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Abstract.  The design optimization of a cold-formed steel portal frame building is considered in this paper. 
The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and 
cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature 
were characterized by poor convergence, including slow progress, that usually results in excessive 
computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main 
issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching 
strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in 
each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced 
significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal 
solutions more consistently. A parametric study was carried out, and the results included. They show 
significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical 
column heights. They also show that the optimized design achieved large savings based on the cost of the 
main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are 
significant. 
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1. Introduction 

 
Cold-formed steel portal frames are an increasingly popular form of construction in Australia 

and the UK, used for low-rise commercial, light industrial and agricultural buildings. For frames 
of modest spans of up to 20 m, this type of construction has been shown to be a viable alternative 
to conventional hot-rolled steel portal frames (Lim and Nethercot 2004). 

The design optimization of portal frames, in particular for hot-rolled steel standard sections, has 
attracted the attention of many researchers in recent years (Saka 2003, Hernández et al. 2005, Issa 
and Mohammad 2010). In these studies, a fixed frame spacing and pitch was assumed, with the 
binary coded genetic algorithm (GA) designating hot-rolled steel sections as discrete design 
variables; the hot-rolled steel sections were chosen from a discrete set of commercially available 
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standard steel sections. 
However, in the optimum design of cold-formed steel portal frames, there is a scope to vary the 

roof pitch and frame spacing, in conjunction with selecting the most appropriate cross sections for 
the members. This is because cold-formed steel sections are lighter than hot-rolled steel sections, 
so structural members can be bolted and erected on site by semi-skilled workers, without the need 
for an onsite crane; consequently, erection costs are much lower than in hot-rolled steel portal 
frames. A design optimization described by Phan et al. (2013) demonstrated that topology can 
have a significant effect on minimizing the cost of the primary members per meter length of the 
building. 

In engineering optimization, there can be a large number of complex (i.e., multi-modal and 
non-continuous) objective functions with implicit constraints that require the global optimum 
solution to be determined. In such problems, the traditional methods of mathematical 
programming that require the gradients of the objective functions and associated constraints, are 
not guaranteed to achieve the global or near-global optimum solution due to the possible existence 
of local minima. As an alternative, GAs that simulate natural phenomena, such as survival of the 
fittest and adaptation, have been widely used in many fields including in the design optimization 
of steel structures (Pezeshk et al. 2000, Hasançebi et al. 2010). 

Although GAs have been applied to many engineering problems, the main disadvantage of GAs 
is that they often suffer premature convergence and weak exploitation capabilities (Goldberg and 
Richardson 1987). Premature convergence, which often leads to a non-optimal solution or a local 
optimum solution, can occur because of loss of diversity in the population of candidate solutions. 
This loss of population diversity is due to the tendency of the selection operator in GAs to favour 
the better solutions, when choosing solutions to take part in crossover, to create the next 
generation of solutions. In later generations, the best solutions will therefore dominate the 
population in the evolutionary processes. 

For instance, in the design optimization of hot-rolled steel portal frames having haunch rafters, 
Saka (2003) used binary-coded GA to minimize the weight of the frame, with four discrete 
variables, namely, cross-section sizes of column and rafter, and length and depth of the haunch. 
The optimization process determined the most appropriate sections for members from the list of 
standard hot-rolled sections and optimum haunch sizes. Saka observed that with a population of 50 
and 75 generations the optimum solution occurred in 8 out of 10 runs. Also, using a binary-coded 
GA to optimize a hot-rolled steel multi-storey frame, Toporov and Mahfouz (2001) modified the 
conventional GA to improve the performance of the genetic search by maintaining a population 
containing good individuals for mating. Through two benchmark examples, namely, a five-bay 
five-storey and a four-bay ten-storey framework, five runs of the GA produced different results. 
This inability to achieve the optimum solution consistently using binary coded GA has also been 
addressed in Kameshki and Saka (2001). The same drawback was found in Phan et al. (2013), 
while optimizing the topology of the cold-formed steel portal frame buildings using a real-coded 
genetic algorithm (RC-GA); it was observed that only 6 out of 10 runs generated the best solution 
found. 

