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Abstract.  This study deals with dynamic model of composite sandwich panels with functionally graded 
flexible cores under low velocity impacts of multiple large or small masses using a new improved higher 
order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core 
and face sheets. The formulation was based on the first order shear deformation theory for the composite 
face sheets and polynomial description of the displacement fields in the core that was based on the second 
Frostig’s model. Fully dynamic effects of the functionally graded core and face-sheets were considered in 
this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the 
face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and 
impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a 
newly presented improved analytical method in this paper. The results were validated by comparing the 
analytical, numerical and experimental results published in the latest literature. 
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1. Introduction 

 
Functionally graded materials (FGM) are the most important materials that are recently used in 

some practical structures. These materials are used as core of the sandwich panels instead of foam 
cores. One of the most important problems about sandwich structures is damage caused by low 
velocity impact. Interfacial shear stresses due to contact forces can be large enough to debond the 
face sheet from the core. One way for reducing shear stresses is to use functionally graded core; so, 
the abrupt change in stiffness between the face sheet and core can be eliminated or minimized. The 
stresses that arise from low velocity impact can be easily understood by analyzing static contact 
between the impactor and structure (Sun and Sanakar 1985). Many researchers have investigated 
composite laminates subjected to single mass low velocity impact (Abrate 1998, Choi and Lim 
2004, Christoforou and Swanson 1991, Mittal 1987, Sun and Chattopadhyay 1975). Some 
researchers have studied dynamic response of sandwich structures with flexible cores which are 
subjected to low velocity impacts (Bernard and Lagace 1989, Malekzadeh et al. 2005a, 2007, 
Mijia and Pizhong 2005). A complete review of the subject of impact on sandwich structures was 
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carried out by Abrate (1998). Apeter et al. (2002) studied response of low velocity impact on 
sandwich beams with functionally graded core using two-dimensional elasticity theory. Various 
approaches have been proposed for the analysis of impact response of sandwich panels. Classical 
method decouples local and global responses and ignores any interaction between them. The first 
order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) do not 
consider flexibility of core in transverse direction and the interaction between face-sheets and soft 
flexible core (Khalili et al. 2005, Reddy 1997). Because these theories ignore flexibility of core, 
researchers have recently used higher order sandwich plate theory (HSAPT) (Frostig 1998, Frostig 
and Baruch 1994, Sokolinsky et al. 2000). Transverse flexibility of the core is taken into account 
in higher order sandwich plate theory (HSAPT) for a soft core. To express displacement field in 
the core, Frostig and Thomsen (2004) considered two types of computational models. The first 
model used vertical shear stresses in the core. The second model assumed a polynomial 
description of the displacement field in the core. In this case, unknowns were the coefficients of 
the polynomials in addition to displacements of the face-sheets. In the present formulation, the 
second Frostig’s model was improved and used. Recently, Malekzadeh et al. (2005a, b) introduced 
first order shear deformation theory (FSDT) for face-sheets of sandwich panels with a flexible core. 
One of the most important parameters in all impact problems is calculating history of impact force. 
In order to calculate the impact force, many models have been used. For instance, in order to 
predict impact response of a circular plate, Shivakumar et al. (1984) presented a two degree-of- 
freedom model consisting of four springs for bending, shear and membrane and contact stiffness. 
They analytically calculated the contact force and contact duration. Other two degree-of-freedom 
models were proposed by Lal (1983) and Sjoblom et al. (1988). Caprino and Teti (1994) used a 
single degree-of-freedom system to analyze drop weight impact on glass/polyester sandwich 
panels. Choi and Hong (1994) presented linearized contact law and studied the impact force 
history on composite laminates. Gong et al. (1999) and Gong and Lam (2000) used a spring-mass 
model with two degrees of freedom in order to determine history of contact force produced during 
the impact. Anderson (2005) described an investigation of single degree-of-freedom model for 
large mass impact on composite sandwich laminates. It is common to classify impact as “high 
velocity” and “low velocity”; but, it was shown by Olsson (2001) that the response type under 
elastic conditions only depended on the impactor/plate mass ratio. Thus, small mass impact is 
governed by transient wave propagation and is essentially independent from plate size and 
boundary conditions. Large mass impact response is essentially quasi-static; i.e., it obeys static 
load-displacement relations, and strongly depends on plate geometry and boundary conditions. In 
the past decade, many researchers have used the results of previous works to analysis dynamic 
response of composite and sandwich structures subjected to large or small mass impacts (Abrate 
1998, Gong et al. 1999, Anderson and Madenci 2000, Gong and Lam 2000, Hoo Fatt and Park 
2001a, b, Olsson 2001, Malekzadeh et al. 2005a, 2006). As noted above, much effort has been 
made to analyze the composite and sandwich structures subjected to low velocity single mass 
impact using a discrete spring–mass system. As seen, many researchers have focused on sandwich 
structures subjected to single mass impact while most engineering structures like aerospace 
structures may be subjected to more than one small mass impactors with different mass velocities, 
locations and directions. As far as this type of problem is concerned, very limited researches have 
been done. For the first time, Malekzadeh et al. (2006) studied dynamic response of composite 
sandwich panels with flexible cores under simultaneous low velocity impacts of multiple small 
masses. The governing equations of motion were derived by higher order sandwich plate theory 
(HSAPT) and Hamilton’s principle. In their research, impacts were assumed to occur normally and 
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simultaneously over the top face-sheet with similar masses and equal initial velocities of impactors. 
Also, they improved and used the first Frostig’s model in the impact analysis. The contact force 
between the panel and impactor was treated as internal force of the system. They used linear 
contact law and Choi’s approach (Choi and Hong 1994) in order to obtain a linearized contact law. 
As no literature could be found on the impact of multiple impactors, Malekzadeh et al. (2006) 
validated their results indirectly by comparing local responses of two cases of double mass and 
single mass impacts. As seen already, there is no research on dynamic behavior of composite 
sandwich panels with FG core subjected to arbitrary different impactors with initial velocities, 
locations and directions. Thus, this study focused on using the newly proposed improved higher 
order theory to analyze impact on sandwich panels with FG cores. The second Frostig’s 
computational model (Frostig and Thomsen 2004) was improved to express displacement field of 
the FG core. 

