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Abstract.  In this paper a computer program is developed for the determination of geometrical and material 
properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate 
stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the 
Vlasov’s beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical 
examples are given, with complete information about input and output. 
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1. Introduction 

 
Thin-walled composite elements has recently become the focus of intense researches as a result 

of their expanded use as structural components within the fields of mechanical, civil, aeronautical 
engineering, and other industries. These structural components made of advanced composite 
materials are ideal for structural applications because of the high strength-to-weight and 
stiffness-to-weight ratios. Another advantage of composites is their flexibility in design. For 
example, mechanical properties of the laminate can be altered simply by changing the stacking 
sequence, fibre lay-up and thickness of each ply. Consequently, design may be optimized under 
different set of conditions to achieve the optimal performance of the structure. 

In structural analysis it is often necessary to determine the material-geometry properties of 
thin-walled composite beams, with open cross-sections. The hand calculation used to determine 
them, although mostly elementary, are tedious, time consuming and numerical errors are easily 
introduced. Though many papers are written on behavior of thin-walled composite beams 
(Banerjee 1998, Banerjee and Su 2006, Cardoso et al. 2009, Cardoso and Valido 2011, Chen and 
Hsiao 2007, Kim et al. 2007 and 2008, Lee 2001, Machado and Cortınez 2005, Mechado et al. 
2007, Piovan and Cortınez 2007, Rajasekaran 2005, Sapountzakis and Tsiatas 2007, Sapountzakis 
and Mokos 2007, Vo and Lee 2009, Vo et al. 2011), to the authors’ knowledge, no general 
computer program for the determination of the material-geometry properties of thin laminated 
section is available. The computer program presented here is fairly common and gives the 
structural designer the ability to analyze thin-walled composite sections of any shape and arbitrary  
                                                 
Corresponding author, Professor, E-mail: aprokic@EUnet.rs 



 
 
 
 
 
 

A. Prokić, D. Lukić and Dj. Ladjinović 

 

Fig. 1 Geometry and reference systems 

 
 
 
laminate stacking sequence quickly and efficiently. This paper is an extension of the author’s 
previous works (Prokić 1999 and 2000). 

The number of input data is minimized and there are no set rules to follow in the joint, element 
and lamina numbering, which makes program’s application easy even by a practing engineer who 
cannot go into the details of composite thin-walled theory. 
 
 
2. Basic theory 

 
A straight thin-walled laminated composite beam of length l with an open cross-section is 

considered (Fig. 1). In order to determine the geometry of the cross-section of the beam two 
coordinate systems are used. The first of these is an orthogonal Cartesian coordinate systems (x, y, 
z) for which the z-axis is parallel to the longitudinal axis of the beam. The second coordinate 
system is a local one (e, s, z) where e and s are profile coordinates measured along the normal to 
the contour (the midline of the cross-section) and along the contour line, respectively. The (e, s, z) 
and (x, y, z) coordinate systems are related through an angle of orientation α. The coordinates of 
the contour in the (x, y, z) coordinate system are (x̅, y̅, z). Point P is called the pole. 

 
2.1 Kinematics of the beam 
 
Following Vlasov’s beam theory the basic assumptions of thin-walled laminated beams are 

introduced. 
• The cross-section of the beam is not distorted during the deformation of the beam. 
• The shear strains in the middle surface of the wall are negligible. 
• The Kirchhoff-Love assumption in classical plate theory remains valid for laminated 

composite thin-walled beams. 
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Based on assumption above, the displacements u*, v* and w* at any point on the beam 
cross-section can be expressed by four components, two translations uP, vP of arbitrarily taken pole 
P, the cross-section rotation φ about the pole P, and axial displacement w of centoid. 
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where ωp 

0

s

P P nPh ds h e                              (2) 

 
is generalized warping function with respect to pole P. 

hP and hnP, perpendicular distance from tangent and normal at arbitrary point of cross-section to 
the point P, are positive when normal n


 and tangent ,t


respectively, are rotating counterclockwise 

about the pole P, when observed from the positive z direction. The second term on the right-hand 
side of Eq. (2) determines the relative warping in relation to the midline of cross-section. This term 
has little effect on the torsional properties of a thin profile and most frequently is neglected in the 
technical theory of thin-walled beams. However, its inclusion does not present additional 
difficulties, and therefore this term has been included in the computer program. The warping by 
definition must be the same at a node where a number of members are joined together. 