In an effort to enhance the searching performance and accelerate the convergence speed of the 
GA, a modification of the distributed GA (DGA) was suggested that uses a number of variable 
mutation schemes to increase the diversity of the population in the earlier stages (Issa and 
Mohammad 2010). In addition, the niching techniques suggested have been successfully applied to 
GA in determining the optimum solution of many complicated mathematical functions with 
multiple constraints (Deb and Goldberg 1989, Deb 2001, Yu and Sugathan 2010). 
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In this paper, a niching strategy as proposed in Deb (2001) is incorporated into the RC-GA to 
improve the exploration of the solution space to help achieve the optimum solutions, which are 
building topology as the continuous variables and section sizes as the discrete variables. The 
proposed optimization method, to be referred to as real-coded niching GA (RC-NGA), maintains 
the diversity of the population, thereby increasing the probability of achieving the optimum 
solution, by the preferential retention of candidate solutions from regions that are 
under-represented whilst simultaneously eliminating some of the candidate solutions from regions 
that are overcrowded based on the presumption that candidate solutions in the same 
neighbourhood would tend to be similar. 

The results of RC-NGA, in terms of cost of the primary members per square meter of floor plan, 
are shown to be identical to the benchmark examples presented in Phan et al. (2013). It is shown 
that the effectiveness in achieving the optimum solution increased significantly in terms of the 
reliability of the solutions, robustness and computational efficiency. RC-NGA is then used for the 
purpose of a parametric study that investigates the effect of topology on different sizes of portal 
frame. The Australian code of practice is used for demonstration purposes, although any design 
codes can also be applied. The Australian code is used because there is less snow in many regions 
in Australia, so larger spans can be achieved. 
 
 
2. Design optimization of the cold-formed steel portal frames 

 
2.1 The details of portal frame building 
 
In this paper, the design optimisation of two types of portal frame is considered: Type 1 

without knee braces (Fig. 1(a)) and Type 2 with knee braces (Fig. 1(b)). The joints between 
members are formed through brackets bolted to the webs of the channel-sections being connected; 
matching swages rolled into both the brackets and webs of the channel-sections interlock under 
load forming a joint that can be considered to function as rigid (Kirk 1986). The geometry 
parameters are as follows: span of frame Lf, height to eaves hf, pitch of frame θf, and frame spacing 
bf (Fig. 2). For the case of portal frames having knee braces at the eaves, the position of the knee 
braces is fixed relative to the height to the eaves, hf as shown in Fig. 1(b)). 

 
 

(a) Type 1 
Rigid-jointed frame 

(b) Type 2 
Rigid-jointed frame having knee braces at the eaves 

Fig. 1 Geometries of cold-formed steel portal frames 
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Fig. 2 Parameters of topography of steel portal frame building (purlins, side rails and cladding not shown)

 
 

For a specific portal frame building, in which the span of the frame and column height are 
given, the remaining parameters, i.e., the pitch of the frame and frame spacing, can be varied as 
topology variables in order to investigate their effect on the unit cost of the building. In this 
research, the pitch θf varies in the range of [5°, 45°]; frame spacing bf varies in the range of [2 m, 8 
m]. Apart from these, the section sizes of members are the other discrete decision variables that are 
also optimized. As can be seen from Table 1, the most appropriate cross-section sizes are selected 
from a list of 20 available channel-sections in Australia. These channel-sections can either be used 
singly or back-to-back (Fig. 3), resulting in 40 combinations. The swages on the web of the 
channel-sections obviously improve the load carrying capacity of the members. However, for 
simplifying the checking procedure and obtaining a conservative design, it should be noted that the 
section properties and member checks are based on plane channel-sections and therefore ignore the 
benefit of the swages. 

 
 

  
(a) Single channel-section (C) (b) Back-to-back channel-section (BBC) 

Fig. 3 Details of cold-formed steel channel-section 
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It is assumed that the columns bases are pinned. Also, it is assumed that the purlins and side 
rails are positioned within the web of the members and are spaced sufficiently close to each other 
to prevent out-of-plane buckling from being the critical failure mechanism. 

