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Abstract.  The novelty of this paper is the use of trigonometric four variable plate theory for free vibration 
analysis of laminated rectangular plate supporting a localized patch mass. By dividing the transverse 
displacement into bending and shear parts, the number of unknowns and governing equations of the present 
theory is reduced, and hence, makes it simple to use. The Hamilton’s Principle, using trigonometric shear 
deformation theory, is applied to simply support rectangular plates. Numerical examples are presented to 
show the effects of geometrical parameters such as aspect ratio of the plate, size and location of the patch 
mass on natural frequencies of laminated composite plates. It can be concluded that the proposed theory is 
accurate and simple in solving the free vibration behavior of laminated rectangular plate supporting a 
localized patch mass. 
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1. Introduction 

 
The analysis of free vibration of rectangular plates has been an active research subject due to its 

relevance to civil, mechanical and aeronautical engineering and extensive research works have 
been accumulated in the last 50 years (Timoshenko 1955, Leissa 1969, Szilard 1974, Reddy 1999). 
These structural components with localized patch mass are often encountered in engineering 
practices such as slabs and cladding panels in building structures, bridge and ship decks. 

Laminated composite plates are widely used in the aerospace, automotive, marine, civil and 
other structural applications because of advantageous features such as high ratio of stiffness and 
strength to weight and low maintenance cost. In company with the increase in the application of 
laminates in engineering structures, a variety of laminated theories have been developed. The 
classical laminate plate theory (CLPT), which neglects the transverse shear effects, provides 
reasonable results for thin plates. However, the CLPT underpredicts deflections and overpredicts 
frequencies as well as buckling loads with moderately thick plates. Many shear deformation 
theories account for transverse shear effects have been developed to overcome the deficiencies of 
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the CLPT. The first-order shear deformation theories (FSDTs) based on Reissner (1945) and 
Mindlin (1951) account for the transverse shear effects by the way of linear variation of in-plane 
displacements through the thickness. Since FSDT violates equilibrium conditions at the top and 
bottom faces of the plate, shear correction factors are required to rectify the unrealistic variation of 
the shear strain/stress through the thickness. Different higher order theories were proposed in order 
to satisfy the plate boundary conditions. Ambartsumian (1958), proposed a transverse shear stress 
function in order to explain plate deformation. A similar method was used later by Soldatos and 
Timarci (1993), for dynamic analysis of laminated shells. Later some new functions were 
proposed by Reddy (1984), Touratier (1991), Karama et al. (2003) and Soldatos (1992). A two 
variable refined plate theory (RPT) using only two unknown functions was developed by Shimpi 
(2002) for isotropic plates, and was extended by Shimpi and Patel (2006ab) for orthotropic plates. 
Alibeigloo et al. (2008) studied the vibration response of anti-symmetric rectangular plates with 
distributed patch mass using third order shear deformation theory (TSDT) and obtained the first 
natural frequency of the plate considering the size and location of the distributed mass on the top 
surface of the plate. Alibeigloo and Kari (2009) also investigated the forced vibration behavior of 
anti-symmetric laminated rectangular plates with distributed patch mass. Kim et al. (2009) 
employed the two variable refined plate theory for laminated composite plates which are under the 
action of the transverse and in-plane forces and obtained the stiffness and mass matrices using 
Hamilton principle. Alibakhshi (2012) used the two variable refined plate theory for free vibration 
of laminated rectangular plate supporting a localized patch mass. Tounsi et al. (2013) studied the 
bending response of functionally graded sandwich plates using a new four variable refined plate 
theory under both thermal and thermomechanical loading conditions. Bouderba et al. (2013) used 
a refined plate theory to investigate the thermomechanical bending response of functionally graded 
plates resting on Winkler–Pasternak elastic foundations. Recently, Nedri et al. (2014) developed a 
four variable refined plate theory for free vibration response of laminated composite plates resting 
on elastic foundations. The theory accounts for hyperbolic distribution of the transverse shear 
strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without 
using shear correction factor. 