Consistent with displacement field, Eq. (1), the non-vanishing strain components are 
 

2
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2.2 Constitutive equations 
 
For a unidirectionally reinforced lamina the stress-strain relations is 
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                      (4) 

 
where the terms Qij are so-called reduced stiffnesses Jones (1975) for a plane stress state in the 1-2 
plane of lamina k. The terms Qij are made up of material property with respect to each layer and 
can be shown in terms of the engineering constants 
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          (5) 

 
Generally, the principal material coordinates 1-2 for orthotropic lamina k do not coincide with 

beam coordinates s-z. If the principal 1-axis making an angle ϑ with respect to reference z-axis the 
stress-strain relation in s-z coordinate system is 

235



 
 
 
 
 
 

A. Prokić, D. Lukić and Dj. Ladjinović 

11 12 16

12 22 26

16 26 66

z z

s s

sz szk k

Q Q Q

Q Q Q

Q Q Q

 
 
 

    
         
        

                          (6) 

 
in which transformed reduced stiffness Q̅ij are 
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where m = cos ϑ and n = sin ϑ. 

By using free stress in contour direction, σs = 0, the above equation can be simplified as 
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where 
 

2 2
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Stress resultants at the cross-section can be derived by integrating the corresponding stresses 

over the cross sectional area, as given by 
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In Eq. (10), N represents the axial force, Mx and My the bending moments with respect to the x 

and y axis, Ts the Saint Venant torque, MωP the bimoment and F the area of the cross-section. 
Taking into account the Eqs. (3) and (8) the forces may be defined in terms of componential 
displacements as 
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or, written in matrix form 
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in which 
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↑ 
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2.3 Center of gravity and shear center 
 
In all integrals (13) are incorporated both the geometry and material properties of cross-section. 

By appropriate selection of Cartesian coordinate system, pole P and starting point O1 we can 
achieve that 
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So, we get the simplified expressions for stress resultants 
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In this case, using the principle of virtual work Prokić (1996), the governing equations of thin 
walled composite beam can be written with displacements as primary unknowns 
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Analyzing the system of equations above, we can conclude that the point of cross-section P, 
which satisfy conditions IωP = IxωP = IyωP = 0, does not have the same significance as in the 
classical theory of thin-walled beams (shear center). Torsion and bending in this case cannot be 
separated and are coupled together with the extension. 

The standard procedure for evaluating the ‘center of gravity’ and ‘shear center’ of open profile 
was described by Murray (1984). Only a brief recapitulation of procedure will be given at this 
point. 

• In the first step we find all the section properties starting with an arbitrary set of axes xOy, 
with pole P located at the origin and starting point O1 located at the first joint of profile. 

• A parallel shift of reference axes to the point C , whose coordinates are defined as 
 

        yx
c c

SS
x y

F F
                                (19) 

 

The location of P is retained but the coordinates of the starting point are chosen in a way which 
makes 

0S                                   (20) 
 

• The axes x and y should be rotated in the direction of the principal axes x and y, the angle of 
rotation ψ being given by 

2
tan 2 xy

xx yy

I
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                               (21) 

 

The pole is moved to the point which is chosen so that 
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3. Numerical procedure 
 

The arbitrary midline of the cross-section is approximated by a polygonal one. In this case the 
section is composed of a series of mutually connected prismatic thin-walled elements (segments). 
The number of elements adopted depends on the desired accuracy. Points at which two or more 
elements are connected will be indicated as joints of cross-section. Joints and elements may be 
marked arbitrary, and any of the end joints of en element may be chosen as the first joint. 

Each orthotropic layer of laminate is defined by its thickness, its location in the laminate, its 
material properties and fibers orientation. Note that the contour coordinate s is oriented from the 
initial node to the final node of the element, which affects the n-axis orientation. The fiber 
orientation of layer k is given by the angle ϑk which is positive counterclockwise around n-axis and 
starting from the z-axis. 

