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Abstract.  The main aim of this study is to propose an efficient meta-heuristic algorithm for topology 
optimization of geometrically nonlinear single layer domes by serially integration of computational 
advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization 
process, the optimum number of rings, the optimum height of crown and tubular section of the member 
groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, 
termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design 
space then, in the second stage, a local search is performed using PSO around the best solution found by FA. 
The optimum designs obtained by the proposed algorithm are compared with those reported in the literature 
and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost 
emphasizing on the efficiency of the proposed algorithm. 
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1. Introduction 

 
One of the most challenging tasks in the field of structural engineering is to cover large spans, 

such as exhibition halls, stadium and concert halls, without intermediate columns. Space structures, 
especially domes, offer economical solutions to this problem. Domes provide a completely 
unobstructed inner space and economy in terms of materials. They are lighter compared with the 
more conventional forms of structures (Makowshi 1984). Although dome structures are 
economical forms of structural systems, structural optimization techniques can be effectively 
utilized to design these structures for optimum weight. 

Structural optimization is an interesting activity that has received considerable attention in the 
last four decades. Usually, structural optimization problems involve searching for the minimum of 
the structural weight subject to various constraints. Topology optimization of structures is the most 
challenging research areas of the structural optimization field. In this class of optimization 
problems three types of design variables with different natures, including sizing, geometric and 
topological variables, are involved. The topology optimization problem has been identified as a 
more difficult but more important task than pure sizing and shape optimization, since potential 
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savings in material can be far better improved than by the sizing and shape optimization 
procedures. 

The latticed domes are given special names depending on the form in which steel elements are 
connected to each other. Among the recent applications, the well known ones are lamella domes, 
network domes, and geodesic domes (Carbas and Saka 2012). Once diameter of a latticed dome is 
specified, its geometry can be defined by the total number of rings and height of crown. Therefore, 
in the process of topological design optimization of a lattice dome, these three parameters besides 
the cross-sectional areas of structural members must be considered as design variables. 

Stochastic optimization algorithms are the general class of techniques which employ some 
degree of randomness to find optimal solutions to hard problems. In order to comprehensively 
explore a larger fraction of the design space, stochastic search techniques reveal their promising 
abilities in comparison with gradient-based optimization methods. Meta-heuristics are the most 
general of these kinds of algorithms, and are applied to a very wide range of problems. 
Meta-heuristics are simple to design and implement, and are very flexible. The past 20 years have 
witnessed the development of numerous meta-heuristics in various communities that sit at the 
intersection of several fields, including artificial intelligence, computational intelligence and soft 
computing. Most of the meta-heuristics mimic natural metaphors to solve complex optimization 
problems such as evolution of species, annealing process, ant colony, particle swarm, immune 
system, bee colony, and wasp swarm (Salajegheh and Gholizadeh 2012). 

Despite the fact that the topological design optimization greatly improves the design, due to its 
complexity, this class of structural optimization problems has been investigated far less in 
comparison with pure sizing and shape optimization (Rozvany et al. 1995, Bendsoe and Sigmund 
2003). During last years, many new meta-heuristic algorithms have been proposed for structural 
engineering applications (Gandomi et al. 2013a, b, Talatahari et al. 2012, 2013) and a number of 
researchers have employed meta-heuristics for topology optimization of lattice domes. Saka (2007) 
presented an algorithm to carry out the optimum topological design of single layer lattice geodesic 
domes taking into account the nonlinear response of the structure due to effect of axial forces on 
the flexural stiffness of members. He employed a coupled genetic algorithm to achieve 
optimization task. Carbas and Saka (2012) suggested an improved harmony search (HS) algorithm 
to determine the optimum number of rings, the optimum height of crown and tubular section 
designations for the member groups of lamella, network, and geodesic domes. Their proposed 
design algorithm also considered the geometric nonlinearity of these dome structures. Kaveh and 
Talatahari (2011) proposed a charged system search (CSS) based procedure for topology 
optimization of geodesic lattice domes considering geometric nonlinearity of the domes. 
Talaslioglu (2012) achieved size and topology optimization of geometrically nonlinear dome 
structures by minimizing both entire weight and joint displacements and maximizing load-carrying 
capacity using non-dominated sorting genetic algorithm II (NSGA II) as a multi-objective 
optimization tool. 

In the present study, firefly algorithm (FA) (Yang 2009) and particle swarm optimization (PSO) 
(Eberhart and Kennedy 1995) are serially integrated in order to present a new meta-heuristic 
algorithm for topology optimization of lamella, network, and geodesic domes by taking into 
account the geometrically nonlinear response of the domes. PSO was inspired by the social 
behaviour of organisms such as bird flocking. As compared with other robust design optimization 
methods, PSO is more efficient, requiring fewer number of function evaluations while leading to 
better or the same quality of results (Hu et al. 2003, Hassan et al. 2005). However, PSO has some 
defects such as trapping into local optima in a complex search space. The FA is an optimization 
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technique inspired by social behaviour of fireflies and the phenomenon of bioluminescent 
communication. The superiority of FA to PSO and GA was demonstrated using various test 
functions (Yang 2009, 2010). Gandomi et al. (2011) utilized the FA to solve benchmark 
mixed-variable and non-convex optimization problems. Gholizadeh and Barati (2013) compared 
the computational performance of PSO, HS, and FA in sizing and shape optimization of truss 
structures. Their results demonstrated the superiority of FA to HS and PSO. 