In this paper the free vibration of a simply supported laminated composite plate with distributed 
patch mass is investigated using a trigonometric four variable plate theory. The present theory has 
only four unknowns and four governing equations, but it satisfies the stress-free boundary 
conditions on the top and bottom surfaces of the plate without requiring any shear correction 
factors. The displacement field of the proposed theory is chosen based on a constant transverse 
displacement and sinusoidal variation of in-plane displacements through the thickness. The 
partition of the transverse displacement into the bending and shear parts leads to a reduction in the 
number of unknowns and governing equations, hence makes the theory simple to use. The effect 
of various parameters such as position of the patch mass and the aspect ratio of the plate on free 
vibration are also studied in the present work. The current study is relevant to aero-structures. 
 
 

2. Theoretical formulation 
 
2.1 Steel and composite structures 
 
A rectangular plate with length, width and thickness equal to a, b and h respectively is 

considered. The plate supports a distributed patch mass, M, with dimensions equal to c and d in the 
x and y-direction, respectively which is located in arbitrary position (xm, ym) in Fig. 1. The mass is 
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Fig. 1 Plate with distributed patch mass 

 
 
considered to be placed on the upper surface of the plate and it is assumed that the mass does not 
prevent any bending of the plate segment on which it is. The global Cartesian coordinate system is 
chosen with the origin at the corner and on the middle plane of the plate, z = 0. Therefore, the 
domain of plate is defined as 0 ≤ x ≤ a, 0 ≤ y ≤ b and –h ≤ z ≤ h / 2. 

The displacement field of the present theory is chosen based on the following assumptions: (1) 
the in-plane and transverse displacements are partitioned into bending and shear components; (2) 
the bending parts of the in-plane displacements are similar to those given by CLPT; and (3) the 
shear parts of the in-plane displacements give rise to the trigonometric variations of shear strains 
and hence to shear stresses through the thickness of the plate in such a way that the shear stresses 
vanish on the top and bottom surfaces of the plate. Based on these assumptions, the following 
displacement field can be obtained 
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where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
midplane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively. 

The strain-displacement equations of linear elasticity are (Reddy 1979) 
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where 
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The constitutive relations for any layer in the (x, y) system are given by 
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where ijQ are the plane-stress reduced stiffness components of the layer material in the laminate 
coordinate system. 

The strain energy of the plate is 
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Substituting Eqs. (3) and (5) into Eq. (6) and integrating through the thickness of the plate, the 

strain energy of the plate can be rewritten as 
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The stress resultants N, M, and S are defined by 

 

  ,

)(

1

,,

,,

,,

,, 2/

2/


 






























 h

h

xyyx
s
xy

s
y

s
x

b
xy

b
y

b
x

xyyx

dz

zf

z

MMM

MMM

NNN

                  (8a) 

 

   



2/

2/

.)(,,
h

h

yzxz
s
yz

s
xz dzzgSS                          (8b) 

 

Using Eq. (5) in Eq. (8), the stress resultants of the laminated plate can be related to the total 
strains by 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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The total kinetic energy is the summation of the kinetic energy of the plate and the kinetic 

energy of the uniformly distributed patch mass with dimensions c and d acting on the top surface 
of the plate. 
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The kinetic energy of plate is defined as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
and ρ and Ap are the material density and the area of the plate, respectively. 
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Substituting Eq. (1) into Eq. (13) gives 
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(I1, I2, I3, I4, I5, I6) are mass inertias defined as 
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Using the same procedure described by Alibeigloo et al. (2008), the kinetic energy of 
distributed patch mass located on the top surface (z = – h / 2) of the plate is defined after considering 
the displacement field of Eq. (1) as 
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where AM and γM is the area and the distributed patch mass per unit area of the patch mass, 
respectively. 

It can be verified that the first variation of the Lagrangian, L = T – V, (i.e., Hamilton’s Principle) 
leads to the equation of motion. Here V denotes the total potential energy (i.e., the sum of the 
strain energy and the energy due to applied loads) of the plate. Since primary interest here is in the 
free vibration analysis, the potential energy due to the applied loads is zero (Meirovitch 2001). 