In this paper, the second Frostig’s model was enhanced by introducing first order shear 
deformation theory (FSDT) in the face-sheets and incorporating inertia forces and internal in-plane 
stresses of the functionally graded core to govern equations of motion. The core of sandwich panel 
was FGM with arbitrary function power law like P-FGM (Bao and Wang 1995), exponential FGM 
(E-FGM) (Delale and Erdogan 1983), Mori-Tanaka FGM (MT-FGM) (Prakash et al. 2008) and 
sigmoid FGM (S-FGM) (Chung and Chi 2001). The contact forces between the panel and 
impactors were treated as internal forces of the system. In the case of large mass impacts, in order 
to calculate histories of the impact forces, an improved two degree-of-freedom spring-mass system 
was used for each impactor which was solved by the newly improved analytical method. Also, in 
order to validate the new spring-mass model, especially in an arbitrary location except the center, 
the sandwich panel with foam core that was subjected to a single large mass impact or multiple 
large mass impacts was modeled by ABAQUS software. 

 
 

2. Mathematical formulation 
 
In this paper, rectangular composite sandwich panel was considered which was composed of 

two composite laminated face-sheets and a flexible functionally graded core layer, as shown in Fig. 
1. The panel was assumed to have length a, width b and total thickness h, coordinates and sign 
conventions of which are shown. Below, indices t and b refer to top and bottom face-sheets of the 
panel, respectively. The assumption used in the present analysis was linear elastic small 
deformation. The sandwich panel was considered to be simply supported and functionally graded 
core. Effects of secondary contact loadings were assumed to be negligible. Fig. 1 shows that the 
system consists of n number of impactor masses striking on the top surface of face-sheet at points 
with coordinates (X1, Y1), (X2, Y2) and (Xn, Yn). Masses and velocities of the impactors were (M1, 
V1), (M2, V2) and (Mn, Vn), respectively. Therefore, the contact force only acted over impacted 
surface of the panel during the first contact duration. Impacts were assumed to occur normally 
over the top or/and bottom of the face-sheets and it was assumed that vibration of the impactor 
was negligible. 

 
2.1 Governing equations of the system of impactors and panel 
 
The mathematical formulation consisted of derivation of the governing field equations of 

motion along the appropriate boundary conditions of the face-sheets, core and impactors. They 
were derived through the Hamilton’s principle (Frostig and Thomsen 2004, Malekzadeh et al. 
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Fig. 1 Sandwich panel with laminated face-sheets, panel coordinates, dimensions and impactors 

 
 
 
2005a, b). The formulation was general and for any types of core. 

Based on the first order shear deformation theory, displacements u, v and w of the face sheets 
along the x, y (longitudinal) and z (thickness) axes with small linear displacements were expressed 
through the following relations (Reddy 2003) 
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Zj is vertical coordinate of each face-sheet (j = t, b) and is measured downward from the mid- 

plane of each face-sheet (see Fig. 1). Kinematic equations for the strains in the face sheets were as 
follows (i = t, b) 
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The displacement fields for the core were based on the second Frostig’s model (Frostig and 

Thomsen 2004) 
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         
         
       tyxwztyxwztyxwtyzxw

tyxvztyxvztyxvztyxvtyzxv

tyxuztyxuztyxuztyxutyzxu

ccc

cccc

cccc

,,,,,,,,,

,,,,,,,,,,,

,,,,,,,,,,,

2
2

10

3
3

2
2

10

3
3

2
2

10







            (3) 

 

