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Abstract. In this paper a computer program is developed for the determination of geometrical and material
properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate
stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the
Vlasov’s beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical
examples are given, with complete information about input and output.

Keywords: thin-walled composite beam; open section; computer program,; classical lamination theory;
arbitrary lamination

1. Introduction

Thin-walled composite elements has recently become the focus of intense researches as a result
of their expanded use as structural components within the fields of mechanical, civil, aeronautical
engineering, and other industries. These structural components made of advanced composite
materials are ideal for structural applications because of the high strength-to-weight and
stiffness-to-weight ratios. Another advantage of composites is their flexibility in design. For
example, mechanical properties of the laminate can be altered simply by changing the stacking
sequence, fibre lay-up and thickness of each ply. Consequently, design may be optimized under
different set of conditions to achieve the optimal performance of the structure.

In structural analysis it is often necessary to determine the material-geometry properties of
thin-walled composite beams, with open cross-sections. The hand calculation used to determine
them, although mostly elementary, are tedious, time consuming and numerical errors are easily
introduced. Though many papers are written on behavior of thin-walled composite beams
(Banerjee 1998, Banerjee and Su 2006, Cardoso et al. 2009, Cardoso and Valido 2011, Chen and
Hsiao 2007, Kim et al. 2007 and 2008, Lee 2001, Machado and Cortinez 2005, Mechado et al.
2007, Piovan and Cortinez 2007, Rajasekaran 2005, Sapountzakis and Tsiatas 2007, Sapountzakis
and Mokos 2007, Vo and Lee 2009, Vo et al. 2011), to the authors’ knowledge, no general
computer program for the determination of the material-geometry properties of thin laminated
section is available. The computer program presented here is fairly common and gives the
structural designer the ability to analyze thin-walled composite sections of any shape and arbitrary
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Fig. 1 Geometry and reference systems

laminate stacking sequence quickly and efficiently. This paper is an extension of the author’s
previous works (Proki¢ 1999 and 2000).

The number of input data is minimized and there are no set rules to follow in the joint, element
and lamina numbering, which makes program’s application easy even by a practing engineer who
cannot go into the details of composite thin-walled theory.

2. Basic theory

A straight thin-walled laminated composite beam of length / with an open cross-section is
considered (Fig. 1). In order to determine the geometry of the cross-section of the beam two
coordinate systems are used. The first of these is an orthogonal Cartesian coordinate systems (x, y,
z) for which the z-axis is parallel to the longitudinal axis of the beam. The second coordinate
system is a local one (e, s, z) where e and s are profile coordinates measured along the normal to
the contour (the midline of the cross-section) and along the contour line, respectively. The (e, s, z)
and (x, y, z) coordinate systems are related through an angle of orientation a. The coordinates of
the contour in the (x, y, z) coordinate system are (X, y, z). Point P is called the pole.

2.1 Kinematics of the beam

Following Vlasov’s beam theory the basic assumptions of thin-walled laminated beams are
introduced.
* The cross-section of the beam is not distorted during the deformation of the beam.
* The shear strains in the middle surface of the wall are negligible.
e The Kirchhoff-Love assumption in classical plate theory remains valid for laminated
composite thin-walled beams.



Automatic analysis of thin-walled laminated composite sections 235

Based on assumption above, the displacements u., v. and w. at any point on the beam
cross-section can be expressed by four components, two translations up, vp of arbitrarily taken pole
P, the cross-section rotation ¢ about the pole P, and axial displacement w of centoid.

U, Zup_(y_yp)(o
Ve =Vp +(x—xp)(0 (D)
W, =W—UpX —Vpy —Q'0p

where w),

Wp =I;hpds+hnpe ()

is generalized warping function with respect to pole P.

hp and h,p, perpendicular distance from tangent and normal at arbitrary point of cross-section to
the point P, are positive when normal 7 and tangent 7 respectively, are rotating counterclockwise
about the pole P, when observed from the positive z direction. The second term on the right-hand
side of Eq. (2) determines the relative warping in relation to the midline of cross-section. This term
has little effect on the torsional properties of a thin profile and most frequently is neglected in the
technical theory of thin-walled beams. However, its inclusion does not present additional
difficulties, and therefore this term has been included in the computer program. The warping by
definition must be the same at a node where a number of members are joined together.