Two different types of laminated plates are considered, cross-ply [0/90]n, and angle-ply [θ / – θ]. 
For the cross-ply one, the SS-1 boundary conditions are (Reddy, 1979) 
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The boundary conditions in Eq. (17) are satisfied by the following expansions 
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where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with (m, n)th eigenmode, and λ = mπ / a and μ = nπ / b. 
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And for the angle-ply case, the SS-2 boundary conditions and related displacements are (Reddy 
1979) 
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The boundary conditions in Eq. (19) are satisfied by the following expansions 
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Substitution of displacements into the first variation of the Lagrangian, the solutions can be 

obtained from the following equations 
 

       ,02  MK                             (21) 
 
where [K],  M , ω and Δ are the stiffness, mass matrices, natural frequency and the vector of 
unknown coefficients, respectively. 

 
 

3. Numerical results 
 

Three sets of dimensionless material properties are considered 
 
• MAT1 

5.0,5.0//,2.0/,25/ 1221221322321  EGEGEGEE  
 
• MQT2 

5.0,6.0//,5.0/,40/ 1221221322321  EGEGEGEE  
 
• MAT3 

5.0,5.0//,6.0/,40/ 1221221322321  EGEGEGEE  
 
The following non-dimensional fundamental frequency is used 

 

2

2

Eh

a   

 
By setting the γM = 0 in Eq. (21) the problem reduces to the free vibration of an unloaded plate. 

The results are then compared with those of Noor (1973), Kant and Swaminathan (2001) and 
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Reddy (1979) in Table 1. It can be seen that the results obtained by TSDT (Reddy 1979) are 
almost identical. This table shows the influence of the orthotropy on the natural frequencies and as 
expected, it indicated that with increasing the number of layer, the stiffness of the plate will be 
increased, and consequently the natural frequencies increase. The variation of natural frequencies 
of a four-layer angle- ply composite plate [45/-45]2 with respect to thickness ratio (a / h) and aspect 
ratio (a / b) is presented in Table 2. The natural frequencies obtained using the present theory, are 
compared with those predicted using various models such as Bert and Chen (1978) and Shankara 
and Iyengar (1996). From Table 2, it can be observed that increasing the aspect ratio can cause to 
decrease the stiffness of the plate, to decease the natural frequencies, and consequently to increase 
the nondimensional natural frequencies. The first five non-dimensional natural frequencies 
obtained using the present theory are compared with those predicted by Singh et al. (2001) in 
Table 3 for two types of materials and a good agreement is observed. 

The influence of the aspect ratio and thickness ratio on non-dimensional fundamental 
frequencies for two angle- ply composite plates [45/-45]2 and [30/-30]2 with patch mass is 
presented in Table 4. The plate with distributed patch mass acted on it in a square area at the center 
of the plate with dimension ratios of c / a = d / b = 0.4 is considered here with mass ratio M / Mp = 
0.5 (Mp is plate’s mass). It can be observed that the influence of the aspect ratio on non-dimensional 
fundamental frequencies for the plate with patch mass is less than for the plate without patch mass. 

 
 
Table 1 Non-dimensional fundamental frequencies of antisymmetric square plate (MAT2) for various values 
of orthotropy ratio with a / h = 5 

No. of layers Source 
E1 / E2 

3 10 20 30 40 

[0/90]1 

Noor (1973) 
Model-1 (Kant and Swaminathan 2001) 
Model-2 (Kant and Swaminathan 2001) 

Reddy (1979) 
Present 

6.2578
6.2336
6.1566
6.2169
6.2188

6.9845
6.9741
6.9363
6.9887
6.9964

7.6745 
7.7140 
7.6883 
7.8210 
7.8379 

8.1763 
8.2775 
8.2570 
8.5050 
8.5316 

8.5625
8.7272
8.7097
9.0871
9.1236

[0/90]2 

Noor (1973) 
Model-1 (Kant and Swaminathan 2001) 
Model-2 (Kant and Swaminathan 2001) 

Reddy (1979) 
Present 

6.5455
6.5146
6.4319
6.5008
6.5012

8.1445
8.1482
8.1010
8.1954
8.1929

9.4055 
9.4675 
9.4338 
9.6265 
9.6205 

10.1650 
10.2733 
10.2463 
10.5348 
10.5268 

10.6798
10.8221
10.7993
11.1716
11.1628

[0/90]3 

Noor (1973) 
Model-1 (Kant and Swaminathan 2001) 
Model-2 (Kant and Swaminathan 2001) 

