
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 16, No. 4 (2014) 339-356 
DOI: http://dx.doi.org/10.12989/scs.2014.16.4.339                                                 339 

Copyright © 2014 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=8         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Nonlinear cylindrical bending analysis of E-FGM plates  
with variable thickness 

 

Abdelhakim Kaci 1, Khalil Belakhdar 1,  
Abdelouahed Tounsi 2 and El Abbes Adda Bedia 2 

 
1 Department of Civil Engineering and Hydraulics, University of Saida, Algeria 
2 Laboratory of Materials and Hydrology, University of Sidi Bel Abbes, Algeria 

 
(Received November 05, 2012, Revised November 04, 2013, Accepted November 11, 2013) 

 
Abstract.  This paper presents a study of the nonlinear cylindrical bending of an exponential functionally 
graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading 
and his geometric nonlinearity is introduced in the strain–displacement equations based on Von-Karman 
assumptions. The material properties of functionally graded plates, except the Poisson’s ratio, are assumed to 
vary continuously through the thickness of the plate in accordance with the exponential law distribution; and 
the solution is obtained using Hamilton’s principle for constant plate thickness. In order to analyze 
functionally graded plate with variable thickness, a numerical solution using finite difference method is used, 
where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in 
dimensionless graphical forms; and the effects of material and geometric properties on displacements and 
normal stresses through the thickness are determined. 
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1. Introduction 

 
Traditional composites which are usually composed of two different materials have been 

broadly used to fulfill the increasing high performance industrial demands. However, due to 
discontinuity of material properties at the interface of composite constituents, the stress fields in 
this region under some loading conditions such as high-temperature environment show some kind 
of singularity. For example, in the combustion chamber of air vehicle engines or a nuclear fusion 
reaction container, the relatively higher mismatch in thermal expansion coefficients of constituent 
materials will induce high residual stresses which may consequently lead to cracking or debonding. 
To eliminate the stress singularities in ultra-high-temperature environments, the concept of 
functionally graded materials (FGMs) was first introduced in 1984 by a group of material 
scientists in Japan (Niino and Maeda 1990, Hirano et al. 1988). 

In FGMs, which are microscopically inhomogeneous and assumed to be a kind of composite 
material, the mechanical properties vary smoothly and continuously from one surface to the other. 
This is achieved by gradually varying the volume fraction of the constituent materials. By 
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incorporating the variety of possibilities inherent with the FGM concept, new property functions 
are tailored and the materials performance in harsh environments could be improved. The FGM 
plates are widely being used in different thin-walled structures; and therefore, it is important to 
study and understand the nonlinear behaviour of functionally graded plates under pressure 
loadings. 

Many different theories and solutions can be found in the literature, these methods differ to one 
another in terms of complexity and accuracy. For example studies like Tanigawa et al. (1996), 
Mizuguchi and Ohnabe (1996), Praveen et al. (1999), and Reddy et al. (1999) are based on linear 
thermal bending of FGM plates. Other studies investigated the non-linear analysis of FGM plates 
under thermal or mechanical loading like Praveen and Reddy (1998) where he investigated the 
response of functionally graded (FG) ceramic-metal plates using a plate finite element that 
accounts for the transverse shear strains, rotary inertia and moderately large rotations in the von 
Kármán sense. Reddy (2000) presented solutions for rectangular functionally graded plates based 
on the third-order shear deformation plate theory. The large deflection of FG plates under pressure 
load was studied using the von Karman strains by GhannadPour and Alinia (2006). Through- 
the-thickness stress distribution in the aluminum and alumina plates is linear whereas for the FG 
plates the behavior is nonlinear and is governed by the variation of the properties in the thickness 
direction. Using a similar method employed by Sun and Chin (1988, 1991), Navazi et al. (2006) 
performed nonlinear cylindrical bending analysis of FG plates based on the Classical Plate Theory 
(CPT). Additionally, a simple analytical solution based on classical plate theory was presented by 
Kaci et al. (2012) where they studied the nonlinear cylindrical bending of simply supported 
functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes under 
uniform pressure loading in thermal environments in order to evaluate the effect of the material 
distribution on the deflections and stresses. 

Other advanced solutions that take into account high-order plate theories (Zenkour 2007 and 
Matsunaga 2008) enhance the solution accuracy especially in thick plates. As an example Hiroyuki 
(2009) presented a two-dimensional higher-order deformation theory based on power series 
expansion for the evaluation of displacements and stresses in FG plates subjected to thermal and 
mechanical loadings. Bouderba et al. (2013) presented a thermomechanical bending analysis of 
FGM plates resting on Winkler-Pasternak elastic foundations. The solution is based on the refined 
trigonometric shear deformation theory (RTSDT) which yields only four unknowns to be solved 
without using shear correction factor. Moreover, other exact solution based on three-dimensional 
theory of elasticity are available in the literature such as Zhong and Shang (2003), Yepeng and 
Ding (2009), Kashtalyan (2004), and Yas (2011). 