Consistent with displacement field, Eq. (1), the non-vanishing strain components are

o " " "
E.=W —UpX —Vp) —Q Wp

3)
7, =2¢le
2.2 Constitutive equations
For a unidirectionally reinforced lamina the stress-strain relations is
0, Oy On 3
o, | ={0n O & 4)
T2 1, Oss L7712

where the terms Qj; are so-called reduced stiffnesses Jones (1975) for a plane stress state in the 1-2
plane of lamina k. The terms Q; are made up of material property with respect to each layer and
can be shown in terms of the engineering constants

E v, E E
O, = I_E O, = = _2E Oy = 3 E O = G12 ®)
1-v: =2 1-v3i =2 1-vi =2
12 12 12
E E,

1 1

Generally, the principal material coordinates 1-2 for orthotropic lamina & do not coincide with
beam coordinates s-z. If the principal 1-axis making an angle $ with respect to reference z-axis the
stress-strain relation in s-z coordinate system is
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o, Qll le Qlé €,
o, | =|10n On Ox||& (6)
Te e Q6 Qo O | 17

in which transformed reduced stiffness Q; are

0y, =0, m" +0yn’ +2m’n* (0, +204)

0, =m*n* (0, + 0y, — 404 ) + (m4 ¥ n4)Q12

Oy =| Qi = 0” =(Qyy + 2045 ) (m* =n”) |mn
0y, =0y n* +0ym” +2m’n* (0, +204)

Oy = [anz —Q0,m* +(0), + 2Q66)(m2 - nz)]mn

O = (Q“ +0p» =20, )mznz + O (m2 —n’ )2

(7

where m = cos 3 and n = sin §.
By using free stress in contour direction, g, = 0, the above equation can be simplified as

|:O-z:| =[§11 516] [‘5}} (8)
T i Q]é Q66 k Vs

- _ D2 = _ 2.0 -
QM:QII_% Q16=Q16_% Q66:Q66_% )

where

Stress resultants at the cross-section can be derived by integrating the corresponding stresses
over the cross sectional area, as given by

N=|[ o.dF
M, :ijazde
M, :—”FazxdF (10)

M,, = [ o.0dF

T, =2[| redF

In Eq. (10), N represents the axial force, M, and M, the bending moments with respect to the x
and y axis, 7 the Saint Venant torque, M, the bimoment and F the area of the cross-section.
Taking into account the Egs. (3) and (8) the forces may be defined in terms of componential
displacements as
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N = ”[ =11 (W, —UpX —Vpy = (0"5013) + élez(ole}dF
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T
1, =2[[ OgxedF =2[ (B,sX + Dy cosa)ds

1,= 2_” élﬁyedF = 2J‘A;(Blﬁ)7+ D,¢sine)ds
F

(13)
Iewp = 2JIF Q16a)PedF :2.[3(3160_)“) + Dl6th)dS
1, 24_” FéésezdF 24.[ Degds
where
X=X+ecosa
y=y-+esina (14)
Wp = 0p +h,pe
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Aij = _ijde
(15)
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2.3 Center of gravity and shear center

In all integrals (13) are incorporated both the geometry and material properties of cross-section.
By appropriate selection of Cartesian coordinate system, pole P and starting point O; we can
achieve that

S.=8=I1_=1,=1, =1, =0 (16)

y Xz wp xwp yop =

So, we get the simplified expressions for stress resultants

TN 4 0 0 0 S Twl
My 0 xx 0 _Ixe M};
M, |=| 0 I, 0 -1, | (17)
My, | [0 0 0 I, |
T; J Se _Ixe _Iye _[a)pe Iee L ¢, B

In this case, using the principle of virtual work Proki¢ (1996), the governing equations of thin
walled composite beam can be written with displacements as primary unknowns

AW+ S 0" =-p.
Ixxulr;"_ xeq)m =P~ m)’f (1 8)

m__ '
[yva - ye(p _py +mx

2 " m " "_ ’
I(o,)w,)(P - Sew + IxeuP + IyevP - Iee(P =mp + mzo,,
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Analyzing the system of equations above, we can conclude that the point of cross-section P,
which satisfy conditions /,p = Lp = L,p = 0, does not have the same significance as in the
classical theory of thin-walled beams (shear center). Torsion and bending in this case cannot be
separated and are coupled together with the extension.