In the novel algorithm proposed in this study, FA and PSO are serially integrated to provide a 
meta-heuristic algorithm with improved exploration and exploitation abilities compared with 
standard versions of FA and PSO meta-heuristics. This new algorithm is termed as FA-PSO 
meta-heuristic algorithm. 

In the proposed algorithm, the number of rings, the height of crown and tubular section 
designations for the member groups of lamella, network, and geodesic domes are considered as 
design variables. The geometrically nonlinear behaviour of these dome structures is considered 
during the optimization process. In addition, the serviceability and strength requirements are 
considered in the design problems as specified in LRFD-AISC (1991). To perform structural 
analysis considering geometrical nonlinearity, ANSYS (2006) are employed. All of the required 
computer programs are coded in MATLAB (2006) platform. Furthermore, Optimization runs are 
performed on a standard PC equipped with a 3GHz Pentium IV CPU. The obtained numerical 
results demonstrate the efficiency of the proposed FA-PSO algorithm compared with other 
algorithms available in the literature in terms of optimal weight and computational cost. 
 
 
2. Geometry generation of dome structures 

 
The main contribution of the present study is to design single layer lamella, network and 

geodesic domes for optimal topology by a novel algorithm. The plan view of typical forms of the 
above mentioned domes are shown in Fig. 1. The geometry of these domes can be easily generated 
if the diameter of the dome (D), the total number of rings (nr), and the height of the crown (h) are 
specified. In these domes, the distances between the rings on the meridian line are generally equal. 
Furthermore, the distances between all joints on the same ring are equal. The joint located at the 
crown is considered as the first joint. The procedures employed for geometry generation of lamella, 
network and geodesic domes are briefly explained in the next subsections. More details can be 
found in (Carbas and Saka 2012). 

In lamella dome, each ring includes 12 joints. On the odd numbered rings, all of the first joints 
are located on the radius that makes angle of 15° with the x-axis. On the even numbered rings, the 
first joints are located on the intersection points of the x-axis and that ring. In the network dome, 
odd numbered rings contain 12 joints while on the even numbered rings there are 24 joints. The 
first joint of each ring is located on the intersection point of that ring and the x-axis. The other 
joints on each ring are numbered in a regular sequence. In geodesic dome, multiplying the ring 
number by 5 gives the total number of joints on that ring. In this type of dome, joints are numbered 
as well as the network dome. 

Members are numbered in similar fashion. First member connects joints 1 and 2 for each dome 
type. In lamella and network domes the other 11 members connect first joint to the remaining 
joints located on the first ring. In geodesic dome the other four members connect joint 1 to joints 3 
to 6. On the first ring of geodesic dome the members connect joints as 2-3, 3-4, 4-5, 5-6, 6-2. In 
lamella and network domes a similar procedure is followed. This process is repeated for each ring 
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(a) (b) 

(c) 
 

Fig. 1 Plan view of (a) Lamella; (b) Network; and (c) Geodesic domes 

 
 
and all members are numbered consequently. In order to compute x, y, and z coordinates of ith 
joint on these domes, the angle between the line that connects the joint to joint 1 (on plan) and the 
x-axis must be determined as shown in Fig. 2. 

The angle αi can be calculated for lamella, network and geodesic domes using the following 
equations (Carbas and Saka 2012). 
 

 1
i 3015:rings numbered odd  the- dome Lamella rji               (1) 
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 
(2) Eq. as same:rings numbered odd  the- domeNetwork 

30:rings numbered odd  the- dome Lamella 1
i rji 

              (2) 

 

 1
i 15:rings numberedeven   the- domeNetwork rji                (3) 

 

 
r

ji r
1

i 72:dome Geodesic


                         (4) 

 
In which i and jr

1 are respectively the ith and first joints placed on the ring r. 

 
 

 
Fig. 2 Coordinates of ith joint on the jth ring of the domes 
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Considering Fig. 2, radius of dome (R) and xi, zi, yi coordinates of the ith joint on the ring r can 
be computed as follows 

h

hD
R

8

4 22 
                                (5) 

 

)cos( iri ax                                 (6) 
 

)sin( iri az                                 (7) 
 

 hRaRy ri  22                            (8) 
 

where D and h are span and height of the dome, respectively. Also, ar is the radius of the ring r. 
 