Marking the joints of an element with i and k, (Fig. 2), we may write 
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and further, supposing that the pole P is located at the origin 
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Fig. 2 Polygonal segment showing the definition of the various variables 

 
 

 

 

sin cos

sin cos

P P nP Pi Pi Pk nP

nP i i

i inP i

s
h e h e

l
h x y s

h x y

    

 
 

     

  
 

                    (24) 

 

Now, all integrals (13) can be derived explicitly in the form convenient for programming, 
Prokić (1996) 
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↑ 
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Σ represents the sum of each segment of the cross-section, and 
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4. Computer program 

 
NUME = number of A computer program in FORTRAN 77 is developed, capable of analyzing 

both the geometry and the material properties of thin-walled composite beams with arbitrary open 
cross-section. A following data should be prepared according to their respective format, and in the 
order in which they should be entered: 
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SET 1 (A20) 
UFILE = name of file with input data 
 
SET 2 (3I5) 
NUMJ = number of joints elements 
NUMM = number of different materials 
 
SET 3 (4F10.0) 
E1(I) = Young’s moduli in the 1-direction for material of type (I) 
E2(I) = Young’s moduli in the 2-direction for material of type (I) 
P12(I) = Poisson’s ratio for material of type (I) 
G12(I) = shear moduli in the 1-2 plane for material of type (I) 
 
SET 4 (2F10.0) 
X(I) = x-coordinate of joint “I”, with reference to arbitrary chosen set of axes 
Y(I) = y-coordinate of joint “I”, with reference to arbitrary chosen set of axes 
 
SET 5 (3I5) 
N1(I) = first joint number of element “I” 
N2(I) = second joint number of element “I” 
NL = number of layers (laminas) for element “I” 
 
SET 6 (3F10.0, I5) 
TL = thickness of the layer (J) of element (I) 
EL =distance to the centroid of layer (J) of element (I) 
OL = angle of orientation of layer (J) of element (I) 
TM = type of material (J) of element (I) 
 
A listing of the program is given in Appendix A. 

 
 
5. Illustrative examples 

 
A thin-walled composite beam with channel cross-section shown in Fig. 3, is considered, 

(Cardoso et al. 2009). The cross-section consists of three equal laminates (elements), identified in 
the figure as 1, 2 and 3, each of them with four layers [45/-45]s and total thickness t = 3 mm. 

The following engineering constants of composite beam, corresponding to S2-glass/epoxy, are 
used 

1

2

12

12

48.3 GPa

19.8 GPa

0.27

8.96 GPa

E

E

G








                             (27) 

 
The coordinate system is established arbitrary and the elements and joints are numbered as 

shown. The description of input data and computer output is given in Tables 1 and 2. 
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Fig. 3 Channel cross-section 

 
Table 1 Input data 

 4 3 1     

 48.3 19.8 0.27 8.96    
 0. 0.     
 50. 50.     
 50. 0.     
 0. 50.     

 2 4 4     

 0.75 1.125 0.785398 1    
 0.75 0.375 -0.785398 1    
 0.75 -0.375 -0.785398 1    
 0.75 -1.125 0.785398 1    

 3 1 4     

 0.75 12125 0.785398 1    
 0.75 0.375 -0.785398 1    
 0.75 -0.375 -0.785398 1    
 0.75 -1.125 0.785398 1    

 2 3 4     

 0.75 1.125 0.785398 1    
 0.75 0.375 -0.785398 1    
 0.75 -0.375 -0.785398 1    
 0.75 -1.125 0.785398 1    
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Table 2 Output data 

 Number of Joints = 4   
 Number of elements = 3   
 Number of materials = 1   

 
Type of material E1 E2 N1 G 

1 0.48300E+02 .19800E+02 .27000E+00 .89600E+01 

 
Element  1 

Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater. 
1 .75000E+00 .11250E+01 .78540E+00 1 
2 .75000E+00 .37500E+00 -.78540E+00 1 
3 .75000E+00 -.37500E+00 -.78540E+00 1 
4 .75000E+00 -.11250E+01 .78540E+00 1 