The standard procedure for evaluating the ‘center of gravity’ and ‘shear center’ of open profile
was described by Murray (1984). Only a brief recapitulation of procedure will be given at this
point.

* In the first step we find all the section properties starting with an arbitrary set of axes xOy,

with pole P located at the origin and starting point O; located at the first joint of profile.

* A parallel shift of reference axes to the point C , whose coordinates are defined as

S S,
x, =— =— 19
c=F Vo= (19)

The location of P is retained but the coordinates of the starting point are chosen in a way which
makes
S =0 (20)

» The axes x and y should be rotated in the direction of the principal axes x and y, the angle of
rotation y being given by

21
tan 2y = I—y 21

w Ly
The pole is moved to the point which is chosen so that

l,,=0 1, =0 (22)

3. Numerical procedure

The arbitrary midline of the cross-section is approximated by a polygonal one. In this case the
section is composed of a series of mutually connected prismatic thin-walled elements (segments).
The number of elements adopted depends on the desired accuracy. Points at which two or more
elements are connected will be indicated as joints of cross-section. Joints and elements may be
marked arbitrary, and any of the end joints of en element may be chosen as the first joint.

Each orthotropic layer of laminate is defined by its thickness, its location in the laminate, its
material properties and fibers orientation. Note that the contour coordinate s is oriented from the
initial node to the final node of the element, which affects the n-axis orientation. The fiber
orientation of layer £ is given by the angle 9, which is positive counterclockwise around n-axis and
starting from the z-axis.

Marking the joints of an element with i and £, (Fig. 2), we may write

X=X, —ssina+ecosa
: (23)
Y=y, +scosa+esina

and further, supposing that the pole P is located at the origin
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Fig. 2 Polygonal segment showing the definition of the various variables

_ s
@p = Bp + hype = @p —(0p; — Opy )7+the

h,p =x;sina—y,cosa—s (24)

hnp(l.) =x;sina—y,cosa

Now, all integrals (13) can be derived explicitly in the form convenient for programming,
Proki¢ (1996)

2 2
.= Aller B, (x,+x, )cosa+D,, cosza} !
(25)

2, 2
C+ + v, . .
1,=> A“L?’y’yk+3“(yi+yk)sma+Dllsm2a}Z

2x,y; 2%, Y, + XY, + XY
I :z A, kk6 K T Xk

Wp; + O 1
SwP = Z|:A11PTPI{+BH (th(i) _Elﬂ !

X +x, . + )
IB“( ’2 ksma+%cosaj+Dnsmacosa}Z
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¥ represents the sum of each segment of the cross-section, and

nl — nl —
4; = ZQi/,k (he=h ) =205t
k=1
nl

nl
ZQ,,k(lf B 1) =205 ker st (26)

k=1
_ nl _ £
EZQ’M (hli_hli—l) ZQ k(eTktk E]
k=1 k=1

4. Computer program

NUME = number of A computer program in FORTRAN 77 is developed, capable of analyzing
both the geometry and the material properties of thin-walled composite beams with arbitrary open
cross-section. A following data should be prepared according to their respective format, and in the
order in which they should be entered:
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SET 1 (A20)
UFILE = name of file with input data

SET 2 (315)
NUMIJ = number of joints elements
NUMM = number of different materials

SET 3 (4F10.0)

E1(I) = Young’s moduli in the 1-direction for material of type (I)
E2(I) = Young’s moduli in the 2-direction for material of type (I)
P12(I) = Poisson’s ratio for material of type (I)

G12(I) = shear moduli in the 1-2 plane for material of type (I)

SET 4 (2F10.0)
X(I) = x-coordinate of joint “I”, with reference to arbitrary chosen set of axes
Y (I) = y-coordinate of joint “I”’, with reference to arbitrary chosen set of axes

SET 5 (315)

N1(I) = first joint number of element “I”

N2(I) = second joint number of element “I”

NL = number of layers (laminas) for element “I”

SET 6 (3F10.0, I5)

TL = thickness of the layer (J) of element (I)

EL =distance to the centroid of layer (J) of element (I)
OL = angle of orientation of layer (J) of element (I)
TM = type of material (J) of element (1)

A listing of the program is given in Appendix A.