 

3. Formulation of topology optimization problem of dome structures 
 

In structural optimization problems the aim is usually to minimize an objective function, under 
some behavioural constraints (Gholizadeh 2013, Gholizadeh and Barzegar 2013). In the topology 
optimization problem of dome structures, the structural weight is considered as the objective 
function and the vector of design variables consists of number of rings, height of the crown and 
structural element groups’ cross-sections. For a steel dome structure consisting of ne members that 
are collected in ng design groups, if the variables associated with each design group are selected 
from a list of steel pipe sections given by LRFD-AISC (1991), a discrete topology optimization 
problem can be formulated as follows 
 

],,,,,[,,Find 21 ngkr IIIIhnX                        (9) 
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where X is a vector of design variables; Ik is an integer value expressing the sequence numbers of 
steel sections assigned to kth group; h is the height of the crown; nr is the total number of rings 
which is taken as 3, 4 or 5; ρ is material unit volume weight; Ai and li are cross-sectional area and 
length of the ith structural member, respectively; gs (X) is a stability constraint; K is the structural 
stiffness matrix; gj

δ (X), δj and δall are the displacement constraint, displacement and allowable 
displacement of joint j, respectively; gi

σ (X) is the stress constraint of ith member; Pu is the required 
strength (tension or compression); Pn is the nominal axial strength (tension or compression); ϕc is 
the resistance factor; Mux and Muy are the required flexural strengths in the x and y directions; 
respectively; Mnx and Mny are the nominal flexural strengths in the x and y directions; and ϕb is the 
flexural resistance reduction factor (ϕb = 0.9); Vu is the factored service load for shear; Vn is the 
nominal strength in shear and ϕv represents the resistance factor for shear given as 0.9. 

In this study, the penalty function method (PFM) is employed to transform the constrained 
structural optimization problem into an unconstrained one as described below. The general 
approach of penalty function methods is to minimize the objective function as an unconstrained 
function but to provide some penalty to limit constraint violations (Vanderplaats 1984). Hence, the 
above constrained structural optimization problem is transformed into an unconstrained one. In 
this case, the pseudo unconstrained objective function can be represented as follows 
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where Φ and ξ are the pseudo objective function and positive penalty parameter, respectively. 
In the present study, an efficient meta-heuristic algorithm is proposed to minimize the above 

pseudo objective function. The next section describes the proposed algorithm. 
 
 

4. Proposed meta-heuristic algorithm 
 
In the present work, a new optimization algorithm is proposed by serially integration of FA and 

PSO meta-heuristics to tackle the mentioned topology optimization problem. It is demonstrated by 
Gandomi et al. (2011) that the PSO is a particular case of the FA if the randomization parameter of 
FA is set to zero. Hence, the basic concepts of the mentioned algorithms are briefly explained in 
the next sections. 

 
4.1 Particle swarm optimization 
 
The PSO has been proposed by Eberhart and Kennedy (1995) to simulate the motion of bird 

swarms. The particle swarm process is stochastic in nature; it uses a velocity vector to update the 
current position of each particle in the swarm. The velocity vector is updated based on the memory 
gained by each particle, conceptually resembling an autobiographical memory, as well as the 
knowledge gained by the swarm as a whole. Thus, the position of each particle in the swarm is 
updated based on the social behaviour of the swarm which adapts to its environment by returning 
to promising regions of the space previously discovered and searching for better positions over 
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time. Numerically, the position of the ith particle, Xi, at iteration t + 1 is updated as follows 
 

11   t
i

t
i

t
i VXX                              (16) 

 
where Vi

t+1 is the corresponding updated velocity vector given as follows 
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t
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t
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t
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t
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best2211
1                    (17) 

 

k
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



max

minmax
max

                          (18) 

 
where Vi

t is the velocity vector at iteration t, r1 and r2 represents random numbers between 0 and 1; 
Pi

t represents the best ever particle position of particle i, and Gt
best corresponds to the global best 

position in the swarm up to iteration t. The remaining terms are problem dependent parameters; c1 
and c2 are cognitive and social parameters, respectively; ω is the inertia weight which plays an 
important role in the PSO convergence behaviour; ωmax and ωmin are the maximum and minimum 
values of ω, respectively; kmax, and k are the number of maximum iterations and the number of 
present iteration, respectively. 

Eqs. (17) and (18) indicate that for using PSO, internal parameters c1, c2, ωmin and ωmax must be 
determined. 

 
4.2 Firefly algorithm 
 
The FA is a new meta-heuristic optimization algorithm inspired by the flashing behaviour of 

fireflies. The FA is a population-based algorithm, which may share many similarities with PSO. 
Fireflies communicate, search for pray and find mates using bioluminescence with varied flashing 
patterns (Gandomi et al. 2011). In order to develop the firefly algorithm, natural flashing 
characteristics of fireflies have been idealized using the following three rules (Yang 2009) 

 

(1) All of the fireflies are unisex; therefore, one firefly will be attracted to other fireflies 
regardless of their sex. 

(2) Attractiveness of each firefly is proportional to its brightness, thus for any two flashing 
fireflies, the less bright firefly will move towards the brighter one. The attractiveness is 
proportional to the brightness and they both decrease as their distance increases. If there is 
no brighter one than a particular firefly, it will move randomly. 