 
Element  2 

Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater. 
1 .75000E+00 .11250E+01 .78540E+00 1 
2 .75000E+00 .37500E+00 -.78540E+00 1 
3 .75000E+00 -.37500E+00 -.78540E+00 1 
4 .75000E+00 -.11250E+01 .78540E+00 1 

 
Element 3 

Lamina Thickness Dist. to the cent. Line Angle of orient. Type of mater. 
1 .75000E+00 .11250E+01 .78540E+00 1 
2 .75000E+00 .37500E+00 -.78540E+00 1 
3 .75000E+00 -.37500E+00 -.78540E+00 1 
4 .75000E+00 -.11250E+01 .78540E+00 1 

 
 Original axes Principal axes 

Joint X-coordinate Y-coordinate X-coordinate Y-coordinate 
1 .00000E+00 .00000E+00 -.33333E+02 -.25000E+02 
2 .50000E+02 .50000E+02 .16667E+02 .25000E+02 
3 .50000E+02 .00000E+00 .16667E+02 -.25000E+02 
4 .00000E+00 .50000E+02 -.33333E+02 .25000E+02 

Centroid .3.3333E+02 .25000E+02 .00000E+00 .00000E+00 
Principal pole .71381E+02 .25000E+02 .38048E+02 .71844E-05 

 
 Element Joint-I Joint-J Length  
 1 2 4 .500E+02  
 2 1 3 .500E+02  
 3 3 2 .500E+02  
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Table 2 Continued 

Sectional quantities (in relation to principal axes and principal pole) 

 F = .11901E+05   

 IXX = .311116E+07   

 IYY = .544522E+07   

 IWW = .140146E+10   

 SE = .00000E+00   

 IXE = -.758923E+03   

 IYE = .151785E+04   

 IWE = -.126487E+05   

 IEE = .174837E+05   

Angle (in radians) of principal axes = .000000E+00   

 
 Joint Wrapping function    

 1 -.71548E+03    

 2 -.53452E+03    

 3 .53452E+03    

 4 .71548E+03    

 
 

In the Table 3, for the same cross-section, the sectional quantities, for different laminate 
stacking sequences in flanges and web, are presented. 

 
 
Table 3 Variation of sectional properties for different laminate stacking sequences 

Laminates 
lay-up 

1 [0/0]s 

2 [0/0]s 

3 [0/0]s 

1 [0/0]s 

2 [0/0]s 

3 [45/-45]s 

1 [45/-45]s 

2 [45/-45]s 

3 [0/0]s  

1 [45/-45]2 

2 [45/-45]2 

3 [0/0]s 

F [kN] .217350E+05 .182200E+05 .147051E+05 .147051E+05 

Ixx [kNmm2] .604293E+07 .487556E+07 .385679E+07 .385679E+07 

Iyy [kNmm2] .105765E+08 .984421E+07 .617751E+07 .617751E+07 

Iωpωp [kNmm6] .272211E+10 .236190E+10 .169708E+10 .169708E+10 

Se [kNmm] .000000E+00 .000000E+00 .000000E+00 .101190E+04 

Ixe [kNmm2] .000000E+00 -.758923E+03 .000000E+00 -.124637E+05 

Iye [kNmm2] .000000E+00 .000000E+00 .151785E+04 .000000E+00 

Iωpe [kNmm3] .000000E+00       .000000E+00 -.665521E+05 .000000E+00 

Iee [kNmm2] .120960E+05 .138919E+05 .156878E+05 .156878E+05 

dC [mm] .33333E+02 .30118E+02 .37317E+02 .37317E+02 

dP [mm] .71381E+02 .72971E+02 .68846E+02 .68846E+02 

245



 
 
 
 
 
 

A. Prokić, D. Lukić and Dj. Ladjinović 

6. Conclusions 
 
The hand calculations of material-geometric properties of a thin-walled composite beam with a 

complex cross-section are tedious and difficult. The presented computer program provides an 
opportunity for an automatic evaluation of open al properties of thin-walled composite beams with 
arbitrary lamination. The geometrical data which need to be entered to perform the analysis have 
been brought to the minimum: the coordinates of joints, the elements connecting them, thickness 
and position of layers. The listing of the computer program is given. 
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Appendix A. Listing of the source program 
 