Reddy (1979) 
Present 

6.6100
6.5711
6.4873
6.5552
6.5567

8.4143
8.3852
8.3372
8.4041
8.4065

9.8398 
9.8346 
9.8012 
9.9175 
9.9210 

10.6958 
10.7113 
10.6853 
10.8542 
10.8603 

11.2728
11.3051
11.2838
11.5007
11.5102

[0/90]5 

Noor (1973) 
Model-1 (Kant and Swaminathan 2001) 
Model-2 (Kant and Swaminathan 2001) 

Reddy (1979) 
Present 

6.6458
6.6458
6.5177
6.5842
6.5854

8.5625
8.5163
8.4680
8.5126
8.5156

10.0843 
10.0438 
10.0107 
10.0674 
10.0740 

11.0027 
10.9699 
10.9445 
11.0197 
11.0309 

11.6245
11.5993
11.5789
11.6730
11.6893
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Table 2 Non-dimensional fundamental frequencies for [45/-45]2 laminate (MAT3) with various a / b and a / h 
ratios 

a / h Source 
a / b 

0.2 0.6 0.8 1 1.2 1.6 2 

10 

Reddy (1979) 
(Bert and Chen 1978) 

(Shankara and Iyengar 1996) 
Present 

8.7240
8.6640
8.5557
8.6036

12.9650
12.8200
12.5588
12.6364

15.7120
15.5400
15.1802
15.2016

18.6090
18.4600
17.9735
17.9670

21.5670 
21.5100 
20.8797 
20.9070 

27.7360 
27.9500 
26.9916 
27.2616 

34.2470
34.8700
33.5534
34.1652

20 

Reddy (1979) 
(Bert and Chen 1978) 

(Shankara and Iyengar 1996) 
Present 

9.4750
9.3000
9.3011
9.2817

14.8960
14.4500
14.3856
14.3865

18.5570
17.9700
17.8458
17.8267

22.5840
21.8700
21.6808
21.6501

26.8570 
26.1200 
25.8363 
25.8207 

36.2490 
35.5600 
35.0421 
35.1650 

46.7890
46.2600
45.4096
45.7985

30 

Reddy (1979) 
(Bert and Chen 1978) 

(Shankara and Iyengar 1996) 
Present 

9.6670
9.4360
9.4880
9.4270

15.3850
14.8400
14.8427
14.8027

19.3040
18.5600
18.5390
18.4890

23.6760
22.7400
22.6911
22.6326

28.3810 
27.3500 
27.2555 
27.2010 

38.9400 
37.8200 
37.5907 
37.6046 

51.1320
49.9800
49.5474
49.7155

40 

Reddy (1979) 
(Bert and Chen 1978) 

(Shankara and Iyengar 1996) 
Present 

9.7590
9.4850
9.5724
9.4796

15.8530
14.9800
15.0248
14.9576

19.6040
18.7800
18.8134
18.7398

24.1180
23.0800
23.0940
23.0110

29.0030 
27.8300 
27.8286 
27.7417 

40.0710 
38.7200 
38.6523 
38.5929 

53.0120
51.5200
51.3324
51.3575

50 

Reddy (1979) 
(Bert and Chen 1978) 

(Shankara and Iyengar 1996) 
Present 

9.8160
9.5070
9.6216
9.5043

15.6890
15.0400
15.1177
15.0311

19.7590
18.8900
18.9510
18.8595

24.3430
23.2400
23.2956
23.1930

29.3210 
28.0600 
28.1168 
28.0036 

40.6530 
39.1700 
39.1932 
39.0788 

53.9890
52.2900
52.2539
52.1777

 
Table 3 Non-dimensional fundamental frequencies for square plates [0/90] with a / h = 10 

Mode Source MAT1 MAT2 

1 
(Singh et al. 2001) 

Present 
8.98083 
8.98691 

10.56565 
10.58110 

2 
(Singh et al. 2001) 

Present 
21.93360 
22.16046 

26.30276 
26.59112 

3 
(Singh et al. 2001) 

Present 
30.34590 
30.46608 

36.34791 
36.49444 

4 
(Singh et al. 2001) 