(3) The brightness of a firefly is determined according to the nature of the objective function. 
(4) The attractiveness of a firefly is determined by its brightness or light intensity which is 

obtained from the objective function of the optimization problem. However, the 
attractiveness β, which is related to the judgment of the beholder, varies with the distance 
between two fireflies. The attractiveness β can be defined by (Yang 2010, Miguel et al. 
2013). 

2.
0

de                                  (19) 
 
where d is the distance of two fireflies, β0 is the attractiveness at d = 0, and γ is the light absorption 
coefficient. 

688



 
 
 
 
 
 

Topology optimization of nonlinear single layer domes by a new metaheuristic 

The distance between two fireflies i and j at Xi and Xj respectively, is determined as follows 
 

   2
,, kjkijiij xxXXd                       (20) 

 
where xi,k is the k-th parameter of the spatial coordinate xi of the i-th firefly. 

In the FA, the movement of a firefly i towards a more attractive (brighter) firefly j is 
determined by the following equation (Yang 2010) 
 

   5.0
2.

0
1   rXXeXX t

j
t
i

dt
i

t
i

ij                      (21) 

 
where the second term is related to the attraction, while the third term is randomization with λ 
being the randomization parameter between 0 and 1; r is a random number generator uniformly 
distributed in [0, 1]. 

 
4.3 FA-PSO meta-heuristic 
 
The main drawback of standard version of the PSO is that its exploration and exploitation 

abilities are not balanced (Angeline 1998). This means that PSO may converge to local optima in 
complex problems, such as the mentioned topology optimization problem. In the standard version 
of FA, it has been also observed by Yang (2009) that: the solutions are still changing as the optima 
are approaching. This implies that, as well as the PSO, FA may not able to provide appropriate 
convergence rate in the complex optimization problems. Yang (2010) illustrated that the 
convergence behaviour of the FA can be improved by reducing the randomness gradually. As a 
slight modification, in the present work the following simple equation has been used to gradually 
decrease the randomization parameter λ as the optima are approaching. 
 

t
t





max

minmax
max

                           (22) 

 

where λmax and λmin are the maximum and minimum values of the randomization parameter; tmax 
and t are the numbers of maximum iterations and present iteration, respectively. 

Hence, the internal parameters β0, γ, λmin and λmax must be determined before using of the FA. 
In the present study, FA and PSO are serially integrated to propose an efficient optimization 

algorithm having improved computational performance. In fact, the proposed algorithm includes 
two stages. As the superiority of the FA to the PSO has been demonstrated in the previous works 
(Yang 2009, 2010), in the first stage of the proposed algorithm FA is utilized to perform a global 
search through the design space. The best solution found in this stage is termed as FAX best . In the 
second stage, PSO is employed to implement another optimization process by utilizing the 
information derived in the first stage. To improve the solution quality, a specific initial swarm is 
generated for PSO. In this case, FAX best  is directly transformed to the initial swarm and the 
remaining ones are selected from the neighbourhood of the FAX best  in the design space as follows 
 

 FAFA XXX bestbest ,N                             (23) 
 

where  FAFA XX bestbest ,N represents a vector of random normally distributed numbers with the mean 
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of FAX best  and the standard deviation of FAX best . 
As the parameter η can seriously affect the convergence behaviour of the proposed algorithm, a 

sensitivity analysis should be performed to determine its best value. 
This meta-heuristic algorithm is termed as FA-PSO and its flowchart is shown in Fig. 3. The 

proposed FA-PSO algorithm includes some internal parameters affecting its computational 
performance at different extents. In this study, a sensitivity study is carried out on the effect of 
these parameters in the convergence behaviour of the algorithm and the results are presented in the 
numerical results section. 

 
 

5. Application of FA-PSO for topology optimization 
 
The design variables of the topology optimization problem of the latticed domes are defined by 

Eq. (9). It is clear that once the values of nr and h are specified, the cross-sections of the element 
groups should be selected from an available section list in such a way that the domes satisfies the 

 
 

 
Fig. 3 Flowchart of FA-PSO meta-heuristic 
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design requirements specified by the code of practice. The algorithm proposed in this study 
randomly selects cross sections of the element groups from the sections list including 37 steel pipe 
sections given by LRFD-AISC (1991). Using the selected sections, ANSYS is utilized to perform 
geometrically nonlinear structural analysis. If the latticed dome losses its overall stability during 
the nonlinear analysis, the selected set of cross sections are rejected and a new set is selected. In 
case that the dome satisfies the stability constraint, the displacement and stress constraints will be 
checked and the optimization process will be continued until a termination criterion is met. 
Reaching the maximum number of generations is taken into account as the termination criterion of 
the present study. 

As already explained, FA-PSO includes two stages. During the first stage, FA explores the 
design space and finds the best solution FAX best . 
 