Kinematic relations of the core for a sandwich panel that were based on small deformations 
were 
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Assuming perfect bonding between the core and face-sheets, at the upper and lower face-sheets 
of core interfaces, the compatibility conditions were 
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where hj (j = t, b) is thickness of the face sheets where k = 1 when j = b and k = 0 when j = t; Zct = ‒ hc / 2 
at the top and Zcb = ‒ hc / 2 at the bottom interfaces, respectively (see Fig. 1). Using the displacement 
fields of the core in Eqs. (3) and (1) and some simplifications, compatibility conditions from Eq. 
(5) can be written as 
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It can be seen from Eq. (6) that the number of unknowns in the core reduced to three. These 

unknowns were u0, u1 and w0. The governing equations and boundary conditions were derived 
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using Hamilton’s principle which required that 
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The first variation of the internal potential energy for the sandwich panel could be written as 
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The first variation of the kinetic energy, upon assuming homogeneous conditions for the 

displacement and velocity with respect to the time coordinate is 
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In all cases, u and v components are horizontal while w component is vertical. Also, (··) denotes 

the second time derivative. Variation of the external work equaled 
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where qt and qb are the vertical distributed static or dynamic loads exerted on the upper and lower 
face sheet of plate, respectively; nxj and nyj (j = t, b) are the in-plane external loads in the longitudinal 
and transverse direction, respectively, of the upper and the lower face sheets. By Hamilton’s 
principle (Eqs. (9)-(10)) and kinematic relations (Eqs. (1)-(6)), the governing equations of motion 
could be obtained as follows 
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In Eqs. (11)-(24), I i
n (n = 0, 1, 2), (i = t, b, c) are moments of inertia for the upper face-sheet, 

lower face-sheet and core, respectively, as follows 
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2.2 Impact force calculation 
 
In equations of motion obtained for the panel and impactors, qj (j = t, b) are impact forces described 

by series expansion as follows 
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where αm, βn = mπx /a, nπy / b and q
i
mn, (i = 1, 2,..., N) are Fourier coefficients. The concentrated 

contact loads Fi
c(t) located at points (xi, yi) of the upper face-sheets became 
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Fi

c(t) are impact forces that must be calculated. 
 
Large mass impact 
In order to calculate the impact force at any impact point (xi, yi), two degree-of-freedom 

spring–mass model was considered for mathematical modeling of the impact phenomena. Then, it 
was linearized by the newly presented improved analytical method in this paper. In this model, 
impactors and target structure were shown by masses M i

I and M i
eff, respectively. Indentation of 

impactors in the target structure were shown by spring with stiffness K i
c (i = 1, 2,..., N) and 

transverse local stiffness of impacted structure at points (xi, yi), (i = 1, 2,..., N)  were shown by 
spring with stiffness of K i

g (Fig. 2). In Fig. 2, K i
g is equal to local stiffness of the panel in ith 

impactor point and for any impactor, it was defined as 
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Because the impactors influenced different points, Eq. (29) was capable of statically calculating 
stiffness of the structure at any point. Effective mass of the simply supported sandwich panel was 
obtained as follows (Khalili et al. 2007) 
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Fig. 2 Linearized spring-mass for the ith impactor 
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The contact deformation between target structure and ith impactor was defined as 
 

)()()( 21 tZtZt iii                            (31) 
 

Using the Hertz’s contact law, impact force could be written as (Yang and Sun 1981) 
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where n is 1.5 for all of the impactors (Willis 1966). K i

c (i = 1, 2,…, N) is introduced as follows 
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K i

1 and K i
2 are defined as (Yang and Sun 1981) 
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In the present model, linear form of modified Hertzian law was used. Therefore, to obtain the 
linearized contact deformation; i.e., the contact force between the ith impactor and ith impacted 
point, the linearized contact stiffness Kc

* was used as follows 
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Using the governing equations of motion for two degree-of-freedom spring-mass system (Fig. 
2), Choi’s linearized Eq. (35) (Choi and Lim 2004) and also some simplifications, the impact force 
can be obtained as follows 
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where Ni
 = M

i
eff / M

i
I. In Eq.(36), Ki

c
* (i = 1, 2,…, N) are unknowns and must be found. To obtain 

them, first, Taylor’s binomial expansion of trigonometric sin and cosine functions were used as 
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follows. 
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By substituting Eq. (37) in Eq. (36), taking the first time derivative of Eq. (37) and some 

simplification, maximum contact time and corresponding maximum contact force can be written 
as follows 
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By considering Eq. (38) and Choi’s linearized stiffness equation, Kc

* = Kc
1/nFmax

n-1/n (Choi and 
Lim 2004), an analytical equation of linearized contact stiffness could be obtained as follows 
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By substituting Eq. (41) in Eq. (36), the impact force function can be easily calculated. The 

impact solution for a rectangular plate with simply supported boundary conditions at the top and 
bottom face-sheets was assumed to be in the following form in Eq. (42): 
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vwlC  are Fourier coefficients that are 
time-dependent unknowns and m and n are half wave numbers along x and y directions, 
respectively. j = t, b, where t and b mean the top and bottom face-sheets, respectively. 
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Using Eqs. (27)-(42), the solution was determined by substituting Eq. (42) in the governing Eqs. 

