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Abstract.  EC3 provides several methodologies for the stability verification of members and frames. 
However, when dealing with the verification of non-uniform members in general, with tapered cross-section, 
irregular distribution of restraints, non-linear axis, castellated, etc., several difficulties are noted. Because 
there are yet no guidelines to overcome any of these issues, safety verification is conservative. In recent 
research from the authors of this paper, an Ayrton-Perry based procedure was proposed for the flexural 
buckling verification of web-tapered columns. However, in order to apply this procedure, Linear Buckling 
Analysis (LBA) of the tapered column must be performed for determination of the critical load. Because 
tapered members should lead to efficient structural solutions, it is therefore of major importance to provide 
simple and accurate formula for determination of the critical axial force of tapered columns. In this paper, 
firstly, the fourth order differential equation for non-uniform columns is derived. For the particular case of 
simply supported web-tapered columns subject to in-plane buckling, the Rayleigh-Ritz method is applied. 
Finally, and followed by a numerical parametric study, a formula for determination of the critical axial force 
of simply supported linearly web-tapered columns buckling in plane is proposed leading to differences up to 
8% relatively to the LBA model. 
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1. Introduction 

 
EC3 provides several methodologies for the stability verification of members and frames. The 

stability of uniform members in EC3-1-1 (CEN, 2005) is checked by the application of clauses 
6.3.1 – stability of columns; clause 6.3.2 – stability of beams and clause 6.3.3 – interaction 
formulae for beam-columns. 

Regarding the stability of a non-uniform member, clauses 6.3.1 to 6.3.3 do not apply. The 
evaluation of the buckling resistance of such members lies outside the range of application of the 
interaction formulae of EC3-1-1 and raises some new problems to be solved. For those cases, 
verification should be performed according to clause 6.3.4 (general method) (Simões da Silva et. al, 
2010a). Alternatively, the strength capacity may also be checked by a numerical analysis that 
accounts for geometrical and/or material imperfections and material and/or geometrical 
nonlinearities, henceforth denoted as GMNIA. However, for any of these methodologies, several 
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difficulties are noted for the verification of a non-uniform member (Marques et al. 2012, Simões 
da Silva et al. 2010a). 

Tapered steel members are commonly used over prismatic members because of their structural 
efficiency: by optimizing cross section utilization, significant material can be saved. However, if 
proper rules and guidance are not developed for these types of members, safety verification will 
lead to an over prediction of the material to be used. As a result, in Marques et al. (2012) a 
proposal was made for the stability verification of web-tapered columns subject to flexural 
buckling in-plane. Here, an analytical formulation for web-tapered steel columns subject to 
flexural buckling based on an Ayrton-Perry formulation was derived, this way making it possible 
to maintain consistency with EC3-1-1 flexural buckling verification procedure, clause 6.3.1, by 
extending it with adequate modifications. Columns with fork conditions, subjected to constant 
axial force were treated and adequate modification factors were calibrated against numerical 
analyses – LBA both for definition of the imperfections and slenderness determination, and 
GMNIA – Geometrical and Material Non-linear Analysis with Imperfections – for determination 
of the buckling load. In order to apply this procedure, however, it is necessary to know the critical 
axial force of the tapered column. Because this procedure was calibrated considering the numerical 
critical load from the LBA model, and because nowadays it is fairly simple to perform a linear 
buckling analysis with commercial software, the critical load may always be determined by 
performing a LBA analysis. However, it is of practical interest to provide simple formula that will 
attain a similar level of accuracy as the numerical analysis. 

There are many available formulae and studues in the literature concerning different types of 
tapering, mainly regarding elastic stability formula (e.g., Ermopoulos 1997, Hirt and Crisinel 2001, 
Lee et al. 1972, Petersen 1993, Saffari et al. 2008, Serna et al. 2011, Yossif 2008, Li 2008, 
Maiorana and Pellegrino 2011) although some studies have been made on the inelastic stability 
verification (Baptista and Muzeau 1998, Raftoyiannis and Ermopoulos 2005, Naumes 2009). A 
description of these methods is given in more detail in Marques et al. 2012. In addition, in AISC 

 
 
Table 1 Determination of the in-plane critical axial force from the literature 

Source Description 

Hirt and Crisinel (2001)