FA
ngk

FAFA
r,

FA IIIIhnX best21bestbestbest ],,,,,[,,                    (24) 
 

In the second stage, PSO is used to perform a local search in the neighbourhood of the best 
solution FAX best  found by FA and the initial swarm of PSO is generated using Eq. (23). In this case, 
to reduce the diversity of the process for better exploiting inside the design space, the number of 
rings is fixed and therefore it is removed from the list of the design variables during the second 
stage. Thus, in the second stage, all of the generated domes have nr,best rings while their cross 
sections and height are variable. 

 
 

6. Numerical examples 
 
In order to design the single layer lamella, network, and geodesic domes (shown in Figs. 1a, 1b, 

and 1c) for optimum topology, PSO, FA and FA-PSO meta-heuristics are employed in this study. 
For all the domes, the cross sections of element groups are selected from a list of steel tubular 
sections given in LRFD-AISC (1991). The crown height is changed from 1.00 to 8.75 m with the 
increment of 0.25 m. The diameters of all domes are taken as 20 m. The total number of rings can 
be 3, 4, or 5. The modulus of elasticity and the yield strength of the steel are taken as 205 kN/mm2 
and 250 MPa, respectively. For all the domes, displacement of joints 1 to 3 is limited to 28 mm in 
z-direction. Furthermore, the allowable displacement of joints 2 to 3 in both x- and y-directions is 
33 mm. Two load cases are considered for design of the domes. The firs one includes an 
equipment loading of 500 kN at the crown while the second one is unsymmetrical loading of 15 
kN concentrated loads applied on each joint of the one half of the domes. In the presented design 
examples, the population size for PSO, FA and FA-PSO meta-heuristics is chosen to be 20 and the 
maximum number of generations is limited to 500. In the case of FA-PSO, the maximum number 
of generations for each of the algorithms is limited to 250. Therefore, for all of the algorithms 
maximum number of structural analyses is equal to 10000. 

In this paper, in order to find the best setting of the internal parameters of PSO (i.e., c1, c2, ωmin 
and ωmax) a sensitivity analysis is carried out. For this reason combinations of three sets (1.0, 3.0), 
(2.0, 2.0) and (3.0, 1.0) for (c1, c2), and three sets (0.0, 0.5), (0.2, 0.7), (0.4, 0.9) for (ωmin, ωmax) are 
selected and PSO is used to obtain the optimum results for the combinations of these parameter 
values. For each combination of the parameters 25 independent optimization runs are performed 
and based on the obtained results, the best setting is determined. The results demonstrate that, for 
all of the presented examples, the best setting of parameters yielding the least weight is c1 = 1.0, c2 
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= 3.0, ωmin = 0.4, and ωmax = 0.9. 
For determining the best combination of FA internal parameters (i.e., β0, γ, λmin and λmax) 

another sensitivity analysis is carried out. As well as Miguel et al. (2013) in this study the value of 
β0 is also taken to be 1.0 (i.e., β0=1.0). Four values 0.1, 1.0, 10.0 and 100 are considered for γ and 
three sets (0.0, 0.5), (0.2, 0.7), (0.4, 0.9) are selected for (λmin, λmax) and FA is employed to perform 
25 optimization runs in the case of each combination of these parameters to determine the best 
setting of them. The results indicate that, for all of the presented examples, the optimal 
combination of parameters is β0 = 1.0, γ = 1.0, λmin = 0.4, and λmax = 0.9. 

In the proposed FA-PSO meta-heuristic, the above mentioned best setting of parameters of PSO 
and FA are used and four values 0.05, 0.10, 0.15 and 0.20 are selected for η. In each case 25 
independent optimization runs are performed and the results demonstrate that in the case of η = 
0.10 the least weight can be obtained. Therefore, the best setting of parameters of FA-PSO 
meta-heuristic is β0 = 1.0, γ = 1.0, λmin = 0.4, λmax = 0.9, η = 0.10, c1 = 1.0, c2 = 3.0, ωmin = 0.4, and 
ωmax = 0.9. 

 
6.1 Lamella dome 
 
Table 1 presents the results (in terms of best, worst and average structural weights and 

corresponding standard deviation) of 25 independent optimization runs of lamella dome subject to  

 
 
Table 1 Results of 25 independent optimization runs performed for lamella dome subject to load case 1 

Weight (kg) PSO FA FA-PSO 

Best 3174.4 3147.4 2998.2 

Worst 3343.4 3316.4 3098.2 

Average 3256.2 3212.3 3031.4 

Standard deviation 74.5 49.6 31.1 

 
Table 2 Results of optimization of lamella dome subject to load case 1 

Design variables Carbas and Saka (2012) 
Present work 

PSO FA FA-PSO 

nr 3 3 3 3 

h (m) 5.75 5.75 5.50 5.75 

I1 PIPST 127 PIPST 127 PIPST 127 PIPST 102 

I2 PIPDEST 51 PIPST 76 PIPEST 64 PIPDEST 51

I3 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I4 PIPST 32 PIPEST 19 PIPST 19 PIPST 25 

