146.1 141209.4 131335.9

FDM 185450.7 191433.6 133139.7 128466.0 133139.7 128466.0 119727.9

FEM (ANSYS) 196319.0 202943.0 142074.0 132454.0 142074.0 132454.0 130296.0

1.4 

Galerkin 211782.2 224526.7 142419.9 141292.0 142419.9 141292.0 139036.0

FDM 192419.5 204080.8 129407.0 127791.9 129407.0 127791.9 126666.5

FEM (ANSYS) 204540.0 217460.0 138197.0 132108.0 138197.0 132108.0 138107.0

1.6 

Galerkin 224757.4 243827.4 144685.5 147741.1 144685.5 147741.1 153852.2

FDM 203617.4 221111.0 131014.7 132698.6 131014.7 132698.6 140078.9

FEM (ANSYS) 217461.0 235507.0 140297.0 138196.0 140297.0 138196.0 153036.0

1.8 

Galerkin 241496.5 267264.6 151032.4 158707.8 151032.4 158707.8 174058.5

FDM 218194.2 241885.6 136287.5 141662.4 136287.5 141662.4 158409.2

FEM (ANSYS) 233730.0 260340.0 146487.0 148857.0 146487.0 148857.0 173360.0

2 

Galerkin 261457.8 294422.3 160454.4 173218.2 160454.4 173218.2 198745.7

FDM 235707.6 266068.5 144353.8 153889.5 144353.8 153889.5 180835.9

FEM (ANSYS) 254141.0 287457.0 155766.0 163065.0 155766.0 163065.0 198175.0
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Table 4 Continued 

a/b Method 

Plate types 

LT8 LT9 LT10 LT11 LT12 LT13 LT14 

Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m)

1 

Galerkin 202359.7 202359.7 151363.8 159863.1 134365.1 159863.1 151363.8

FDM 184529.9 184529.9 138027.2 145777.6 122526.3 145777.6 138027.2

FEM (ANSYS) 194881.0 194846.0 142903.0 155762.0 133193.0 155762.0 142903.0

1.2 

Galerkin 203598.9 210152.7 173978.5 185469.1 150997.4 185469.1 173978.5

FDM 185450.7 191433.6 158404.5 169025.4 137661.7 169025.4 158404.5

FEM (ANSYS) 196319.0 202943.0 166155.0 181732.0 149996.0 181732.0 166155.0

1.4 

Galerkin 211782.2 224526.7 205014.3 218886.8 177269.4 218886.8 205014.3

FDM 192419.5 204080.8 186224.8 199298.3 161556.9 199298.3 186224.8

FEM (ANSYS) 204540.0 217460.0 197620.0 215415.0 176426.0 215415.0 197620.0

1.6 

Galerkin 224757.4 243827.4 243090.8 259105.2 211062.1 259105.2 243090.8

FDM 203617.4 221111.0 220435.7 235759.1 192306.9 235759.1 220435.7

FEM (ANSYS) 217461.0 235507.0 235945.0 255828.0 210368.0 255828.0 235945.0

1.8 

Galerkin 241496.5 267264.6 287548.7 305641.5 251363.1 305641.5 287548.7

FDM 218194.2 241885.6 260510.7 277998.5 228998.7 277998.5 260510.7

FEM (ANSYS) 233730.0 260340.0 280554.0 302473.0 250814.0 302473.0 280554.0

2 

Galerkin 261457.8 294422.3 338040.5 358241.2 297639.2 358241.2 338040.5

FDM 235707.6 266068.5 306152.6 325792.9 271148.2 325792.9 306152.6

FEM (ANSYS) 254141.0 287457.0 332835.0 355136.0 297233.0 355136.0 332835.0
 
 
 

 
 
 

Fig. 4 Critical buckling load (N/m), short edge is on the x axis: (a) Galerkin Method; (b) Finite 
Elements Method (FEM); (c) Finite Differences Method (FDM) 
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Fig. 4 Continued 
 
 
 
Table 5 Critical buckling load (N/m), short edge is on the x axis 

b/a Method 

Plate types 

LT1 LT2 LT3 LT4 LT5 LT6 LT7 

Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m)

1 

Galerkin 202359.7 202359.7 159863.1 151363.8 159863.1 151363.8 134365.1

FDM 184529.9 184529.9 145777.6 138027.2 145777.6 138027.2 122526.3

FEM (ANSYS) 194881.0 194846.0 155872.0 143071.0 155872.0 143071.0 133201.0

1.2 

Galerkin 145939.4 141388.1 128798.0 120818.4 128798.0 120818.4 104859.3

FDM 132940.0 128785.2 117378.7 110003.2 117378.7 110003.2 95598.4

FEM (ANSYS) 140813.5 136169.3 126159.6 115437.3 126159.6 115437.3 104043.8
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Table 5 Continued 

b/a Method 

Plate types 

LT1 LT2 LT3 LT4 LT5 LT6 LT7 

Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m)