Expression for equivalent moment of inertia for the tapered column, Ieq, 
depending on the type of web variation. Suitable for I-shaped cross sections. 
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[H&C] max,min,,92.008.0 yy IIrrC   

Lee et al. (1972) 
Galambos (1998) 

Expression for a modification factor of the tapered member length, g, i.e., 
calculation of the equivalent length of a prismatic column with the smallest cross 
section which leads to the same critical load. Suitable for I-shaped cross sections.
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(Kaehler et al. 2010) the treatment of non-prismatic columns is based on the definition of an 
equivalent prismatic member which shall have the same critical load and the same first order 
resistance. Such member is then to be verified considering the rules for prismatic columns. 
Focusing now on the determination of the elastic critical load, for example, in Hirt and Crisinel 
(2001) an expression is presented for determination of the equivalent inertia of tapered columns, 
Ieq, with I-shaped cross sections, depending on the type of web variation (see Table 1). In Lee et al. 
(1972) (see also Galambos 1998), an expression is presented for a modification factor g of the 
tapered member length. The critical load is then calculated based on the smallest cross section 
(Table 1). In Petersen (1993), design charts for extraction of a factor β to be applied to the critical 
load of a column with the same length and the smallest cross section are available for different 
boundary conditions and cross section shapes. Also, Ermopoulos (1997) presents the non-linear 
equilibrium equations of non-uniform members in frames under compression for non-sway and 
sway mode. Equivalent length factors are calibrated for both cases based and presented in forms of 
tables and graphs similar to the ones presented in Annex E of ENV1993-1-1 (1992). 

In this paper, based on the Rayleigh-Ritz energy method, a formula for determination of the 
in-plane critical axial force of simply supported linearly web-tapered axial force is provided 
leading to maximum differences of 8% (on the safe side) relatively to the numerical analysis. For 
this, in a first step, the fourth order differential equation for non-uniform columns subject to 
arbitrary axial loading and boundary conditions is presented and further simplified for the case of 
simply supported columns subject to constant axial force. The total potential energy is also 
presented for application of the energy method to be applied. In a second step, the numerical 
model and parametric study are presented as these will be necessary for calibration of an adequate 
displacement function to be considered in the Rayleigh-Ritz method. The method is then applied 
for the tapered column case and a formula is developed based on the results obtained. The 
developed formula is finally compared to the formulae of Table 1 showing an improved level of 
error when compared to the numerical (benchmark) LBA analysis. 
 
 
2. Theoretical background for non-prismatic columns 

 
2.1 Fourth order differential equation 
 
Fig. 1 illustrates the equilibrium of a column segment for arbitrary boundary conditions in its 

deformed configuration: 

Considering the axial force as N(x) = Nconc + 
L

x

dn  )( , neglecting second order terms and 

taking equilibrium of moments relatively to node B, gives 

dx

dy
xN

dx

dM
QdnMdx

dx

dM
MQdxdyxN

dx
)(     0

0

)().(
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The equilibrium of horizontal forces gives 

0
dx

dQ
dx
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QQ                        (2) 

49



 
 
 
 
 
 

Liliana Marques, Luís Simões da Silva and Carlos Rebelo 

n(x)

Nconc

x

 

x

δ

dx
dx

dM
M 

dx
dx

dN
N 

M

N

Q

dx

dx
dx

dQ
Q 

dδ

A

B

n(x)

ξ

B

δ

dx

dδ

n(x)

A

η

 

(a) Non-uniform column 
(simply supported) 

(b) Equilibrium of forces 
(c) Detail regarding 

distributed force 

Fig. 1 Equilibrium of a column segment 

 
 

Eq. (1) can be differentiated one time 




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Substituting the internal moment given by M(x) = –EI(x)
2

2

dx

d 
 in Eq. (3) leads to the differential 

equation Eq. (4) 
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    0)()(   xNxIE                        (5) 

The solution of this equation leads to the elastic critical load, see Eq. (6), in which αcr is the 
critical load multiplier. 











)()(
)()(

)()(

xx
xnxn

xNxN
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


                          (6) 

NEd(x) is the applied axial force and αcr is the critical load multiplier, and δcr(x) is the critical 
eigenmode. 