 
PROGRAM COMPOSITE 
C 
C      UFILE=NAME OF FILE WITH INPUT DATA 
C      JK=DISPLAY OF OUTPUT DATA (3 = PRINTER, 4 = MONITOR) 
C      NUMJ = NUMBER OF JOINTS 
C      NUME = NUMBER OF ELEMENTS IN CROSS-SECTION 
C      X(I) = X-COORDINATE OF JOINT ‘I’ 
C      Y(I) = Y-COORDINATE OF JOINT ‘I’ 
C      N1(I) = FIRST JOINT NUMBER OF ELEMENT ‘I’ 
C      N2(I) = SECOND JOINT NUMBER OF ELEMENT ‘I’ 
C      TL = THICKNESS OF THE LAYER 
C      EL = DISTANCE TO THE CENTROID OF LAYER 
C      OL = ANGLE OF ORIENTATION OF LAYER 
C      TM = TYPE OF MATERIAL  
C 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER TM 
      CHARACTER*20 UFILE 
      COMMON NI,NJ,X2,X1,Y2,Y1,D,S,C 
      REAL*8 IXX,IYY,IXY,IXXC,IYYC,IXYC,IWX,IWY,IWXC,IWYC,I1,I2,IWW 
     1,IXE,IYE,IEE,IXEC,IYEC,IWE,IE1,IE2 
      DIMENSION XN(20),YN(20),W(20),NUMAJ(20) 
     1,NEJI(5,20),IACTE(20),N1(20),N2(20),X(20) 
     2,Y(20),DD(20),NUMAJA(20),E1(20),E2(20),P12(20),G12(20) 
     3,A11(20),B11(20),D11(20),B16(20),D16(20),D66(20) 
      WRITE (*,500) 
  500 FORMAT (‘ FILE WITH INPUT DATA = ‘) 
      READ (*,510) UFILE 
  510 FORMAT (A20) 
      WRITE (*,511) 
  511 FORMAT (‘ OUTPUT DATA (MONITOR = 4,FILE "OUTPUT" = 5) 
     1 =‘) 
      READ (*,515) JK 
  515 FORMAT (I3) 
      OPEN (2,FILE=UFILE) 
      OPEN (4,FILE=‘CON’,STATUS=‘NEW’) 
      OPEN (5,FILE=‘OUTPUT.FOR’)     
      READ (2,520) NUMJ,NUME,NUMM 
  520 FORMAT (3I5) 
      WRITE (JK,525) NUMJ,NUME,NUMM 
  525 FORMAT (/,4X,’NUMBER OF JOINTS     =‘,I3,/,4X,’NUMBER OF ELEMENTS 
     1  =‘,I3,/,4X,’NUMBER OF MATERIALS  =‘,I3,//) 
      WRITE (JK,524) 
  524 FORMAT (1X,’TYPE OF MATERIAL’,8X,’E1’,13X,’E2’,13X,’NI’,14X,’G’) 
      DO 5 I = 1,NUMM 
      READ (2,526) E1(I),E2(I),P12(I),G12(I)   
  526 FORMAT (4F10.0) 
    5 WRITE (JK,527) I,E1(I),E2(I),P12(I),G12(I) 
  527 FORMAT (7X,I3,9X,E12.5,3X,E12.5,3X,E12.5,3X,E12.5) 
      DO 10 I = 1,NUMJ 
   10 READ (2,530) X(I),Y(I) 
  530 FORMAT (2F10.0) 
      DO 20 I = 1,NUME 
      READ (2,535) N1(I),N2(I),NL 
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  535 FORMAT (3I5) 
      WRITE (JK,528) I 
  528 FORMAT (//,1X,’ELEMENT’,I3,/) 
      WRITE (JK,529) 
  529 FORMAT (1X,’LAMINA’,3X,’THICKNESS’,2X,’DIST. TO THE CENT. LINE’, 
     13X,’ANGLE OF ORIENT.’,3X,’TYPE OF MATER.’) 