5. lllustrative examples

A thin-walled composite beam with channel cross-section shown in Fig. 3, is considered,
(Cardoso et al. 2009). The cross-section consists of three equal laminates (elements), identified in
the figure as 1, 2 and 3, each of them with four layers [45/-45]; and total thickness # = 3 mm.

The following engineering constants of composite beam, corresponding to S2-glass/epoxy, are
used

E, =483 GPa

E, =19.8 GPa 27)
v, =027

G,, =8.96 GPa

The coordinate system is established arbitrary and the elements and joints are numbered as
shown. The description of input data and computer output is given in Tables 1 and 2.
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Table 1 Input data

[45/-45),
3

I

S

[45/-45]

50

Fig. 3 Channel cross-section

Y

4 3 1
48.3 19.8 0.27 8.96

0. 0.

50. 50.

50. 0.

0. 50.

2 4 4
0.75 1.125 0.785398 1
0.75 0.375 -0.785398 1
0.75 -0.375 -0.785398 1
0.75 -1.125 0.785398 1

3 1 4
0.75 12125 0.785398 1
0.75 0.375 -0.785398 1
0.75 -0.375 -0.785398 1
0.75 -1.125 0.785398 1

2 3 4
0.75 1.125 0.785398 1
0.75 0.375 -0.785398 1
0.75 -0.375 -0.785398 1
0.75 -1.125 0.785398 1
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Table 2 Output data

Number of Joints = 4
Number of elements = 3
Number of materials = 1

Type of material El E2 N1 G
1 0.48300E+02 .19800E+02 .27000E+00 .89600E+01
Element 1
Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater.
1 .75000E+00 .11250E+01 .78540E+00 1
2 .75000E+00 .37500E+00 -.78540E+00 1
3 .75000E+00 -.37500E+00 -.78540E+00 1
4 .75000E+00 -.11250E+01 718540E+00 1
Element 2
Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater.
1 .75000E+00 .11250E+01 .78540E+00 1
2 .75000E+00 .37500E+00 -.78540E+00 1
3 .75000E+00 -.37500E+00 -.78540E+00 1
4 .75000E+00 -.11250E+01 .78540E+00 1
Element 3
Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater.
1 .75000E+00 .11250E+01 .718540E+00
2 .75000E+00 .37500E+00 -.78540E+00 1
3 .75000E+00 -.37500E+00 -.78540E+00 1
4 .75000E+00 -.11250E+01 .78540E+00 1

Original axes

Principal axes

Joint X-coordinate Y-coordinate X-coordinate Y-coordinate
1 .00000E+00 .00000E+00 -.33333E+02 -.25000E+02
2 .50000E+02 .50000E+02 .16667E+02 .25000E+02
3 .50000E+02 .00000E+00 .16667E+02 -.25000E+02
4 .00000E+00 .50000E+02 -.33333E+02 .25000E+02
Centroid .3.3333E+02 .25000E+02 .00000E+00 .00000E+00
Principal pole 71381E+02 .25000E+02 .38048E+02 71844E-05
Element Joint-I Joint-J Length
1 2 .500E+02
2 1 .500E+02
3 3 .500E+02
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Table 2 Continued

Sectional quantities (in relation to principal axes and principal pole)

F = _.11901E+05
IXX = .311116E+07
IYY = .544522E+07
IWW = .140146E+10
SE = .00000E+00
IXE = -.758923E+03
IYE = .151785E+04
IWE = -126487E+05
IEE = .174837E+05
Angle (in radians) of principal axes = .000000E+00
Joint Wrapping function
1 -.71548E+03
2 -.53452E+03
3 .53452E+03
4 .71548E+03

In the Table 3, for the same cross-section, the sectional quantities, for different laminate
stacking sequences in flanges and web, are presented.