 
 
2.2 Simply supported column 
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2.2.1 Differential equation 
Simply supported columns with constant axial force are treated throughout this paper. The 

differential equation given by Eq. (4) is then simplified by 

0)(   NxEI                           (7) 

in which the following boundary conditions are considered for equilibrium 
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                           (8) 

 
2.2.2 Total potential energy 
The total potential energy of the member is given by the sum of the strain U and potential V 

energy. Only the potential energy due to bending is considered here. 
For a simple supported column the strain energy Ub due to bending is given by 
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Or, because M=EIδcr′′ 
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And the potential energy Vb due to bending may be calculated by the work done on the system 
by the external forces 
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               (11) 

 
 
3. Numerical model 
 

A finite element model was implemented using the commercial finite element package Abaqus 
(2010), version 6.10. Four-node linear shell elements (S4) with six degrees of freedom per node 
and finite strain formulation were used. 

For the material nonlinearity, an elastic-plastic constitutive law based on the Von Mises yield 
criterion is adopted. 

A load stepping routine is used in which the increment size follows from accuracy and 
convergence criteria. Within each increment, the equilibrium equations are solved by means of the 
Newton-Raphson iteration. 

S235 steel grade was considered with a modulus of elasticity of 210 GPa and a Poisson´s ratio 
of 0.3. 
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A

1

B

2 x

z

y

Fig. 2 Support conditions 

 
 

 

Fig. 3 Tapered member with horizontal centroid axis 

 
 
Table 2 Parametric study 

Taper ratio 
γh 

Reference cross-section 
(i.e., with hmin, at x = xmin) 

Reference column slenderness 

cr

EdR NxN
x


 /)(

)( min
min   

Fabrication 
procedure 

1 ... 6 

IPE 200 
 

0 ... 3 
Welded 

Hot-rolled 
(0.5 fy) 

HEB 300 
 

100 × 10 
(h = b = 100 mm; tf = tw =10 mm)  

 
 
 

The boundary conditions for a simply supported single span member with end fork conditions 
are implemented in the shell model as shown in Fig. 2. The following restraints are imposed: (ii) 
vertical (δy) and transverse (δz) displacements and rotation about xx axis (ϕx) are prevented at 
nodes 1 and 2. In addition, longitudinal displacement (δx) is prevented in node 1. Cross-sections A 
and B are modeled to remain straight. 

For the in-plane behavior: δy is restrained at bottom and top of the web. In addition, 
cross-sections are modeled to remain straight against local displacements in the web. 

Finally, regarding the tapered member, the web was considered to vary symmetrically to its 
centroid axis, according to Fig. 3. 
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4. Parametric study 

 
More than 250 numerical LBA simulations with shell elements were carried to provide data for 

application of the energy method and for calibration of necessary parameters in Section 0. Table 2 
summarizes the parametric study. 

 
 

5. Application of the Rayleigh-Ritz method for the calculation of the elastic critical 
load 

 
5.1 Rayleigh-Ritz method applied to the tapered column 
 
The exact solution for the equilibrium equation is only possible to obtain for the most simple 

structures. For the case of tapered members, due to the variation of the second moment of area 
along the length, the solution of δ in Eq. (7) is not explicit and therefore, approximate or numerical 
methods are required to obtain the solution. Rayleigh-Ritz Method is presented and considered 
here. If an adequate displacement function δcr (Eq. (12)) satisfying the geometric boundary 
conditions is considered to approximate the real displacement, the structural system is reduced to a 
system with finite degrees of freedom (Chen and Lui 1987). 

facr                               (12) 

The total potential energy of the member is given by the sum of the strain U and potential V 
energy. Note that these are approximate, once the displacement function is also an approximation. 

Considering the principle of stationary total potential energy, the solution for the critical load is 
obtained by solving Eq. (13), see e.g., (Chen and Lui 1987) for more details. 
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Considering Eqs. (10) and (11), Eq. (13) finally becomes 
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L
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              (14) 

 
5.2 Adjustment of the displacement function 

 
The displacement function δcr to be considered in Eq. (14) needs to satisfy the boundary 

conditions (Eq. (8)). For a tapered column buckling in-plane with the smallest cross-section h = b 
= 100 mm and tf = tw = 10 mm (denoted as 100x10), the following function was adjusted based on 
the critical mode displacement obtained by the LBA analyses. 
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Fig. 4 Displacement function for the in-plane critical mode of a web-tapered column (100 × 10; γh = 5) 
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In Eq. (15), xcr,max is the location corresponding to the maximum deflection and γh = hmax / hmin is 
the taper ratio regarding the maximum and minimum depth. xcr,max may be given by 

Lx hcr   208.0
max, 5.0                          (16) 

The fitted function for δcr given by Eq. (15) (δ_EQU) is illustrated in Fig. 4 and compared to 
the eigenmode deflection (δ_LBA). A small error is obtained and Eq. (15) will be considered for 
application of the Rayleigh-Ritz method. 