      DO 20 J = 1,NL 
      READ (2,536) TL,EL,OL,TM 
  536 FORMAT (3F10.0,I5) 
      WRITE (JK,541) J,TL,EL,OL,TM 
  541 FORMAT (I5,2X,E12.5,7X,E12.5,9X,E12.5,10X,I3) 
      Q1=E1(TM)/(1-P12(TM)**2*E2(TM)/E1(TM)) 
      Q2=E2(TM)/(1-P12(TM)**2*E2(TM)/E1(TM)) 
      Q3=G12(TM) 
      Q4=P12(TM)*E2(TM)/(1-P12(TM)**2*E2(TM)/E1(TM)) 
      CC=COS(OL) 
      SS=SIN(OL) 
      Q11=Q1*CC**4+Q2*SS**4+2.*CC**2*SS**2*(Q4+2.*Q3) 
      Q12=CC**2*SS**2*(Q1+Q2-4.*Q3)+(CC**4+SS**4)*Q4 
      Q16=(Q1*CC**2-Q2*SS**2-(Q4+2.*Q3)*(CC**2-SS**2))*CC*SS 
      Q22=Q1*SS**4+Q2*CC**4+2.*CC**2*SS**2*(Q4+2.*Q3) 
      Q26=(Q1*SS**2-Q2*CC**2+(Q4+2.*Q3)*(CC**2-SS**2))*CC*SS 
      Q66=(Q1+Q2-2.*Q4)*CC**2*SS**2+Q3*(CC**2-SS**2)**2 
      QQ11=Q11-Q12**2/Q22 
      QQ16=Q16-Q12*Q26/Q22 
      QQ66=Q66-Q26**2/Q22 
      A11(I)=A11(I)+QQ11*TL 
      B11(I)=B11(I)+QQ11*EL*TL 
      D11(I)=D11(I)+QQ11*(EL**2*TL+TL**3/12.) 
      B16(I)=B16(I)+QQ16*EL*TL 
      D16(I)=D16(I)+QQ16*(EL**2*TL+TL**3/12.) 
   20 D66(I)=D66(I)+QQ66*(EL**2*TL+TL**3/12.) 
      DO 30 I = 1,NUME 
   30 IACTE(I) = 1 
      DO 40 I = 1,NUMJ 
      K = 0 
      DO 50 J = 1,NUME 
      IF ((N1(J).EQ.I).OR.(N2(J).EQ.I)) THEN  
      K = K + 1 
      NEJI(K,I) = J 
      END IF 
   50 CONTINUE 
      NUMAJ(I) = K 
      NUMAJA(I) = K 
      IF (NUMAJA(I).GT.2) NUMAJA(I) = 2 
   40 CONTINUE 
      DO 60 I = 1,NUME 
      DD(I) = DSQRT((X(N2(I))-X(N1(I)))**2 + (Y(N2(I))-Y(N1(I)))**2) 
      CALL COM (N1(I),N2(I),X(N2(I)),X(N1(I)),Y(N2(I)),Y(N1(I)),DD(I)) 
      F=F+A11(I)*D 
      SX = SX+0.5*A11(I)*(X1+X2)*D+B11(I)*C*D 
      SY = SY+0.5*A11(I)*(Y1+Y2)*D+B11(I)*S*D 
      IXX = IXX+1./3.*A11(I)*(X1**2+X2**2+X1*X2)*D+B11(I)*(X1+X2)*C*D+ 
     1D11(I)*C**2*D 
      IYY = IYY+1./3.*A11(I)*(Y1**2+Y2**2+Y1*Y2)*D+B11(I)*(Y1+Y2)*S*D+ 
     1D11(I)*S**2*D 
      IXY = IXY+1./6.*A11(I)*(2*X1*Y1+2*X2*Y2+X1*Y2+X2*Y1)*D+ 
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     10.5*B11(I)*((X1+X2)*S+(Y1+Y2)*C)*D+D11(I)*S*C*D 
      SE = SE+2.*B16(I)*D 
      IXE = IXE+B16(I)*(X1+X2)*D+2.*D16(I)*C*D 
      IYE = IYE+B16(I)*(Y1+Y2)*D+2.*D16(I)*S*D 
   60 IEE = IEE+4*D66(I)*D  
      K = 0 
      II = 0 
   90 LL = 0 
      DO 70 I = 1,NUMJ 
      IF (K.NE.0) II = NUMAJ(I) 