It should be mentioned that plates with constant thickness have being deeply studied. However, 
Athe variable thickness plates have also received the attention of designers and researches. Such 
modification in shape can improve the smoothness of the stress distribution and also can help in 
decreasing the geometrical discontinuities. However, studies on variable thickness plates using 
either closed form solution or numerical methods are limited in number. Fertis and Mijatov (1989) 
developed a general method to solve variable thickness plates based on equivalent flat plates. Xu 
and Zhou (2008) presented the three dimensionally elasticity solution for simply supported 
rectangular plates with variable thickness. Efraim and Eisenberger (2007) studied the vibration of 
variable thickness thick annular isotropic and FGM plates where the equations of motion including 
the effect of shear deformations using the first-order shear deformation theory are derived and 
exact solution for vibration frequencies and modes are obtained. Pradhan and Sarkar (2009) 
studied bending, buckling and vibration analysis of tapered beams made of functionally graded 
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materials using Eringen non-local elasticity theory and the associated governing differential 
equations are solved using Rayleigh-Ritz method. Other simple procedure is presented by Atmane 
et al. (2011) where he studied the free vibration of sigmoid functionally graded beams with 
variable cross-section based on Bernoulli-Euler beam theory. 

It is intended here to accurately determine the displacements and stresses in exponential 
functionally graded plates in cylindrical bending subjected to uniform pressure. To this end, based 
on Classical Plate Theory (CPT) the governing equations are obtained. It should me mentioned 
that The CPT is a powerful and relatively accurate for thin plates. By using the von Karman 
nonlinear strains and gradual variation of material properties, the nonlinear equilibrium equations 
are obtained and then reduced to a linear differential equation. This equation is solved for simply 
supported BCs. After that a finite difference method is developed to have the ability of including 
the plate thickness variation. The effects of many parameters such material properties, loading, and 
plate shape and dimensions are studied. 

 
 

2. Theoretical formulations 
 
2.1 Properties of the E-FGM constituent materials 
 
In this study, elastic rectangular E-FG plates having uniform thickness h and length l = 2a, are 

considered. Plates are made of a mixture of ceramics and metals; and it is assumed that their 
composition is gradual and that they are smoothly varied from the ceramic-rich top surface of the 
plate (z = +h / 2) to the metal rich bottom surface (z = ‒h / 2). As a consequence, the material 
properties of FGM plates, such as the Young’s modulus E is function of depth z, measured from 
the middle plane of plate. 

There are many analytical and computational models that discuss the issue of obtaining suitable 
functions for material properties of FGMs. Also, there are several criterions for selecting the most 
suitable function. These functions are meant to be simple and continuous, and should have the 
ability to exhibit curvatures, both ‘‘concave upwards” and ‘‘concave downwards” (Markworth et 
al. 1995). In the present study, an exponential law which does not present curvatures in both 
directions is utilized. The functional relationship between E and z for the ceramic–metal FGM 
plates is given in the below equation; as explained by Sallai et al. (2009) 
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where E(z) indicates a typical Young’s modulus and E1 and E2 denote Young’s modulus of the 
bottom (i.e., z = +h / 2) and top surface (i.e., z = ‒h / 2), respectively. 

 
2.2 Governing equations for nonlinear cylindrical bending of E-FGM plates 
 
The fundamental equations of large deflection analysis of pressure loaded functionally graded 

plates are briefly outlined in this section. The classic plate theory (CPT) is applied throughout the 
work. As a result of the CPT assumptions, the Kirchhoff normalcy condition is incorporated, 
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therefore 
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where (u, v, w) are the displacements in the (x, y, z) directions, respectively. Also (u0, v0, w0) are 
the displacements of the mid- plane in the (x, y, z) directions, respectively. 