 
 

6. Results 
 
Consider the cross section 100x10 for a range of taper ratios γh between 1 and 6. The solution 

of Eq. (15) is given in terms of Ncr,Tap = a/L2 and can be represented as a function of the critical 
load of the smallest section, Ncr,min. 
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min,
2min,,

y
crTapcr
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a
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
                    (17) 

Based on the values of a obtained by the Rayleigh-Ritz analysis, an expression is now given for A. 
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             (18) 

Eq. (18) was calibrated to give results on the safe side as it can be observed in Fig. 5. EQU_RR 
represents the results of A given by the Rayleigh-Ritz method, Eq. (17), whereas EQU_Adjusted 
represents Eq. (18). As it may be noticed by observing Fig. 5, the Rayleigh-Ritz Method leads to 
slightly unconservative results relatively to the LBA analysis. This happens because, from the 
moment the member is forced to displace according to a certain function (other than its natural 
displacement shape) the member becomes constrained and a higher load than the load that leads to 
the minimum (real) energy is obtained. As a result, the better the displacement function, the lower 
the unconservatism. It can be seen that even for the highest taper ratio this error is still small, 
which confirms that the displacement function is well adjusted. Nevertheless, for calibration of Eq. 
(18), a weighing factor relatively to the result of the Rayleigh-Ritz method was included in order 
to provide safe results. 

Note that the taper ratio chosen for calculation of the critical load in Eq. (18) is represented in 
terms of the ratio between the maximum and minimum inertia, i.e., γI = Imax / Imin. This is the best 
parameter to characterize the elastic flexural buckling behavior of the tapered column. When 
analyzing other sections, e.g., a HEB300 (smallest cross-section) that present the same γI, a very 
good agreement is noticed in the function for δcr and also in the function that characterizes the 
second moment of area along the column. As a result, the expression of Eq. (18) may be used for 
any section. For the member with a smallest cross section 100x10, γh = 1.9 and for the HEB300, γh 
= 2. Both members present γI = 4.62. 
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Fig. 5 Calibration of factor A 
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In addition, the above-defined expression may be considered with not much increase in error on 
cross sections with varying flange buckling out-of-plane. The inertia of the flanges buckling 
out-of-plane can be compared to the inertia of the web buckling in-plane. The analyzed member is 
composed of a smallest cross section 100x10 with γb = bmax / bmin = 1.67 (and accordingly, a γI = 
4.62, in which for this case Iy is replaced by Iz). The same however cannot be considered for 
flange-tapered columns buckling in-plane, as the inertia varies linearly. A similar Rayleigh-Ritz 
procedure could be adopted for the latter, it is however not the scope of this study. 

Fig. 6 illustrates the moment of inertia (Iz or Iy) variation and Table 3 compares the analyzed 
cases with a Linear Buckling Analysis. Lengths of the columns were chosen in order to lead to 

similar (numerical) slenderness LBA
tapcrpl NN ,min, . The critical displacement δcr is not 

illustrated as results practically match. 
Finally, for a range of cross-sections with varying γh (or γI) the error is analyzed in Fig. 7. For 

comparison, the procedures given in Table 1 are also shown. Note that, because the taper ratio γh is 
an intuitive parameter to describe the tapered member, presentation of results relatively to that 
parameter γh is kept. The difference is given by Eq. (19), such that a positive difference illustrates 
a safe evaluation of Ncr by the given method. Maximum differences of 8% (on the safe side) are 

 
 
Table 3 Analysis of the critical load obtained by Eq. (18) 

Ref. 
section 

γh γb 
Buckling 

mode 
Ncr

LBA 

[kN] 
Npl,min 

[kN] (S235) y
Ncr,min

[kN]
γI A 

Ncr,tap 

[kN] 
Diff
(%)