(11)-(25), which yielded a set of coupled ordinary differential equations, instead of the set of 
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partial differential equations 
 

       QcMcM                           (43) 
 

Therefore, the problem of impact on a sandwich panel was reduced to the standard structural 
response equations. [K] is (15 × m × n) × (15 × m × n) stiffness matrix, [M] is (15 × m × n) × (15 × m 
× n) square mass matrix and [Q] is (15 × m × n) × (1) vector of impact forces. By this method, the 
governing equations of motion of the impactors were not coupled with the motion equations of the 
system. Therefore, the set of second order differential equations could be easily solved using 
Runge-Kutta numerical method and MATLAB tools. 

 
Small mass impact 
Wave controlled (small mass) impact response occurs when the impactor mass is smaller than 

one fifth of the wave affected plate mass when a major wave first reaches a boundary (Olsson 
2000). The contact force between the ith impactor and the impacted face-sheet of the sandwich 
panel during the impact can usually be approximated and governed by the nonlinear Hertzian 
contact law using Eq. (32) (Gong and Lam 2000). The equation of motion for the ith impactor can 
be written as 

ii
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P

ii
P

i
I VtwtwtFwM  )0(   , 0)0(   , 0)(                 (44) 

 
Where M i

I is mass of the ith impactor, w i
p is displacement of the vimpactor and F i(t) is the 

contact force between the ith impactor and sandwich panel (See Eq. (32)). i is a superscript and 
denotes the vimpact (i = 1, 2,…, N). As Eq. (32) can be highly nonlinear, seeking an analytic 
solution for the contact force might pose a formidable task. The approach by Choi (Choi and Lim 
2004) employed a linearized effective contact law for the ith impactor-panel contact and the 
assumption of an approximate linear relationship between the equivalent contact force and contact 
deformation (See Eq. (35)). Similar to Eq. (43), dynamic equations of motion of the system of 
panel and impactors in terms of deformation and rotation components in the face-sheets and core 
were derived using the field equations along with the constitutive relations and governing 
equations. Then, by applying the Galerkin method, the governing equations were reduced to the 
following system of coupled ordinary differential equations (Malekzadeh et al. 2006) 
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Where F i(t) = Kc

*iαi and αi
 = w

i
p ‒ w0t(xi, yi) are related to transverse displacements of the 

impactors w i
p and the panel w0t(xi, yi) in the impact locations, respectively. i is a superscript and 

denotes the ith impact (i = 1, 2,…, N). 
Therefore, the problem of small mass impact on a sandwich panel was reduced to the standard 

structural response equation (coupled complete solution). [M] is (10 mn) × (10 mn) square mass 
matrix, [K] is (10 mn) × (10 mn) square symmetric stiffness matrix and {Q} is (10 mn) × 1 vector of 
impact forces. The system of coupled Eq. (45) had 10 mn × N coupled ordinary differential 
equations and could be readily solved using a suitable numerical integration procedure. 

These non-linear second order differential equations can be solved by the Runge-Kutta 
numerical method by ODE tools of MATLAB-7.0 software. 
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3. Numerical results and discussion 
 

The present two degree-of-freedom (TDOF) spring-mass model yielded the analytic functions 
which described history of contact force as well as deflections of the large mass impactor and 
panel at the impact point (See Eqs. (29-36)). In the case of small mass impact, the coupled 
nonlinear differential Eq. (45) had to be solved (complete solution). In order to verify and validate 
the results, at first, an example was considered. For single large mass impact, the numerical and 
finite element results from the present study were compared with the experimental and theoretical 
results in the literature (Anderson 2005, Malekzadeh et al. 2006). The sandwich panel considered 
for validation included two composite face-sheets and a flexible foam core. Geometrical and 
mechanical properties of the panel used for the large mass impact are shown in Table 1. The layup 
of this panel is [02, 902, 02 / core / 02, 902, 02]. In this paper, to investigate the impact problem, in 
addition to the presented method, a finite element procedure was considered. Therefore, for 
simulating the impact phenomena, ABAQUS software (version 6.8-1) was used. Numerical 
analysis is often performed by the finite element solver ABAQUS/Explicit, which uses a central 
difference rule to integrate the equations of motion explicitly (Dassault System’s Simulia Corp. 
2008). In this study, sandwich panel with foam core and impactor was meshed using SC8R 
elements, as shown in Figs. 3(a) and (b). In order to model the impactor, it was assumed to behave 
as a rigid body and no property was assigned, which meant that the impactor had infinite rigidity. 
This assumption has been used by many researchers (Kistler and Waas 1999, Tarfaoui et al. 2008). 
In order to model the impact problem by FE methods, it is clear that a contact constraint should be 
used between the target structure and impactor. For contact modeling, there are many contact laws 
that can be applied in ABAQUS. In this paper, the clearance between two surfaces (top face-sheet 
and surface of impactor) was considered to be zero and Hertzian contact law was used between the 
sandwich panel and impactor. The core was flexible; therefore, simply support boundary 
conditions were applied to the top and bottom face-sheets (Fig. 3(a)). In addition, in order to 
define the boundary conditions for the impactor, movement of the impactor in all directions was 
restricted, except for the translation along to the normal vector of the sandwich panel. Initial 
velocity of the impactor was specified as the predefined field available in ABAQUS FE code at the 
reference point of the rigid impactor. Furthermore, in the case of rigid impactor, since no material 
properties were assigned, mass of the impactor should be assigned at the reference point of the 
impactor (Fig. 3(a)). This method applies boundary conditions for the impactor and the same target 
structures have been used in previous works (Khalili et al. 2011, Swanson et al. 1991). In Fig. 4, 
the predicted and experimental contact force histories of the panel are shown. The contact force 
histories were also compared with the predictions in references (Anderson 2005, Malekzadeh et al. 
2006). It can be seen in Fig. 4 that histories of contact forces for both two-degree-of-freedom 
(TDOF) spring-mass (See Eq. (36)) and FE models were in good agreement with the previous 
works in the literature. Therefore, the TDOF model could be easily applied in large mass impact 
problems. As mentioned in the introduction, there is only one research on the dynamic behavior of 
composite sandwich panels with foam core subjected to two impactors, which was published in 
2006 by Malekzadeh et al. (2006). Therefore, the current small mass multi impacts results can be 
validated by this reference. Geometrical and mechanical properties of the panel used for impact 
analysis are shown in Table 1. Layup of the panel is [02, 902, 02 / core / 02, 902, 02]. The boundary 
conditions of the top face-sheet and bottom face-sheet were simply supported. In this example, 
mass of the impactors was 5 g or 10 g while impact velocity of all impactors was 3 m/s. Tips of the 
impacting masses were identical to diameter of 10 mm. The impactors were impacted on the top  