Table 3 Variation of sectional properties for different laminate stacking sequences

. 1 [0/0] 1 [0/0], 1 [45/-45] 1 [45/-45
Lig“_nates 2 %0/01 2 {0/015 2 {45/-4515 2 %45/-4512
y-up 3 [0/0], 3 [45/-45], 3 [0/0], 3 [0/0];

F [kN] 217350E+05 .182200E+05 .147051E+05 147051 E+05
I [kNmm®] .604293E+07 487556E+07 385679E+07 385679E+07
1, [KNmm’] .105765E+08 984421E+07 617751E+07 617751E+07

Lo, [KNmm®] 272211E+10 236190E+10 .169708E+10 .169708E+10
S, [kKNmm] .000000E-+00 .000000E-+00 .000000E-+00 .101190E+04
I, [kNmm’] .000000E-+00 _758923E+03 .000000E-+00 _.124637E+05
I, [KNmm’] .000000E-+00 .000000E-+00 151785E+04 .000000E-+00
Lo, [KNmm’] .000000E-+00 000000E+00  -.665521E+05 .000000E-+00
L. [kNmm’] .120960E+05 .138919E+05 .156878E+05 .156878E+05
de [mm] 33333E+02 30118E+02 37317E+02 37317E+02

dp [mm] 71381E+02 J72971E+02 .68846E+02 .68846E+02
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6. Conclusions

The hand calculations of material-geometric properties of a thin-walled composite beam with a
complex cross-section are tedious and difficult. The presented computer program provides an
opportunity for an automatic evaluation of open al properties of thin-walled composite beams with
arbitrary lamination. The geometrical data which need to be entered to perform the analysis have
been brought to the minimum: the coordinates of joints, the elements connecting them, thickness
and position of layers. The listing of the computer program is given.
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Appendix A. Listing of the source program

PROGRAM COMPOSITE

C

C UFILE=NAME OF FILE WITH INPUT DATA

C JK=DISPLAY OF OUTPUT DATA (3 = PRINTER, 4 = MONITOR)
C NUMJ = NUMBER OF JOINTS

C NUME = NUMBER OF ELEMENTS IN CROSS-SECTION
C X(1) = X-COORDINATE OF JOINT “1~

C Y(I) = Y-COORDINATE OF JOINT “I~

C N1(l) = FIRST JOINT NUMBER OF ELEMENT “1~
C N2(l) = SECOND JOINT NUMBER OF ELEMENT “I~
C TL = THICKNESS OF THE LAYER

C EL = DISTANCE TO THE CENTROID OF LAYER

C OL = ANGLE OF ORIENTATION OF LAYER

C TM = TYPE OF MATERIAL

C

IMPLICIT REAL*8 (A-H,0-Z)
INTEGER TM
CHARACTER*20 UFILE
COMMON NI,NJ,X2,X1,Y2,Y1,D,S,C
REAL*8 XX, 1YY, IXY, IXXC, 1YYC, IXYC, IWX, IWY, IWXC, IWYC, 11, 12, IWW
1, IXE, 1YE, IEE, IXEC, IYEC, IWE, IE1, IE2
DIMENSION XN(20),YN(20),W(20) ,NUMAJ(20)
1,NEJ1(5,20), IACTE(20),N1(20),N2(20),X(20)
2,Y(20),DD(20) ,NUMAJA(20) ,E1(20) ,E2(20) ,P12(20) ,G12(20)
3,A11(20),B11(20),D11(20),B16(20),D16(20) ,D66(20)
WRITE (*,500)
500 FORMAT (< FILE WITH INPUT DATA = <)
READ (*,510) UFILE
510 FORMAT (A20)
WRITE (*,511)
511 FORMAT (< OUTPUT DATA (MONITOR
1 =)
READ (*,515) JK
515 FORMAT (13)
OPEN (2,FILE=UFILE)
OPEN (4,FILE=“CON”,STATUS=“NEW”)
OPEN (5,FILE=“OUTPUT.FOR")
READ (2,520) NUMJ,NUME , NUMM
520 FORMAT (315)
WRITE (JK,525) NUMJ,NUME, NUMM
525 FORMAT (/,4X,”NUMBER OF JOINTS =<,13,/,4X, NUMBER OF ELEMENTS
1 =<,13,/,4X,”NUMBER OF MATERIALS =<,13,//)
WRITE (JK,524)
524 FORMAT (1X, TYPE OF MATERIAL”,8X,”E1”,13X,”E27,13X,’NI”,14X,”G")
DO 5 I = 1,NUMM
READ (2,526) E1(1),E2(1),P12(1),G12(1)
526 FORMAT (4F10.0)
5 WRITE (JK,527) 1,E1(1),E2(1),P12(1),G12(1)
527 FORMAT (7X,13,9X,E12.5,3X,E12.5,3X,E12.5,3X,E12.5)
DO 10 I = 1,NUMJ
10 READ (2,530) X(1),Y(l)
530 FORMAT (2F10.0)
DO 20 I = 1,NUME
READ (2,535) N1(1),N2(1),NL