Present 
39.98180 
40.59950 

48.70060 
49.51371 

5 
(Singh et al. 2001) 

Present 
45.59216 
46.07020 

55.14367 
55.88987 

 
 

Fig. 2 presents the effect of the orthotropy (E1 / E2) on the frequency parameter. It can be 
observed that the increase of E1 / E2 ratio leads to an increase of non-dimensional fundamental 
frequencies and this is due to the increase of the stiffness of the square plate. 
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Table 4 Non-dimensional fundamental frequencies (MAT3) 

a / b 

[45/-45]2 [30/-30]2 

a / h a / h 

10 20 30 40 50 10 20 30 40 50 

0.2 5.2041 5.7389 5.8607 5.9055 5.9267 6.6404 7.6532 7.9043 7.9990 8.0442

0.4 6.2602 7.0677 7.2607 7.3327 7.3668 7.2302 8.4201 8.7217 8.8362 8.8910

0.6 7.6323 8.8758 9.1911 9.3109 9.3682 8.1068 9.5726 9.9554 10.1022 10.1727

0.8 9.1617 10.9777 11.4675 11.6574 11.7490 9.1830 11.0065 11.4988 11.6896 11.7817

1 10.7946 13.3009 14.0183 14.3022 14.4404 10.3965 12.6481 13.2767 13.5233 13.6429

1.2 12.5130 15.8199 16.8205 17.2248 17.4235 11.7067 14.4511 15.2433 15.5579 15.7114

1.4 14.3075 18.5244 19.8688 20.4235 20.6988 13.0887 16.3899 17.3748 17.7710 17.9653

1.6 16.1699 21.4077 23.1624 23.9017 24.2724 14.5286 18.4531 19.6629 20.1560 20.3994

1.8 18.0925 24.4627 26.7000 27.6629 28.1506 16.0167 20.6341 22.1047 22.7123 23.0141

2 20.0671 27.6813 30.4787 31.7088 32.3385 17.5437 22.9247 24.6950 25.4369 25.8078
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Fig. 2 Influence of orthotropy on non-dimensional fundamental frequency (Ω) of square 
plate, a / h = 10, M / Mp = 0.5, Material 3, c / a = d / b = 0.4 

 
 

Fig. 3 shows the effect of thickness ratio on non-dimensional fundamental frequencies and it 
can be observed that the nondimensional fundamental frequency increases with the length to 
thickness ratio (a / h). However at a / h ≥ 20, the nondimensional fundamental frequency reaches to 
a constant value and the plate behaves as a thin plate. 

Fig. 4 shows the effect of the mass ratio (with c / a = d / b = 0.4) on non-dimensional 
fundamental frequencies of a square plate. According to this figure, by increasing the amount of 
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Fig. 3 Influence of length to thickness ratio on non-dimensional fundamental frequency 
(Ω) of square plate, M / Mp = 0.5, Material 3, c / a = d / b = 0.4 
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Fig. 4 The effect of mass ratio on non-dimensional fundamental frequency (Ω) for square 
plate, a / h = 10 a/h, MAT3 
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local mass, the stiffness of the plate decreases and causes to decrease the non-dimensional 
frequencies. 
 
 
4. Conclusions 

 
In this work, a trigonometric four variable plate theory for vibration study of laminated 

composite isotropic and anisotropic plates with patch mass was developed. The theory accounts 
for the shear deformation effects without requiring a shear correction factor. By dividing the 
transverse displacement into bending and shear components, the number of unknowns and 
governing equations of the present theory is reduced to four as against five in the FSDT and 
common higher-order shear deformation theories. The Hamilton’s Principle, using the present 
trigonometric four variable theory, was applied to rectangular plates carrying a distributed patch 
mass, to determine the effect of the distributed patch mass on the fundamental frequencies of the 
plates. The effects of mass ratio, aspect ratio, and location of distributed patch mass on the plate’s 
behaviour have been investigated. We note that the present approach can be extended to study the 
thermal buckling of laminated orthotropic plates (Moradi and Mansouri, 2012), nonlinear vibration 
of rectangular plates (Rashidi et al., 2012) or plates made of functionally graded materials 
(Yaghoobi and Yaghoobi, 2013). 
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