402



 
 
 
 
 
 

Higher order impact analysis of sandwich panels with functionally graded flexible cores 

 

(a) Boundary conditions of the top and bottom face-sheets and impactor 
 

(b) mesh used in FE modeling of the impactor and the composite sandwich panel 
 

Fig. 3 FE model of the composite sandwich panel and impactor 

 
Table 1 Material properties of the sandwich panel and impactor 

Sandwich panel with foam core Impactor 

Properties 
Face sheets (LTM45EL- 

CF0111 Carbon) 
core (110WF 

xolymethacryimide foam)
Properties 

E11 (GPa) 54 0.18 E (GPa) 207 

E22 (GPa) 54 0.18 v 0.3 

E33 (GPa) 4.84 0.18 Radius (mm) 12.7 

G12 (GPa) 3.16 0.07 Velocity (m/s) 3 

G13 = G23 (GPa) 1.87 0.07 Mass (kg) 1.8 

v12 (GPa) 0.06 0. 286   

v13 = v23 (GPa) 0.313 0. 286   

ρ (kg/m3) 1511 110   

hc (mm) ‒ 12.7   

a = b (mm) 158.7 158.7   

403



 
 
 
 
 
 

K. Malekzadeh Fard 
 

face-sheet in locations (x1 = a / 6, y1 = b / 2) and (x2 = 5a / 6, y2 = b / 2). The predicted maximum 
indentations from the present formulations (Eq. (45)) are presented in Fig. 5, which was compared 
with results by Malekzadeh (Malekzadeh et al. 2006). It can be seen that these results (based on 
the second Frostig’s model and coupled complete solution) were in quite good agreement with 
Malekzadeh’s model (based on the first Frostig’s model and coupled complete solution). For more 
validation of the newly presented method, the sandwich panel with given properties in Table 1 
subjected to two impactors was modeled in ABAQUS software. Then, the obtained results by the 
present complete solution were validated. Mass of the small impactors was 10 g while the impact 
velocity of all impactors was 4 m/s. Tips of the impacting masses were identical to diameter of 20 
mm. The impactors were impacted on the top face-sheet in locations (x2 = a / 4, y2 = b / 2) and (x2 = a / 2, 
y2 = b / 2). Deflections of the top face-sheet obtained from the presented method and FE methods are 
presented in Fig. 6. Maximum discrepancy between the results was 5.31%. 

 
3.1 Dynamic response of a sandwich panel with FGM core subjected to multiple small 

mass impactors with equal masses and the same directions 
 
In this section, dynamic response of a sandwich panel with FG core subjected to multiple small 

mass impactors is studied. In Table 2, material properties of the face-sheets and core and 
geometrical properties of the sandwich panels which were used for the small mass impact analysis 
are shown. Indexes 1 and 2 for the FG core properties are given in Table 2, representing the 
properties of the lowest (zc = hc / 2) and top surfaces (zc = ‒hc / 2) of the FG core, respectively. Core 
of the sandwich panel was functionally graded material with arbitrary FG materials; but, in this 
section, it was assumed to be power-law function (P-FGM) with power P = 1. Geometrical 
properties of the panel were a = 158 mm, a / b = 1, a / h = 3.16 and hc / h = 0.88. At first, dynamic 
response of a sandwich panel with the properties given in Table 2 subjected to two impactors with 
equal initial velocities and small masses was studied. 