      IF ((NUMAJA(I).EQ.1).AND.(II.NE.1)) THEN  
      LL = 1 
      K = K + 1 
      DO 80 J = 1,NUMAJ(I) 
      NN = NEJI(J,I) 
      IF (IACTE(NN).EQ.1) THEN 
      IF (N2(NN).EQ.I) THEN 
      KK = N1(NN) 
      N1(NN) = N2(NN) 
      N2(NN) = KK 
      B11(NN) = -B11(NN) 
      D16(NN) = -D16(NN) 
      END IF 
      CALL COM (N1(NN),N2(NN),X(N2(NN)),X(N1(NN)),Y(N2(NN)),Y(N1(NN)) 
     1,DD(NN)) 
      W(NJ) = W(NI) + (X1*C + Y1*S)*D 
      IACTE(NN) = 0 
      NUMAJA(NI) = NUMAJA(NI)-1 
      NUMAJA(NJ) = NUMAJA(NJ)-1 
      END IF 
   80 CONTINUE 
      END IF 
   70 CONTINUE 
      IF (LL.EQ.1) GOTO 90 
      DO 110 I = 1,NUME 
      CALL COM (N1(I),N2(I),X(N2(I)),X(N1(I)),Y(N2(I)),Y(N1(I)),DD(I)) 
      HPI=X1*S-Y1*C 
      SW = SW+A11(I)*(W(NI)+W(NJ))/2.*D+B11(I)*(HPI-0.5*D)*D 
      IWX = IWX+A11(I)*(2.*X1*W(NI)+2.*X2*W(NJ)+X1*W(NJ)+X2*W(NI))/6.*D 
     1+B11(I)*((W(NI)+W(NJ))/2.*C-(X1+2.*X2)/6.*D+(X1+X2)/2.*HPI)*D 
     2+D11(I)*(HPI*C-0.5*D*C)*D     
      IWY = IWY+A11(I)*(2.*Y1*W(NI)+2.*Y2*W(NJ)+Y1*W(NJ)+Y2*W(NI))/6.*D 
     1+B11(I)*((W(NI)+W(NJ))/2.*S-(Y1+2.*Y2)/6.*D+(Y1+Y2)/2.*HPI)*D 
     2+D11(I)*(HPI*S-0.5*D*S)*D 
  110 CONTINUE    
      XC = SX/F 
      YC = SY/F 
      IXXC = IXX-XC**2*F 
      IYYC = IYY-YC**2*F 
      IXYC = IXY-XC*YC*F 
      IXEC=IXE-XC*SE 
      IYEC=IYE-YC*SE 
      PSI = ATAN(2.*IXYC/(IXXC-IYYC))/2. 
      WO = SW/F 
      IWXC = IWX-XC*SW 
      IWYC = IWY-YC*SW 
      I1 = 0.5*(IXXC + IYYC) - 0.5*DSQRT((IYYC-IXXC)**2 + 4.*IXYC**2) 
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      I2 = 0.5*(IXXC + IYYC) + 0.5*DSQRT((IYYC-IXXC)**2 + 4.*IXYC**2) 
      IE1=IXEC*COS(PSI)+IYEC*SIN(PSI) 
      IE2=IYEC*COS(PSI)-IXEC*SIN(PSI) 
      XP = (IWYC*IXXC-IWXC*IXYC)/(IXXC*IYYC-IXYC**2) 
      YP = (IWYC*IXYC-IWXC*IYYC)/(IXXC*IYYC-IXYC**2) 
      XPP = (XP-XC)*COS(PSI) + (YP-YC)*SIN(PSI) 
      YPP = -(XP-XC)*SIN(PSI) + (YP-YC)*COS(PSI) 
      WRITE (JK,540) 
  540 FORMAT (/,27X,’ORIGINAL AXES’,16X,’PRINCIPAL AXES’,/,10X,’JOINT’, 
     12(5X,’X-COORDINATE’,1X,’Y-COORDINATE’),/) 
      DO 120 I = 1,NUMJ 
      XIC = X(I)-XC 
      YIC = Y(I)-YC 
      W(I) = W(I)-WO + YP*XIC-XP*YIC 
      XN(I) = XIC*COS(PSI) + YIC*SIN(PSI) 
      YN(I) = -XIC*SIN(PSI) + YIC*COS(PSI) 