4,FILE "OUTPUT"™ = 5)
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535 FORMAT (315)
WRITE (JK,528) I

528 FORMAT (//,1X,”ELEMENT”,13,/)
WRITE (JK,529)

529 FORMAT (1X,”LAMINA”,3X,”THICKNESS”,2X,’DIST. TO THE CENT. LINE”,
13X, ANGLE OF ORIENT.”,3X,>TYPE OF MATER.”)
DO 20 J = 1,NL
READ (2,536) TL,EL,OL,TM

536 FORMAT (3F10.0,15)
WRITE (JK,541) J,TL,EL,OL,TM

541 FORMAT (I15,2X,E12.5,7X,E12.5,9X,E12.5,10X, 13)
Q1=E1(TM)/(1-P12(TM)**2*E2(TM)/EL(TM))
Q2=E2(TM)/ (1-P12(TM)**2*E2(TM)/EL1(TM))
Q3=G12(TM)
Q4=P12(TM)*E2(TM)/ (1-P12(TM)**2*E2(TM)/E1(TM))
CC=COS(OL)
SS=SIN(OL)
Q11=Q1*CCH *4+Q2*SS**4+2 . *CCH*2*SS**2*(Q4+2 . *Q3)
Q12=CC**2*SS**2*(Q1+Q2-4 . *Q3)+(CC**4+SS**4)*Q4
Q16=(QL*CC**2-Q2*SS**2-(Q4+2 . *Q3)* (CC**2-SS**2)) *CC*SS
Q22=Q1*SS**4+Q2*CC**4+2 . *CCr*2*SS**2* (Q4+2 . *Q3)
026=(Q1*SS**2-Q2*CC**2+(Q4+2 . *Q3) * (CC**2-SS**2)) *CC*SS
066=(Q1+Q2-2 . *Q4) *CC**2*SS**2+Q3* (CCH*2-SS**2)**2
Q011=Q11-Q12**2/Q22
QQ16=Q16-Q12*Q26/Q22
Q066=066-Q26**2/Q22
A11(1)=A11(1)+QQ11*TL
B11(1)=B11(1)+QQ11*EL*TL
D11(1)=D11(1)+QQ11*(EL**2*TL+TL**3/12.)
B16(1)=B16(1)+QQ16*EL*TL
D16(1)=D16(1)+QQ16*(EL**2*TL+TL**3/12.)

20 D66(1)=D66(1)+QQ66* (EL**2*TL+TL**3/12.)

DO 30 1 = 1,NUME
30 IACTE(1) = 1
DO 40 I = 1,NUMJ
K=0

DO 50 J = 1,NUME

IF ((N1(J).EQ.1).0R.(N2(J).EQ.1)) THEN

K=K+ 1

NEJI(K, 1) = J

END IF
50 CONTINUE

NUMAJ(1) = K

NUMAJA(I) = K

IF (NUMAJA(1).GT.2) NUMAJA(I) = 2
40 CONTINUE

DO 60 1 = 1,NUME

DDC1) = DSQRTC(X(N2(1))-X(NI(D))**2 + (Y(N2(1))-Y(N1(1)))**2)

CALL COM (NLI(D),N2(1),X(N2(1)) ,X(N1I(1)),Y(N2(1)),Y(NL(1)),DD(1))