The nonlinear von Karman strain–displacement relations are used as follows 
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The constitutive relations for nonzero strains are given by 
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Using the material properties defined in Eq. (1), stiffness coefficients, Qij, can be expressed as 
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Use of Hamilton’s principle yields the Euler–Lagrange equations as (see Reddy 2003) 
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Where q is the transverse load. The stress, shear force and moment resultants are defined as 
follows 
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From Eqs. (13) one can conclude that 
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Consequently, Eqs. (14) and (15) become 
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Upon substitution of Eqs. (6), (7), and (8) into Eqs. (9) and the subsequent results into Eq. (16), 
the generalized stress resultants in terms of displacement components will be obtained which can 
be presented as follows 
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A11, B11 and D11 are called extension, bending-extension coupling, and bending stiffness 
coefficients, respectively, and are defined as follows 
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Substituting Eq. (20) into Eq. (21) yields 
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By substituting Eq. (22) into Eq. (18), one can obtain 
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3. Analytical solution 
 

In this study it is assumed that an E-FG plate is subjected to a uniform transverse load q on its 
top surface. It is intended here to obtain analytical solution for the non-linear bending of the E-FG 
plate. 

Eq. (23) is a linear fourth-order ordinary differential equation whose solution is readily 
available. The general solution is as follows 
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where C1 and C2 are constants, which must be determined using BCs at either edges of the plate. 
Assume that the origin of the coordinate system is located at the plate mid-span; accordingly, the 
simply supported BCs yield 
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Since Nx is an unknown constant along the x-axis, the in-plane displacement u can be derived 
by integrating Eq. (13) over the span of the plate, using the general solution shown in Eq. (26). 
The boundary conditions can be expressed as 
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Substitution of Eq. (26) into Eqs. (30)-(32) and evaluating the integral in Eq. (32) yield 
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These three equations contain three unknown quantities: C1, C2 and N 0
x; and a numerical 

technique must be used to obtain the solution. 
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4. Finite difference solution 
 
The differential equation, Eq. (23), is valid for FGM plate with constant thickness along its 

length. However, in case of variable thickness plate the closed form solution is complex. Thus, in 
such case the finite difference method can be used effectively to evaluate the behavior of FGM 
plates with variable thickness. 

A finite difference solution using constant node spacing, Δh, is outlined below. The finite 
difference mesh contains n + 4 nodes, where the nodes are numbered with real nodes from x = a to 
x = ‒a, in addition to virtual nodes (1, 2, n + 3, n + 4) which are used to allow derivatives to be 
defined at nodes 3 and n + 2. Subscripts are used to define nodes’ numbers in the equations. 

In finite difference format, Eq. (23) can be written as follows 
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It should be noted that N 0
x(i) and q(i) are considered to be constant along the plate. 

So, the equation can be simplified as 
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Noting that when applying this equation at node 4 and node (n + 1) we will have two virtual 

nodes which are node 2 and node (n + 3). 
Application of boundary equations 
• The deflection w(‒a) = 0 so, at node 3 we have w(3) = 0 
• The deflection w(a) = 0 so, at node (n + 2) we have w(n+2) = 0 
• The moment Mx(‒a) = 0, and since w(3) = 0, the Eq. (30) can be written after simplification 

as follows 
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This equation is then used to eliminate the virtual node 2 by substituting it in the global Eq. 
(23) at node 4 where we get 
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• The moment Mx(a) = 0, and considering that w(n+2) = 0, the Eq. (31) can be written after 
simplification as follows 
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This equation is then used to eliminate the virtual node (n + 3) by substituting it in the global 
Eq. (39) at node (n + 1) where we get 
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Finally, the combination of Eqs. (39), (41), (43) yields the following system of equations 
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The above n simultaneous equations cannot be solved since the constant N 0
x is not known. On 

the other hand, the boundary equation presented by Eq. (32) must be satisfied. Therefore, the idea 
is to find the correct value of N 0

x that makes u(a) = 0. 
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Since N 0
x is constant along the plate (x-direction), the trial and error technic is used to evaluate 

N 0
x, where at the first iteration an initial value equals to zero is assigned to N 0

x, then the 
simultaneous equations are solved. After that and according to Eq. (32), the axial displacement 
u(x) is evaluated using finite difference method as follows 
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Numerical integration technic using trapezoidal method is then used to evaluate u(a) 
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Where n0 is the middle node that corresponds to x = 0, 
2

1)4(
0




n
n . 

The obtained value of u(a) (at the first iterations its value almost dose not equal to zero), is 
used to estimate a new value of N 0

x using a simple linear interpolation. 
In the second iteration, the new value of N 0

x is used to solve the simultaneous equations (Eq. 
(44)). The same above steps are followed until the value of N 0

x converges to a value that satisfies 
the following tolerance ε 
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It is noted that the value of N 0
x converges very fast since it depends linearly to the value of u(a) 

where, when using a tolerance of ε = 0.0001, the solution converges mostly after 5 to 10 iterations. 
 