 
 

 
 

Fig. 4 The predicted impact force histories at the center of the panel 
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Fig. 5 Predicted maximum indentations along the section y = b/2 

 

 
 

Fig. 6 Predicted maximum deflection of the top face-sheet along the section y = b / 2 

 
 
As no literature could be found on the impact of multiple impactors on sandwich panels with 
functionally graded core, the present formulation was indirectly validated by comparing local 
responses of two cases of double small masses and a single small mass impacts at contact points 
with identical locations satisfying Eq. (35) of Ref. (Malekzadeh et al. (2006)). In this example, 
mass of impactors was 10 g with radius of 10 mm and the panel was simultaneously impacted in 
two locations (x1 = a / 6, y1 = b / 2) and (x2 = 5a / 6, y2 = b / 2). In this example, the impact velocity of 
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all impactors was 3 m/s. The two cases were solved using both spring mass and coupled complete 
models (see Eqs. (36) and (45)) and their local dynamic characteristics in location (x1 = a / 6, y1 = b / 2) 
were compared. With these definitions, the left half of these two systems was identical. 
The two cases were solved and their local dynamic characteristics in location (x1 = a / 6, y1 = b / 2) 
were compared. It is clear that the dynamic behavior of the panel in both cases should be 

 
 

 
 

Fig. 7 Comparing the contact force histories of two cases over the top face-sheet of the panel 
with FGM core in the identical contact location (x1 = a / 6, y1 = b / 2) 

 

 
 

Fig. 8 Comparing maximum transverse deflections of two cases at the top and bottom face-sheets 
through the impact points on the top face-sheet along the section y = b / 2 
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Fig. 9 Variation of maximum deflections of the top face-sheet with respect to increase of the 
power of FGM function of the core 

 
Table 2 Properties of the sandwich panels with FG core 

0 / 90 / 0 / FGM core / 0 / 90 / 0 Material properties 

The top face sheet 
E1 = 24.51 GPa, E2 = 7.77 GPa, G12 = 3.34 GPa, 
G23 = G13 = 1.34 GPa, ρ = 1800 kg/m3, v = 0.078 

The bottom face sheet 
E1 = 24.51 GPa, E2 = 7.77 GPa, G12 = 3.34 GPa, 
G23 = G13 = 1.34 GPa, ρ = 1800 kg/m3, v = 0.078 

FGM-core 

E1(x) = 80.4e6, E1(y) = 7.77 GPa, G1(xy) = 32.2e6, 
G1(xz) = 120.6e6, G1(yz) = 75.8e6, ρ1 = 64 kg/m3, 

v1 = 0.3, E2(x) = 24.51 GPa, E2(y) = 7.77 GPa, 
G2(xy) = 3.34 GPa, G2(yz) = G2(xz) = 1.34 GPa, 

ρ2 = 1800 kg/m3, v2 = 0.078 

 
 
approximately similar. Fig. 7 shows that the contact force histories of impacts with 2 × 10 g mass 
impactors in locations (x1,2 = a / 6, 5a / 6, y1,2 = b / 2) and 1 × 10 g mass impactor in (x = a / 6, y = b / 

2) were in good agreement. Maximum discrepancy between maximum contact forces and contact 
times obtained from spring mass and coupled complete models was 6.25% and 14.25%, 
respectively. Therefore, in order to calculate the contact force history of the small mass impact 
problem, analytical spring mass model was not suitable. In this example, maximum transverse 
deflections (complete solution method) of the top and bottom face-sheets along y direction are 
presented in Fig. 8. In order to show effect of power of FG functions and initial velocities of the 
impactors on dynamic behavior of sandwich panels, it was assumed that the impactors impacted in 
(x1, y1) = (a / 6, b / 2) and (x2, y2) = (a / 2, b / 2) on the top face sheet with mass of 5 g and velocities 
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of 3 and 4 m/s, respectively. In Fig. 9, variation of maximum deflections of the top face-sheet with 
respect to different cores with different powers of FGM function (p = 1, 3, 7, 10) are shown. It can 
be seen from Fig. 9 that maximum deflections of the top face-sheets occurred under impact 
locations and also magnitudes of these parameters in location (x1, y1) = (a / 2, b / 2) were more than 
their magnitudes in other impact locations on the top face-sheet. This happened due to higher 
flexibility of the sandwich panel in location (x1, y1) = (a / 2, b / 2) and higher initial velocity of the 
impactor that was impacted in this location. Also, Fig. 9 shows that increase of the power of FGM 
function as core layer caused decrease of maximum deflections of the top face-sheet due to the 
increase of transverse stiffness of the sandwich panel. 
 

3.2 Dynamic response of a sandwich panel with FG core subjected to multiple 
impactors and different masses at the same directions 

 
This case occurs more in practical problems such as aerospace structures. In this case, it is 

important for the contact time of impactors not to be equal and for maximum deflection and other 
similar parameters not to be the same. In Tables 1 and 2, material properties of the face-sheets and 
the core are shown. Geometrical properties of the panel were (a = 158 mm, a / b = 1, a / h = 3.16 
and hc / h = 0.88). For example, a dynamic behavior of a sandwich panel subjected to two 
impactors with 10 g and 5 g masses and 3 m/s initial velocity, respectively, were investigated. 
Impacts occurred on panel in locations (x1 = a / 6, y1 = b / 2) with 5 g impactor mass and (x2 = 5a / 6, 
y2 = b / 2) with 10 g impactor mass. In Fig. 10, the three dimensional maximum deflection of the 
top face-sheet is shown. 