1.4 

Galerkin 114554.4 108052.1 111676.9 104599.1 111676.9 104599.1 90443.6

FDM 104122.9 98173.2 101682.8 95012.6 101682.8 95012.6 82427.0

FEM (ANSYS) 110796.8 104177.5 109802.3 100847.0 109802.3 100847.0 89846.5

1.6 

Galerkin 95245.1 87795.9 101213.0 94957.4 101213.0 94957.4 82446.1

FDM 86371.5 79538.0 92093.4 86107.7 92093.4 86107.7 75119.9

FEM (ANSYS) 92355.4 84782.1 99804.9 92192.0 99804.9 92192.0 81987.4

1.8 

Galerkin 82489.1 74535.9 94333.8 88749.6 94333.8 88749.6 77581.2

FDM 74656.1 67343.9 85802.0 80404.5 85802.0 80404.5 70678.6

FEM (ANSYS) 80187.3 72111.9 93229.5 86622.0 93229.5 86622.0 77213.8

2 

Galerkin 73605.6 65364.5 89560.3 84510.1 89560.3 84510.1 74409.8

FDM 66517.1 58926.9 81448.2 76538.2 81448.2 76538.2 67787.0

FEM (ANSYS) 71722.6 63365.4 88664.1 82816.7 88664.1 82816.7 74105.1

 
 

b/a Method 

Plate types 

LT8 LT9 LT10 LT11 LT12 LT13 LT14 

Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m) Nx (N/m)

1 

Galerkin 202359.7 202359.7 151363.8 159863.1 134365.1 159863.1 151363.8

FDM 184529.9 184529.9 138027.2 145777.6 122526.3 145777.6 138027.2

FEM (ANSYS) 194881.0 194846.0 142903.0 155762.0 133193.0 155762.0 142903.0

1.2 

Galerkin 145939.4 141388.1 98062.1 101490.4 91205.5 101490.4 98062.1

FDM 132940.0 128785.2 89212.5 92458.1 83144.4 92458.1 89212.5

FEM (ANSYS) 140813.5 136169.3 91802.7 98488.6 90368.2 98488.6 91802.7

1.4 

Galerkin 114554.4 108052.1 72087.7 72663.2 70936.7 72663.2 72087.7

FDM 104122.9 98173.2 65199.9 66024.0 64625.8 66024.0 65199.9

FEM (ANSYS) 110796.8 104177.5 67249.8 70343.3 70322.8 70343.3 67249.8

1.6 

Galerkin 95245.1 87795.9 57711.4 56517.8 60098.5 56517.8 57711.4

FDM 86371.5 79538.0 51835.4 51177.6 54718.3 51177.6 51835.4

FEM (ANSYS) 92355.4 84782.1 53859.7 54657.8 59634.3 54657.8 53859.7

1.8 

Galerkin 82489.1 74535.9 48983.9 46614.9 53721.8 46614.9 48983.9

FDM 74656.1 67343.9 43723.0 42064.0 48891.7 42064.0 43723.0

FEM (ANSYS) 80187.3 72111.9 45848.6 45085.0 53360.7 45085.0 45848.6

2 

Galerkin 73605.6 65364.5 43304.5 40113.6 49686.4 40113.6 43304.5

FDM 66517.1 58926.9 38472.4 36088.4 45209.0 36088.4 38472.4

FEM (ANSYS) 71722.6 63365.4 40706.5 38831.1 49398.5 38831.1 40706.5
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Table 6 Non-dimensional critical buckling load 
22

3

2
*
0(

Et

b
NN x for a/b, 

22
3

2
*
0

Et

a
NN x for b/a) 

Plate type 

Aspect ratio 

a/b 

1 1.2 1.4 1.6 1.8 2 

LT1 104855 105499 109733 116455 125133 135477

LT2 104855 108899 116344 126344 138488 152555

LT3 82831 75723 73793 74967 78255 83137 

LT4 78427 73165 73208 76550 82232 89750 

LT5 82831 75723 73793 74967 78255 83137 

LT6 78427 73165 73208 76550 82232 89750 

LT7 69619 68050 72039 79716 90186 102988

LT8 104855 105499 109733 116455 125133 135477

LT9 104855 108899 116344 126344 138488 152555

LT10 78427 90144 106233 125955 148999 175155

LT11 82831 96098 113411 134255 158366 185622

LT12 69619 78237 91849 109366 130244 154222

LT13 82831 96098 113411 134255 158366 185622

LT14 78427 90144 106233 125955 148999 175155

 
 
 

Plate type 

Aspect ratio 

b/a 

1 1.2 1.4 1.6 1.8 2 

LT1 104855 75616 59355 49350 42740 38138 

LT2 104855 73258 55986 45490 38620 33868 

LT3 82831 66735 57864 52442 48878 46404 

LT4 78427 62600 54196 49201 45984 43788 

LT5 82831 66735 57864 52442 48878 46404 

LT6 78427 62600 54196 49201 45984 43788 

LT7 69619 54331 46862 42718 40198 38554 

LT8 104855 75616 59355 49350 42740 38138 

LT9 104855 73258 55986 45490 38620 33868 

LT10 78427 50809 37351 29902 25380 22438 

LT11 82831 52586 37649 29284 24153 20784 

LT12 69619 47257 36755 31139 27835 25744 

LT13 82831 52586 37649 29284 24153 20784 

LT14 78427 50809 37351 29902 25380 22438 
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4. Conclusions 
 
The main aim of this study was to calculate the critical buckling loads of quasi-isotropic 

rectangular plates so that a suitable lamination plan can be obtained at the preliminary structural 
design stage. It is pleasing for the authors to see that the findings of the study discussed in 
the previous section show that this aim is achieved. 
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