I5 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I6 PIPST 13 PIPST 13 PIPST 13 PIPST 13 

Weight(kg) 3443.9 3174.4 3147.4 2998.2 

Max. displacement (mm) -4.97 -23.60 -23.82 -24.14 

Max. strength ratio 1.00 0.99 0.99 1.00 

Required structural analyses 25000 10000 10000 10000 
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Fig. 4 Convergence histories for the lamella dome subject to load case 1 using PSO, FA and FA-PSO 

 
Table 3 Results of 25 independent optimization runs performed for lamella dome subject to load case 2 

Weight (kg) PSO FA FA-PSO 

Best 2235.2 2221.9 2185.7 

Worst 2354.3 2294.1 2249.8 

Average 2311.3 2279.1 2208.3 

Standard deviation 59.1 37.2 11.6 

 
 
 
load case 1, associated to the above mentioned best settings of the internal parameters of various 
algorithms. 

This results indicate that the best weights obtained by FA-PSO is 2998.2 kg which is 5.55% 
and 4.74% lighter than the best weights of PSO (3174.4 kg) and FA (3147.4 kg), respectively. The 
results demonstrate that FA-PSO outperforms the PSO and FA meta-heuristics. As expected the 
computational performance of the FA is better than that of the PSO. 

The best results obtained in the present work are compared with those obtained by Carbas and 
Saka (2012) in Table 2. 

The convergence histories of the PSO, FA and FA-PSO meta-heuristics are shown in Fig. 4. It 
can be observed that FA-PSO possesses better convergence rate in comparison with PSO and FA. 

These results indicate that the best weight obtained by FA-PSO is 12.94% lighter than the 
weight reported by Carbas and Saka (2012). In addition, the FA-PSO requires 10000 structural 
analyses while the algorithm proposed by Carbas and Saka (2012) requires 25000 ones. These 
results demonstrate that the FA-PSO not only found the best design overall but required also much 
less structural analyses compared with the other optimization algorithm. 

In the case of lamella dome subject to unsymmetrical loading, the results of 25 independent 
optimization runs associated to the best settings of the internal parameters are given in Table 3. 

The results presented in Table 3 imply again that the computational performance of FA-PSO is 
better than those of the PSO and FA. The best weight found by FA-PSO is 2.21% and 1.63% 
lighter than those of the PSO and FA, respectively. Table 4 compares the best results obtained in 
the present work with those reported by Carbas and Saka (2012). 
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Table 4 Results of optimization of lamella dome subject to load case 2 

Design variables Carbas and Saka (2012)
Present work 

PSO FA FA-PSO 

nr 3 3 3 3 

h (m) 4.75 5.00 4.75 5.75 

I1 PIPST 38 PIPST 38 PIPST 38 PIPST 38 

I2 PIPST 51 PIPEST 38 PIPST 51 PIPEST 38 

I3 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I4 PIPST 19 PIPEST 19 PIPST 25 PIPEST 13 

I5 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I6 PIPST 13 PIPST 13 PIPST 13 PIPST 13 

Weight (kg) 2212.1 2235.2 2221.9 2185.7 

Max. displacement (mm) +1.232 -7.09 -7.35 -7.66 

Max. strength ratio 0.95 0.96 0.97 0.99 

Required structural analyses 25000 10000 10000 10000 
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Fig. 5 Convergence histories for the lamella dome subject to load case 2 using PSO, FA and FA-PSO 

 
 

Fig. 5 compares the convergence histories of PSO, FA and FA-PSO indicating the better 
convergence rate of the FA-PSO with respect to PSO and FA. 

The best weight and required computational demand of FA-PSO meta-heuristic algorithm are 
1.19% and 60% less than those of the algorithm reported by Carbas and Saka (2012). These results 
demonstrate the efficiency of the FA-PSO meta-heuristic in comparison with other algorithms. 

 
6.2 Network dome 
 
The results of 25 independent optimization runs performed, using the best settings of the 

internal parameters, for optimization of network dome subject to load case 1 are summarized in 
Table 5. 
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Table 5 Results of 25 independent optimization runs performed for network dome subject to load case 1 

Weight (kg) PSO FA FA-PSO 

Best 3975.4 3944.7 3920.4 

Worst 4245.1 4198.3 3974.1 

Average 4176.3 4113.9 3942.1 

Standard deviation 87.2 66.8 25.1 

 
 
Table 6 compares the best results of the present work with those of the reported by Carbas and Saka (2012) 

Design variables Carbas and Saka (2012)
Present work 

PSO FA FA-PSO 

nr 5 3 5 5 

h (m) 3.75 5.00 3.75 3.75 

I1 PIPST 203 PIPST 127 PIPST 203 PIPST 203 

I2 PIPST 13 PIPEST 64 PIPST 13 PIPST 13 

I3 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I4 PIPEST 51 PIPEST 25 PIPEST 64 PIPEST 51 