In Table 3, for the sandwich panel with FG core, maximum impact forces in both impact 
locations (1 × 5 g at x = a / 6 and 1 × 10 g at x = 5a / 6) are presented. It can be seen in Table 3 that 
impact force for foam core in both impact locations was usually smaller than the sandwich panel 
with arbitrary FG cores (P, S and MT-FGM core). The difference of maximum impact force for 
arbitrary FG core was very low. 

 
 

 
 

Fig. 10 Three dimensional view of the deflection of the top face-sheet 
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Table 3 Comparing maximum impact forces (N) for different types of the core 

Type of the core 1 5 gr at (x, y) = (a / 6, b / 2) 1 10 gr at (x, y) = (5a / 6, b / 2) 

Foam core 399.98 571.22 

P-FGM core, p = 1 400.03 603.94 

MT-FGM core, p = 1 399.83 603.13 

E-FGM core 397.7 593.4 

S-FGM core, p = 1 400.04 605.1 

 

 
 

Fig. 11 Comparing maximum impact forces for the panels with different powers of FGM function 

 
 

Fig. 11 shows variation of maximum impact force on the top face-sheet with power of FG core 
(P, E, S and MT-FGMs) in order to study effect of power of FG core function on maximum impact 
force. Fig. 11 shows that maximum impact force decreased with increasing power of FG function 
for MT-FGM cores and, for other FG cores, at first (until n = 1), it increased and then reached 
constant values. Difference of maximum impact force at n < 1 was more than n > 1 due to different 
changes of properties of the cores through the core thickness. 

 
3.3 Effect of the distance between the impactors on the dynamic behavior of the 

sandwich panels with FGM core 
 
Another interesting case in sandwich panels subjected to multi impacts is effect of the distance 

between the impactors on dynamic behavior of the panel. Therefore, in order to show effect of this 
parameter, it was assumed that the sandwich panel was subjected to two impactors. Therefore, the 
impact locations (x1 / a, x2 / a) = (0.2, 0.5), (x1 / a, x2 / a) = (0.3, 0.5) and (x1 / a, x2 / a) = (0.4, 0.5) 
were considered. All the impacts occurred normally on the top face-sheets at y / b = 0.5. Properties  
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Fig. 12 Maximum transverse deflection of the top face-sheet with different distances between 
the impactors impacted on the top face-sheet 

 
 
of the top and bottom face-sheets of the panel are given in Table 2 and core of the sandwich panel 
was P-FGM. The specimens incorporated a core with 44 mm thickness and overall dimensions of 
158.7 mm × and 158.7 mm (a / h = 10, hc / h = 0.88). Mass of each impactor was 5 g, impact 
velocity of the impactors was 3 m/s and radius of the impactors was 5 mm. Maximum deflections 
of the top face-sheet for given impact locations are presented in Fig. 12. As can be seen in Fig. 12, 

 
 

 
 

Fig. 13 Variation of maximum normal stresses in the top face-sheet of core interface of the 
sandwich panel subjected to two impactors in impact locations x / a = 0.4, 0.5 
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when the first impact location changed from (x1 / a = 0.2) to (x1 / a = 0.3), maximum deflections of 
the top face-sheet occurred under impact locations. Also, the region between the two impactors as 
deflected accordingly. But, when the first impact location reached x1 / a = 0.4‒0.5 or the distance 
between the two impactors reached 0‒0.1a, then the induced impact waves interacted between two 
impactors (see Eq. (36) of Ref. (Malekzadeh et al. (2006)) and maximum deflections of the top 
face-sheet occurred in the region between the two impactors. According to Eq. (36) of Ref. 
(Malekzadeh et al. (2006)), this region could be critical and it was very important in designing this 
case study and had to be considered in design process of the panel. Also, Fig. 12 shows that, in 
impact location (x1 / a, x2 / a) = (0.4, 0.5), the results obtained from single impact at each of these 
locations and from multiple impacts were very different due to effect of the impactors on each 
other when distances were low. As can be seen in Fig. 12, the critical region was so important and 
could be dangerous in practical applications. So, studying normal and shear stresses in the critical 
reign (i.e., the two impactores impacted on the top face-sheet in locations (x1 / a, x2 / a) = (0.4, 0.5)) 
was important. 

In this example, the two FG cores including P and MT FGM are considered as core layer of the 
sandwich panel and the results are compared. In Fig. 13 normal (σ c

zz) stresses for P and MT FG 
cores at the top interface (zc = ‒hc / 2) are presented. As can be seen in Fig. 13, maximum normal 
stress for P-FGM (p = 1) core was more than MT-FG core. Also, for both FGM cores, normal 
stress occurred in distance between two impact locations. 
 