 
5. Numerical results and discussion 

 
It is assumed that the Young’s modulus at the top surface of the E-FGM plate, E2, is 70 GPa, 

while that at the bottom surface of the E-FGM plate, E1, varies with the ratio of E1/E2. Note that 
Poisson’s ratio is selected constant and equal to 0.3 for both of the constituents. The plate 
geometry is chosen so the h = 5 mm and a = 0.5 m. The results obtained from the analysis are 
presented in dimensionless parametric terms of displacements and stresses as follows 

 

• side coordinate x̅ = x / a, 
• thickness coordinate z̅ = z / h, 
• transvers deflection w̅ = w / h, 
• axial displacement u̅ = u / a, 
• axial stress σ̅  x = σx / [Q11m(h / a)2], (Q11m stiffness coefficient of metal plate), 
• load parameter qn = q0a

4 / (Emh4). 
 
5.1 Analytical solution Vs. finite difference solution 
 
The adopted mesh density (number of nodes) was chosen according to Fig. 1 which presents 
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Fig. 1 convergence of finite difference solution 

 
 
the solution convergence in terms of the mesh density where it is clear that the solution converges 
fast and using mesh with 1001 nodes is sufficient in terms of accuracy. Thus, the number of nodes 
used in the finite difference (FD) mesh was 1001 nodes, and this value was kept for all the FD 
analysis. 
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Fig. 2 Non-dimensional deflections due to transverse load q = 1 kN/m2 versus non-dimensional 
length for different E1/E2 
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Fig. 3 Non-dimensional axial displacement due to transverse load q = 1 kN/m2 versus non- 
dimensional length for different E1/E2 
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Fig. 4 Variation of the non-dimensional center deflection w̄max of the E-FG plate versus qn for different E1/E2

 
 

In point of view of comparison between the exact solution and finite difference solution for 
constant plate thickness, all Figs. 2-5 show perfect agreement between the two solutions. 

 
5.2 Effect of E1/E2 on E-FG plate with constant thickness 
 
Figs. 2 and 3 illustrate the variation of the non-dimensional deflection and axial displacement 
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versus non-dimensional length for different ration of E1/E2, respectively. The curves shows the 
more E1/E2 ratio, the smaller displacements (for w̄ and ū), because of the great stiffness of the E-FG 
plate for larger E1/E2. 

Fig. 4 illustrates the variation of the non-dimensional center deflection of the E-FG plate with 
different E1/E2 subjected to a uniform transverse load. The results show that the homogeneous 
plate (E1/E2 = 1) has highest deflection. Besides, the plate exhibits different behaviors in positive 
and negative transverse loadings. In negative loading, at the beginning of loading, the analysis 
yields larger deflections. However, in positive loading, we remark an important effect of E1/E2 
than the case of negative loading. 

Fig. 5 show through the thickness distributions of the non-dimensional axial stress σ̄x of the 
E-FG plate subjected to q = 1 kN/m2 for different E1/E2. Under the application of the pressure 
loading, the stresses are compressive at the bottom surface and tensile at the top surface. From this 
figure it can be observed that as the ratio of E1/E2 increases, the magnitudes of the tensile stresses 
increase while the compression stresses at the bottom surface do not affected significantly. 

 

5.3 Effect of E1/E2 on E-FG plate with variable thickness 
 

Herein the effect of E-FG plate with variable thickness is presented. The thickness of the E-FG 
plate is described by arbitrary function of the longitudinal coordinate x; h = h(x). Two parabolic 
variation has been adopted, parabolic concave and parabolic convex, where the thickness has the 
variation indicated by Eq. (48) (see Fig. 6) .The thickness at the end is kept constant (5 mm), while 
two values are assigned to the thickness of the plate at the dim-span, 2.5 mm and 7.5 mm. 
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Fig. 5 Through the thickness distribution of non-dimensional axial stress σ̄x of the E-FG plate 
subjected to q = 1 kN/m2 for different E1/E2 
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Fig. 6 E-FG plate parabolic thickness variation 

 
 

Where he is the plate end-thickness (at x = ± a), and hc is the thickness at mid-span (at x = 0). 
Fig. 7 presents the variation of the maximum deflection wmax versus the ratio E1/E2 for different 