  120 WRITE (JK,545) I,X(I),Y(I),XN(I),YN(I) 
  545 FORMAT (11X,I2,6X,E12.5,1X,E12.5,5X,E12.5,1X,E12.5) 
      WRITE (JK,550) XC,YC 
  550 FORMAT(8X,’CENTROID’,3X,E12.5,1X,E12.5,7X,’.00000E+00’,3X,  
     1’.00000E+00’) 
      WRITE (JK,555) XP,YP,XPP,YPP 
  555 FORMAT (5X,’PRINCIPAL POLE’,E12.5,1X,E12.5,5X,E12.5,1X,E12.5) 
      WRITE (JK,560) 
  560 FORMAT (//,8X,’ELEMENT’,4X,’JOINT-I’,2X,’JOINT-J’,4X,’LENGTH’) 
      DO 130 I = 1,NUME 
      CALL COM (N1(I),N2(I),XN(N2(I)),XN(N1(I)),YN(N2(I)),YN(N1(I)) 
     1,DD(I)) 
      HPI=(X1-XPP)*S-(Y1-YPP)*C  
      WRITE (JK,565) I,NI,NJ,D 
  565 FORMAT (10X,I2,8X,I3,6X,I3,4X,E10.3) 
      IWW = IWW + A11(I)*(W(NI)**2 + W(NJ)**2 + W(NI)*W(NJ))/3.*D+ 
     1B11(I)*((W(NI)+W(NJ))*HPI-(W(NI)+2.*W(NJ))/3.*D)*D+ 
     2D11(I)*(HPI**2-HPI*D+D**2/3.)*D 
  130 IWE=IWE+B16(I)*(W(NI)+W(NJ))*D+2.*D16(I)*(HPI-0.5*D)*D 
      WRITE (JK,571) 
  571 FORMAT (//,4X,’SECTIONAL QUANTITIES (IN RELATION TO PRINCIPAL AXES 
     1 AND PRINCIPAL POLE)’)   
      WRITE (JK,570) F,I1,I2,IWW,SE,IE1,IE2,IWE,IEE,PSI  
  570 FORMAT (/,12X,’F                                         =‘,E12.6 
     1,/,12X,’IXX                                       =‘,E12.6 
     2,/,12X,’IYY                                       =‘,E12.6 
     3,/,12X,’IWW                                       =‘,E12.6 
     4,/,12X,’SE                                        =‘,E12.6 
     5,/,12X,’IXE                                       =‘,E12.6 
     6,/,12X,’IYE                                       =‘,E12.6 
     7,/,12X,’IWE                                       =‘,E12.6 
     8,/,12X,’IEE                                       =‘,E12.6 
     9,/,12X,’ANGLE (IN RADIANS) OF PRINCIPAL AXES      =‘,E12.6) 
      WRITE (JK,575) 
  575 FORMAT (//,8X,’JOINT’,5X,’WARPING FUNCTION’,/) 
      DO 140 I = 1,NUMJ 
  140 WRITE (JK,580) I,W(I) 
  580 FORMAT (9X,I2,9X,E12.5) 
      END 
      SUBROUTINE COM (N1,N2,XNJ,XNI,YNJ,YNI,DD) 
      IMPLICIT REAL*8 (A-H,O-Z) 
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      COMMON NI,NJ,X2,X1,Y2,Y1,D,S,C 
      NI = N1 
      NJ = N2 
      X2 = XNJ 
      X1 = XNI 
      Y2 = YNJ 
      Y1 = YNI 
      D = DD 
      S = (X1-X2)/D 
      C = (Y2-Y1)/D 
      END 
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