 
4. Conclusions 

 
In this paper, using the improved fully dynamic higher order sandwich panel theory, dynamic 

response of a sandwich panel with FG core under multiple impactors was studied. As seen from 
the results, the present model was in excellent agreement with alternative solutions and results of 
the experimental test for both single impact and multiple impacts. As seen in the results, because 
the impact force was assumed to be concentrated on the top face-sheet, gradient of deflections on 
impact region over top face-sheet was more than that on the bottom face-sheet and also the 
maximum deflections of top face-sheet were more than those on the bottom. This behavior 
occurred due to flexibility of the core. Also, increasing of the power of FGM function as the core 
caused decreasing of maximum deflections of the top and bottom face-sheet as well as maximum 
indentation which was due to the increase of transverse stiffness of the sandwich panel. The 
present method was capable of studying dynamic behavior of the sandwich panels under multiple 
impactors in opposite directions and different locations. According to Eq. (36) of Ref.  
(Malekzadeh et al. (2006), the region between two impactors could be critical and it is very 
important in design process and must be considered. This region could be critical and it is very 
important in structural design problems. 
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Nomenclature 
 
The following symbols are used in this paper: 
 

a, b Length and width of the sandwich panel, respectively. 

Ei

k Effective elastic modulus of the ith impactor (k = 1) and target structure (k = 2) 

Fc

i
(t), F

i
(t) ith impact forces based on the linearized and Hertzian contact laws, respectively 

Fc

i

max Maximum impact force corresponding to the ith impactor 

ht, hb, hc, h Thicknesses of the top and bottom face-sheets and core and panel, respectively. 

I
i

n Moments of inertia for the face-sheets and the core (n = 0, 1, 2) (i = t, b, c) 

[K] Stiffness matrix of sandwich panel 

K i
c, Kc

*i

 
Contact stiffnesses of the Hertzian and linearized contact laws, respectively 
(i = 1, 2,…, N) 

K i
g Stiffness of impacted face sheet at ith impact point 

k = π2 / 12 Shear correction factor 

M
i

I Mass of ith impactor 

M \P
eff Effective mass of the panel 

[M] Mass matrix of the sandwich panel 

M
c

z Normal bending moment per unit length of edge of the core 

Mxy, Mxy, Myy Shear and bending moments per unit length of the edge 

n Exponent in the Hertzian contact law 

nxj, nyj In-plane shear loads along the longitudinal and transverse direction, respectively 

Nxy, Nxx, Nyy In-plane forces per unit length of the edge 

Ni Effective sandwich panel mass to the ith impactor’s mass ratio 

N Numbers of impactors 

P Power of FGM functions 

qj (x, y, t) Impact loads over the (top or/and bottom) impacted face-sheet (i = t, b) 

q
i

mn Fourier coefficients of the impact force distribution (i = 1, 2,…, N) 

Qxz, Qyz Shear forces in the face-sheets and core per unit edge length 

{Q} Vector of the impact forces 

R
c

z Normal force per unit length of edge of the core 

Ri Radius of the ith impactor 

T Kinetic energy 

t2‒t1 Time interval of analysis 

t
i

max Maximum contact time corresponding to the ith impactor 

uk, vk, wk Unknowns of the in-plane displacements of the core 
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uc, vc, wc Displacement components of the core 

u0

j
, v0

j
, w0

j
 Displacement components of the face-sheets (j = t, b) 

üc, v̈ c, ẅc Acceleration components of the core 

ü0j, v̈0j, ẅ0j Acceleration components of the face-sheets (j = t, b) 

Vi Initial velocity of the ith impactor 

vt, vb, vc Volumes of the upper and lower face sheets and core, respectively. 

zt, zb, zc Normal coordinates in the mid-plane of the top and bottom face-sheets and core 

z1
i(t), z2

i(t) Deflections of the top face sheet and the ith impactor in the ith impact location 

δ i(t) Contact indentation for the ith impactor 

δ1

i
 Static displacement of impacted face sheet in the ith impact location 

vk

i
Effective Poisson’s ratio of the ith impactor (k = 1) and target structure (k = 2) 

ρt, ρb, ρc Material densities of the face-sheets and core 

σ
i

ii Normal stress in the face sheets (i = x, y), j = (t, b) 

σ
c

ii Normal stress in the core (i = x, y, z) 

τ
c

xy, τ
c

xz, τ
c

yz Shear stresses in the core 

ε
i

0xx, ε
i

0xy, ε
i

0yy Mid-plane strain components (i = t, b) 

ε
c

zz, ε
c

xx, ε
c

yy Normal strains components of the core 

γ
c

xz, γ
c

yz, γ
c

xy Shear strains components of the core 

ψ
j

x, ψ
j

y Rotation of the normal section of the face-sheet along y and x axes (j = t, b) 

κ
i

xx, κ
i

yy Curvatures in the x- and y-directions, respectively (i = t, b) 

κ
i

xy Torsion curvature of the face-sheets (i = t, b) 
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