E-FG mid-span thicknesses. According to Fig. 7, it can be noted the mid-span thickness has a 
significant effect on the maximum deflection, where, as the mid-span thickness increases, the 
maximum deflection decreases. Besides, the effect of the ratio E1/E2 on the maximum deflection is 
almost the same form for different plate mid-span thicknesses. 
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Fig. 7 Effect of E1/E2 and E-FG mid-span thickness (hc) on the non-dimensional maximum 
deflection due to transvers load q = 1 kN/m2 
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Fig. 8 Effect of E1/E2 and E-FG mid-span thickness on the non-dimensional maximum axial 
displacement due to transvers load q = 1 kN/m2 
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Fig. 9 Variation of the non-dimensional deflection w̄max of the E-FG plate versus qn and E1/E2 
for E-FG plate with mid-span thickness hc = 2.5 mm 

 
 

Fig. 8 shows the effect of the ratio of E1/E2 on the axial displacement for E-FG plate with 
different mid-span thicknesses. It can be noted that as the mid-span thickness increases, the axial 
maximum displacement decreases. However, increasing mid-span thickness of E-FG has a 
negligible effect on the maximum axial displacement for values of E1/E2 greater than 10. 

Figs. 9 and 10 present the effect of transvers load on the maximum deflection for different 
E1/E2 ration and E-FG mid-span thicknesses. Again, the curves reveal that the smaller the E-FG 
mid-span thickness is, the greater the deflection is. Besides, for E1/E2 = 30, the effect of load 
variation on the deflection becomes insignificant when the mid-span thickness of the E-FG plate is 
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Fig. 10 Variation of the non-dimensional deflection w̄max of the E-FG plate versus qn and E1/E2 
for E-FG plate with mid-span thickness hc = 7.5 mm 
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Fig. 11 Through the thickness distribution of non-dimensional axial stress σ̄x of the E-FG plate 
having mid-span thickness of hc = 2.5 mm for different E1/E2 

 
 
greater than its ends. In addition, the maximum deflection versus transvers load curve becomes 
smoother for grater E1/E2 and thicker E-FG mid-span thickness. 

Therefore, according to the above curves of displacements (transvers and normal 
displacements), the displacements (transvers and axial displacements) are noticed to be highly 
dependent on the E-FG stiffness. The latter is related to the material properties; that’s to say the 
ratio E1/E2 and the geometric properties i.e., m E-FG mid-span thickness. Thus the greater the 
stiffness is (higher E1/E2 and/or thicker mid-span), the lower the displacements are and vice versa. 
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Fig. 12 Through the thickness distribution of non-dimensional axial stress σ̄x of the E-FG plate 

having mid-span thickness of hc = 7.5 mm for different E1/E2 

 
 

The effect of E1/E2 ration and E-FG mid-span thickness on the axial stress is shown in Figs. 
11-12). The results show that the E-FG mid-span thickness significantly affect the axial stress, 
where, when increasing the plate mid-span thickness by 50% (from 5 mm to 7.5 mm) leads in 
decreasing the axial stresses to the quarter (from 7.68 to 1.81). While, decreasing the plate 
mid-span thickness by 50% (from 5 mm to 2.5 mm) leads to a significant increase in the axial 
stresses up to 6 times (from 7.68 to 47.27). 

 
 

6. Conclusions 
 
The nonlinear cylindrical bending of the E-FG plates under pressure loading was studied. 

Fundamental equations for thin E-FG plates have been obtained using the Von-Karman tensor for 
large deflections. The material properties of E-FG plates were assumed to vary continuously 
through the thickness of plates; and were graded according to two power-law distributions. For the 
cylindrical bending problem, it is found that the plate Navier equations according to the large 
deflection theory can be expressed as linear equations for the deflection, leaving nonlinear 
boundary conditions. This linearity of the differential equations greatly simplifies the large 
deflection analysis. E-FG plates with variable thickness were also studied using finite difference 
method. Two types of parabolic thickness variations were adopted, parabolic concave and 
parabolic convex shapes with mid-span thickness equals to 50% and 150% of the end-plate 
thickness, respectively. The comparison between the exact solution and the finite difference 
solution of the differential equations shows that they are identical. 

As a general conclusion, it was found that the thickness variation has a significant effect on the 
behaviour and stress distribution of the FGM. The results show that varying the E-FG plate 
thickness at its mid-span can affect the mid-span deflection and the axial displacement. In general, 
the displacements (trasvers and axial displacements) found to be greatly affected by the E-FG 
stiffness which is related to material properties (E1/E2) and geometric properties (E-FG mid-span 
thickness). Thus, the greater the stiffness is (higher E1/E2 and/or thicker mid-sapn), the lower the 
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displacements are and vice-versa. 
On the other hand, the axial stresses were found to be significantly affected by the mid-span 

thickness variation especially for higher ratios of E1/E2, where for high ratio of E1/E2, a high axial 
stress can be obtained when reducing the E-FG mid-span thickness. 
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