I5 PIPST 51 PIPST 64 PIPST 51 PIPST 51 

I6 PIPEST 25 PIPST 13 PIPEST 32 PIPEST 25 

I7 PIPST 51 N.A. PIPST 51 PIPST 51 

I8 PIPEST 19 N.A. PIPST 25 PIPEST 19 

I9 PIPST 51 N.A. PIPST 51 PIPST 51 

I10 PIPST 13 N.A. PIPST 13 PIPST 13 

Weight(kg) 3920.4 3975.4 3944.7 3920.4 

Max. displacement (mm) -25.47 -26.62 -27.38 -25.47 

Max. strength ratio 1.00 0.96 1.00 1.00 

Required structural analyses 25000 10000 10000 10000 
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Fig. 6 Convergence histories for the network dome subject to load case 1 using PSO, FA and FA-PSO 
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These results demonstrate the efficiency of FA-PSO in comparison with PSO and FA. The best 
weight obtained by FA-PSO is 1.38% and 0.62% lighter than the best weights of PSO and FA, 
respectively. 
Table 6 compares the best results of the present work with those of the reported by Carbas and 
Saka (2012). 

Fig. 6 shows the convergence histories of the algorithms used to optimize network dome for 
load case 1. It is clear that the convergence rate of the FA-PSO is better than those of the PSO and 
FA. 

The best design obtained in this paper and that reported by Carbas and Saka (2012) are 
identical. However, FA-PSO meta-heuristic requires much less number of structural analyses in 
comparison with the proposed algorithm by Carbas and Saka (2012). The results of 25 
independent optimization runs for design of network dome subject to load case 2 are given in 
Table 7. 

These results demonstrate the efficiency of FA-PSO in comparison with PSO and FA. The best 
weight of FA-PSO is 1.27% and 1.21% lighter than the best weights of PSO and FA, respectively. 

Table 8 compares the best results of the present work with those of reported by Carbas and 
Saka (2012). Comparison of convergence histories of PSO, FA and FA-PSO for the network dome 
subject to load case 2, shown in Fig. 7, implies the superiority of FA-PSO to the PSO and FA. 

 
 
Table 7 Results of 25 independent optimization runs performed for network dome subject to load case 2 

Weight (kg) PSO FA FA-PSO 

Best 3200.7 3198.8 3159.9 

Worst 3304.8 3287.1 3272.6 

Average 3286.2 3265.6 3201.3 

Standard deviation 67.1 43.4 27.6 

 
Table 8 Results of optimization of network dome subject to load case 2 

Design variables Carbas and Saka (2012)
Present work 

PSO FA FA-PSO 

nr 3 3 3 3 

h (m) 4.75 4.5 4.75 4.5 

I1 PIPEST 38 PIPST 51 PIPST 51 PIPST 51 

I2 PIPST 51 PIPST 64 PIPEST 51 PIPEST 51 

I3 PIPST 64 PIPST 64 PIPST 64 PIPST 64 

I4 PIPST 38 PIPEST 32 PIPST 38 PIPEST 32 

I5 PIPST 64 PIPST 64 PIPST 64 PIPST 38 

I6 PIPST 13 PIPST 13 PIPST 13 PIPST 13 

Weight (kg) 3168.5 3200.7 3198.8 3159.9 

Max. displacement (mm) +1.934 -5.68 -5.38 -6.01 

Max. strength ratio 0.98 1.00 1.00 1.00 

Required structural analyses 25000 10000 10000 10000 
 

696



 
 
 
 
 
 

Topology optimization of nonlinear single layer domes by a new metaheuristic 

3100

3300

3500

3700

3900

4100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Analyses

W
e

ig
h

t 
(k

g
)

PSO

FA

FA-PSO

 
Fig. 7 Convergence histories for the network dome subject to load case 2 using PSO, FA and FA-PSO 

 
Table 9 Results of 25 independent optimization runs performed for geodesic dome subject to load case 1 

Weight (kg) PSO FA FA-PSO 

Best 3627.5 3615.2 3523.3 

Worst 3790.5 3730.7 3623.1 

Average 3740.3 3694.4 3564.3 

Standard deviation 98.62 58.13 42.14 

 
Table 10 Results of 25 independent optimization runs performed for geodesic dome subject to load case 2 

Weight (kg) PSO FA FA-PSO 

Best 2108.1 2068.9 1986.5 

Worst 2180.8 2127.4 2023.1 

Average 2169.8 2098.2 2006.0 

Standard deviation 26.0 19.2 7.9 

 
 

The best weight obtained by FA-PSO is slightly better than that of reported by Carbas and Saka 
(2012). However, the computational performance of FA-PSO meta-heuristic algorithm is 
considerably better compared with the proposed algorithm by Carbas and Saka (2012) in terms of 
required structural analyses during the optimization process. 

 
6.3 Geodesic dome 
 
The results of 25 independent optimization runs performed, using the best settings of the 

internal parameters, for optimization of geodesic dome subjected to load cases 1 and 2 are 
summarized in Tables 9 and 10, respectively. 