F=F+A11(1)*D

SX = SX+0.5*A11(1)*(X1+X2)*D+B11(1)*C*D

SY = SY+0.5*A11(1)*(Y1+Y2)*D+B11(1)*S*D

IXX = IXX+1./3.*A11(1)*(X1**2+X2**2+X1*X2)*D+B11 (1) *(X1+X2)*C*D+

1D11(1)*C**2*D

1YY = 1YY+1./3.*A11(1)*(Y1**2+Y2**2+Y1*Y2)*D+B11(1)*(Y1+Y2)*S*D+

1D11(1)*S**2*D

IXY = IXY+1./6.*A11(1)*(2*X1*Y1+2*X2*Y2+X1*Y2+X2*Y1)*D+
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10.5*B11(1)*((X1+X2)*S+(Y1+Y2)*C)*D+D11(1)*S*C*D
SE = SE+2.*B16(1)*D

IXE = IXE+B16(1)*(X1+X2)*D+2.*D16(1)*C*D
IYE = IYE+B16(1)*(Y1+Y2)*D+2.*D16(1)*S*D
60 IEE = IEE+4*D66(1)*D
K=0
11 =0
90 LL = O
DO 70 1 = 1,NUMJ

IF (K-NE.O) 11 = NUMAJ(I)

IF ((NUMAJA(I).EQ.1).AND.(11.NE.1)) THEN
LL = 1

K=K+1

DO 80 J = 1,NUMAJ(I)

NN = NEJI(J, 1)

IF (IACTE(NN).EQ.1) THEN

IF (N2(NN).EQ. 1) THEN

KK = N1(NN)
NL(NN) = N2(NN)
N2(NN) = KK
B11(NN) = -B11(NN)
D1I6(NN) = -D16(NN)
END IF
CALL COM (NL(NN),N2(NN),X(N2(NN)),X(NI(NN)),Y(N2(NN)),Y(NI(NN))
1,DD(NN))
WNI) = WONI) + (X1*C + Y1*S)*D
IACTE(NN) = 0
NUMAJA(NT) = NUMAJA(NI)-1
NUMAJA(NJ) = NUMAJA(NJ)-1
END IF
80 CONTINUE
END IF

70 CONTINUE
IF (LL.EQ.1) GOTO 90
DO 110 I = 1,NUME
CALL COM (N1(1),N2(1),X(N2(1)),X(N1(1)),Y(N2(1)),Y(NL(1)),DD(1))
HP1=X1*S-Y1*C
SW = SWHALL(D)*(W(NI)+W(NJ))/2_*D+B11(1)*(HP1-0.5*D)*D
WX = TWX+ALL(I)* (2. *X1HWND)+2 . *X25WNI) +X1*W(NI)+X2*W(N 1)) /6 . *D
1+B11 (D) *((WNDFW(NI)) /2. *C— (X1+2 . *X2) /6 . *D+(X1+X2) /2 .*HP 1) *D
2+D11(1)*(HP1*C-0.5*D*C)*D
WY = TWY+ALLCI)* (2. *YI*WND)+2.*Y25W(NI) +Y1*W(NI)+Y2*W(N1))/6 . *D
1+B1LC)*(WNDHW(NIY) /2. *S=(Y1+2_*Y2) /6 . *D+(Y1+Y2) /2 .*HP1)*D
2+D11(1)*(HP1*S-0.5*D*S)*D
110 CONTINUE
XC = SX/F
YC = SY/F
IXXC = IXX-XC**2*F
IYYC = 1YY-YC**2*F
IXYC = IXY-XC*YC*F
IXEC=1XE-XC*SE
IYEC=1YE-YC*SE
PSI = ATAN(2.*IXYC/(IXXC-1YYC))/2.
Wo =S
IWXC = IWX-XC*SW
IWYC = IWY-YC*SW
11 = 0.5%(IXXC + 1YYC) - 0.5*DSQRT((IYYC-IXXC)**2 + 4.*IXYC**2)
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12 = 0.5%(IXXC + IYYC) + 0.5*DSQRT((IYYC-IXXC)**2 + 4.*IXYC**2)

IE1=1XEC*COS(PS1)+I1YEC*SIN(PSI)

IE2=1YEC*COS(PS1)-IXEC*SIN(PSI)