100 × 10 1.9 - In 248.5 658 1.63 110.6 246.9 0.64

HEB300 2.0 - In 1242.6 3356.27 1.64 551.1 4.62 2.23 1231.0 0.94

100 × 10 - 1.67 Out 252.4 658 1.61 114.4 255.4 -1.22

*For HEB300 the fillet radius is not considered 

 

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

Iy/Iy,min

x/L

100x10 γh=1.92 Iy (in-plane)
HEB300  γh=1.99 Iy (in-plane)
100x10 γb=5 Iy (in-plane)
100x10 γb=1.67 Iz (out-of-plane)

 

Fig. 6 Variation of inertia along the member for distinct sections with the same γI = Imax / Imin 
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Fig. 7 Analysis of the error given by the proposed expression for Ncr,tap 

 
 
noted. It is measured relatively to the columns with higher slenderness, i.e., for which the 
numerical analysis does not present the effect of shear. For the low slenderness range this effect is 
higher and decreases asymptotically to the correct critical load – this can be observed for the 
well-known solution of a simply supported column with prismatic cross-section (Euler load). 
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Finally, note that a given error in the critical load relatively to the (assumed) real critical load 
(obtained by LBA) will always lead to a much smaller error in the ultimate load stability 
verification procedure (developed in Marques et al. 2012, for example, see Section 1). In addition, 
this difference will always be safe-sided considering that the developed formula in this paper was 
also calibrated to be conservative. 
 
 
7. Conclusions 

 
In this paper, a simple formula for calculation of the major axis critical axial force was 

developed. 
An analytical derivation for elastic flexural buckling of non-prismatic columns was firstly 

presented. A parametric study of more than 250 LBA simulations was then carried out regarding 
simply supported linearly web-tapered column with constant axial force. After that, a displacement 
function for the in-plane critical mode was adjusted and the Rayleigh-Ritz method was then 
considered for development of a simple formula for calculation of the critical load of web-tapered 
columns leading to an excellent agreement with numerical LBA analysis. This formula is then 
adequate for application in recent proposals for the nonlinear stability verification of tapered 
columns. 
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Future research aims at solving the case of other support conditions and web height variation, 
not only at the critical load level, but also taking into account material and geometrical 
nonlinearities, i.e., ultimate load. 
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Notations 
 
 
Lowercases 
 

a, A Auxiliary terms for application of proposed formula for Ncr,Tap 
b Cross section width 

bmax Maximum cross section width 
bmin Minimum cross section width 

f Function for the displacement 
h Cross section height 

hmax Maximum cross section height 
hmin Minimum cross section height 
n(x) Distributed axial force 

ned(x) Design distributed axial force 

tf Flange thickness 

tw Web thickness 

x-x Axis along the member 
y-y Cross section axis parallel to the flanges 

z-z Cross section axis perpendicular to the flanges 
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Uppercases 
 

A Cross section area 

E Modulus of elasticity 

GMNIA Geometrical and Material Non-linear Analysis with Imperfections 

I 2nd moment of area 

Iy, Iz Second moment of area, y-y axis and z-z axis 

Iy,eq Equivalent 2nd moment of area, y-y axis 

Iy,max Maximum 2nd moment of area, yy axis 

Iy,min Minimum 2nd moment of area, yy axis 

L Member length 

Lcr,z, Lcr,y Member buckling length regarding flexural buckling, minor and major axis 

LBA Linear Buckling Analysis 

Leq Equivalent member length 
M Bending moment 
N Normal force 

Nconc Concentrated axial force 

Ncr,tap
LBA Elastic critical force of a tapered column obtained by a LBA analysis 

Ncr,z Elastic critical force for out-of-plane buckling 

Ncr,z,tap Elastic critical force of the tapered column about the weak axis 
NEd Design normal force 
Q Shear force 

U, Ub Strain energy, due to bending 
V, Vb Potential energy, due to bending 

 
 
 
 
 
Lowercase Greek letters 
 

αcr Load multiplier which leads to the elastic critical resistance 

γi Taper ratio: γI – according to inertia; γh – according to height; γb – according to witdh
δcr General displacement of the critical mode 

δy Displacement about y-y axis 

δz Displacement about z-z axis 

  Non-dimensional slenderness 

y Non-dimensional slenderness for flexural buckling, y-y axis 

z  Non-dimensional slenderness for flexural buckling, z-z axis 

ξ. η Rectangular coordinates, longitudinal and transversal 
 
 

60