The results show that, in load case 1, the best weight obtained by FA-PSO is 2.87% and 2.54% 
lighter than the best weights of PSO and FA, respectively. While, for load case 2, the best weight 
obtained by FA-PSO is 5.76% and 3.98% lighter than the best weights of PSO and FA, 
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Table 11 Results of optimization of geodesic dome subject to load case 1 

Design variables Carbas and Saka (2012)
Present work 

PSO FA FA-PSO 

nr 5 5 3 3 

h (m) 4.25 4.25 5.75 5.75 

I1 PIPST 305 PIPST 305 PIPST 203 PIPST 203 

I2 PIPST 13 PIPST 13 PIPEST 64 PIPST 76 

I3 PIPST 89 PIPST 89 PIPST 89 PIPST 89 

I4 PIPEST 51 PIPST 64 PIPEST 38 PIPEST 25 

I5 PIPST 64 PIPST 64 PIPST 76 PIPST 76 

I6 PIPEST 25 PIPEST 32 PIPST 13 PIPST 13 

I7 PIPST 51 PIPST 51 N.A. N.A. 

I8 PIPEST 13 PIPST 25 N.A. N.A. 

I9 PIPST 51 PIPST 51 N.A. N.A. 

I10 PIPST 13 PIPST 13 N.A. N.A. 

Weight(kg) 3631.4 3627.5 3615.2 3523.3 

Max. displacement(mm) -27.77 -26.12 -22.32 -23.96 

Max. strength ratio 1.00 0.99 0.98 0.98 

Required structural analyses 25000 10000 10000 10000 
 
Table 12 Results of optimization of geodesic dome subject to load case 2 

Design variables Carbas and Saka (2012)
Present work 

PSO FA FA-PSO 

nr 3 3 3 3 

h (m) 5.00 5.25 5.25 5.25 

I1 PIPST 32 PIPST 32 PIPST 32 PIPST 32 

I2 PIPST 64 PIPEST 51 PIPST 51 PIPST 51 

I3 PIPST 64 PIPEST 51 PIPEST 51 PIPEST 51 

I4 PIPST 51 PIPEST 51 PIPEST 51 PIPST 51 

I5 PIPEST 51 PIPST 64 PIPST 64 PIPST 64 

I6 PIPST 13 PIPST 13 PIPST 13 PIPST 13 

Weight(kg) 2034.2 2108.1 2068.9 1986.5 

Max. displacement (mm) +0.675 -2.24 -2.24 -2.45 

Max. strength ratio 0.99 0.98 0.98 0.99 

Required structural analyses 25000 10000 10000 10000 

 
 

respectively. These results demonstrate the efficiency of FA-PSO in comparison with PSO and 
FA. 

The best results obtained in optimization of geodesic dome subject to load cases 1 and 2 are 
compared with those of reported by Carbas and Saka (2012) in Tables 11 and 12, respectively. 
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Fig. 8 Convergence histories for the geodesic dome subject to load case 1 using PSO, FA and FA-PSO 
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Fig. 9 Convergence histories for the geodesic dome subject to load case 2 using PSO, FA and FA-PSO 

 
 

Convergence histories of PSO, FA and FA-PSO for the geodesic dome subject to load cases 1 
and 2 are shown in Figs. 8 and 9, respectively. It can be easily observed that the convergence 
rateof FA-PSO is better than those of the PSO and FA. 

The results show that the best weight obtained by FA-PSO in load cases 1 and 2 are 
respectively 2.98% and 2.34% lighter than the best weights reported by Carbas and Saka (2012) at 
considerably lower computational cost. 

 
 

7. Conclusions 
 
An efficient meta-heuristic algorithm is proposed for topology optimization of geometrically 

nonlinear single layer dome structures. To achieve this purpose, two popular meta-heuristic 
algorithms, FA and PSO, are serially integrated and the resulted algorithm is denoted as FA-PSO. 
In the proposed algorithm, exploration and exploitation tasks are carried out by FA and PSO, 
respectively. Lamella, network and geodesic single layer lattice domes are designed for optimal 
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topology subject to two load cases using PSO, FA and FA-PSO meta-heuristics. Design variables 
of the optimization problem are the number of rings, the height of crown and tubular section of the 
member groups. Furthermore, the constraints of the optimum topology design problem are handled 
according to LRFD-AISC code. In the case of each design example, a sensitivity study is carried 
out to find the best setting of internal parameters of the algorithms. Numerical results demonstrate 
that, in all the design examples, the proposed FA-PSO algorithm outperforms both the standard 
PSO and FA meta-heuristics. In addition, it is observed that the computational performance of FA 
is better than that of the PSO. The results, obtained using the proposed FA-PSO meta-heuristic, are 
compared with those of reported in the literature. It is demonstrated that FA-PSO not only 
converges to lightweight designs but it also requires much less number of structural analyses 
compared with other algorithms. Therefore, FA-PSO algorithm can be efficiently and reliably 
employed to find optimum topology of geometrically nonlinear latticed domes spending low 
computational cost. 
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