XP = (IWYC*IXXC- IWXC*IXYC)/ (IXXC*IYYC-IXYC**2)

YP = (IWYC*IXYC-IWXC*1YYC)/ (IXXC*IYYC-IXYC**2)

XPP = (XP-XC)*COS(PSI) + (YP-YC)*SIN(PSI)

YPP = —(XP-XC)*SIN(PSI) + (YP-YC)*COS(PSI)

WRITE (JK,540)

540 FORMAT (/,27X,~ORIGINAL AXES~,16X,”PRINCIPAL AXES~”,/,10X,JOINT",
12(5X, ”X-COORDINATE” , 1X, ”Y-COORDINATE”), /)

DO 120 1 = 1,NUMJ
XIC = X(1)-XC
YIC = Y(I)-YC
W) = WCID-WO + YP*XIC-XP*YIC
XN(1) = XIC*COS(PSI) + YIC*SIN(PSI)

YN(I) = -XIC*SIN(PSI) + YIC*COS(PSI)

120 WRITE (JK,545) 1,X(1),Y(1),XNC1),YN(CI)
545 FORMAT (11X,12,6X,E12.5,1X,E12.5,5X,E12.5,1X,E12.5)
WRITE (JK,550) XC,YC
550 FORMAT(8X,”CENTROID”,3X,E12.5,1X,E12.5,7X, > .00000E+00~ ,3X,
1” .00000E+007)
WRITE (JK,555) XP,YP,XPP,YPP
555 FORMAT (5X,”PRINCIPAL POLE”,E12.5,1X,E12.5,5X,E12.5,1X,E12.5)

WRITE (JK,560)

560 FORMAT (//,8X,”ELEMENT”,4X,”JOINT-1",2X,>JOINT-J”,4X, >LENGTH?)

DO 130 I = 1,NUME
CALL COM (N1(1),N2(1),XN(N2(1)),XN(NL(1)),YN(N2(1)), YN(NL(T))
1,DD(1))

HP1=(X1-XPP)*S-(Y1-YPP)*C
WRITE (JK,565) I,NI,NJ,D

565 FORMAT (10X, 12,8X,13,6X,13,4X,E10.3)

W = IWW + AZLCD*QWND**2 + WONI)**2 + WOND*W(NI)) /3. *D+
1BL1 () *((WND+WNIY)*HP I-(W(NI)+2. *W(NJ))/3 . *D)*D+
2D11(1)*(HPI1**2-HP1*D+D**2/3.)*D

130 IWE=IWE+B16(1)*(W(NI)+W(NJ))*D+2.*D16(1)*(HP1-0.5*D)*D

WRITE (JK,571)

571 FORMAT (//,4X,”SECTIONAL QUANTITIES (IN RELATION TO PRINCIPAL AXES
1 AND PRINCIPAL POLE)”)
WRITE (JK,570) F,11,12,IWW,SE, IE1, IE2, IWE, IEE,PSI

570 FORMAT (/,12X,’F =“,E12.6
1,7,12X,” IXX =“,E12.6
2,/,12X,7 1YY =“,E12.6
3,7,12X, 7 1IWw =“,E12.6
4,/,12X,”SE =“,E12.6
5,7,12X,” IXE =“,E12.6
6,7,12X,”1YE =“,E12.6
7,/,12X,7 IWE =“,E12.6
8,7,12X,” IEE =“,E12.6
9,7/,12X,”ANGLE (IN RADIANS) OF PRINCIPAL AXES =°,E12.6)

WRITE (JK,575)

575 FORMAT (//,8X,~JOINT”,5X, WARPING FUNCTION”,/)
DO 140 1 = 1,NUMJ

140 WRITE (JK,580) 1,W(l)

580 FORMAT (9X,12,9X,E12.5)
END
SUBROUTINE COM (N1,N2,XNJ,XNI,YNJ,YNI,DD)
IMPLICIT REAL*8 (A-H,0-Z)
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COMMON NI ,NJ,X2,X1,Y2,Y1,D,S,C

NI = N1

NJ = N2

X2 = XNJ

X1 = XNI

Y2 = YNJ

Y1 = YNI

D = DD

S = (X1-X2)/D
C = (Y2-Y1)/D

m
=
O