In many practical cases, the panel zone strength has a great effect on the inelastic response of a 
moment connection. For strong-axis connections, the panel zone is a portion of the column web, 
but for weak-axis connections, the panel zone is a portion of the column flanges. Thus, in general, 
the panel zone strength of weak-axis connections is much higher than that of strong-axis 
connections. The panel zone strength ratio (Vy / VpzMy) of these weak-axis specimens was 2.35, 
where Vy is the panel zone yield strength and VpzMy is the panel zone shear force when the 
connected beam yields. 
 

2.2 Optimization formulation 
 
The objective of the overall design optimization, including the topology and section sizes, is to 

determine the portal frame building having the minimum cost, whilst satisfying the design 
requirements. The cost of the main frame, which depends on frame spacing, pitch and 
cross-section sizes, can be expressed in terms of the cost of the primary members per square metre 
of the floor area as follows: 

i

m

i
i

ff

lw
bL

W 



1

1
   Minimize                          (1) 

where 
W  is the cost of main frame per square meter of floor area 
wi  are the cost per unit length of cold-formed steel sections (Table 1) 
li   are the lengths of cold-formed steel structural members 
m   is the number of members. 
 
It should be noted that the frame span Lf appearing in Eq. (1) does not have any effect on the 

unit cost W, since it is fixed in this paper. However, the unit cost per square meter on building plan 
can provide practical information for the designers. 

 
2.3 Frame loadings 
 
2.3.1 Permanent and imposed roof loads 
The permanent and imposed roof loads according to Australian code (AS/NZS1170-1 2002) 

that will be applied to the frames are as follows: 
Permanent load (G): 0.15 kN/m2 (purlins, rails, cladding) 

self-weight of the members (see Table 1) 
Imposed load (Q):  0.25 kN/m2 
 
2.3.2 Wind loads 
In this paper, wind pressures from wind region W in Australia having a regional wind speed VR 

of 49.4 m/s are used, based on the Australian code of practice on wind load for the design of 
buildings (AS/NZS1170-2 2002). According to this code, the basic wind pressure qu for the 
ultimate limit state is calculated from a design wind speed Vdes, which in turn is calculated from the 
regional wind speed VR multiplied by factors Md (wind direction multiplier), Mz,cat (terrain/height 
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Table 1 Dimensions and section properties of cold-formed steel sections 

Section D (mm) B (mm) t (mm) 
EA(× 102) 

(kN) 
EI (× 106) 
(kNmm2) 

Weight 
(kg/m) 

Cost 
(A$/m) 

C10010 102 51 1.0 451.0 73.8 1.78 5.58 

C10012 102 51 1.2 533.0 88.2 2.10 6.15 

C10015 102 51 1.5 656.0 110.7 2.62 6.77 

C10019 102 51 1.9 840.5 137.4 3.29 8.37 

C15010 152 64 1.0 604.8 225.5 2.32 7.03 

C15012 152 64 1.2 717.5 264.5 2.89 7.99 

C15015 152 64 1.5 902.0 330.1 3.59 8.46 

C15019 152 64 1.9 1148.0 414.1 4.51 10.52 

C15024 152 64 2.4 1455.5 520.7 5.70 12.88 

C20012 203 76 1.2 922.5 574.0 3.50 8.99 

C20015 203 76 1.5 1148.0 723.7 4.49 10.04 

C20019 203 76 1.9 1455.5 924.6 5.74 12.56 

C20024 203 76 2.4 1845.0 1166.5 7.24 15.29 

C25015 254 76 1.5 1312.0 1250.5 5.03 13.66 

C25019 254 76 1.9 1660.5 1562.1 6.50 14.43 

C25024 254 76 2.4 2091.0 1972.1 8.16 17.82 

C30019 300 96 1.9 2070.5 2788.0 7.92 22.76 

C30024 300 96 2.4 2583.0 3485.0 10.09 29.52 

C30030 300 96 3.0 3280.0 4366.5 12.76 36.25 

C35030 350 125 3.0 3915.5 7339.0 15.23 44.74 
 
 
Table 2 Coefficients of external pressure Cpe (AS/NZS1170-2 2002) 

Description 
Coefficient Cpe on face 

AB BC CD DE 

Wind acting on side of frame (WT1) 0.7 – 0.3 – 0.3 – 0.3 

Wind acting on side of frame (WT2) 0.7 – 0.7 – 0.3 – 0.3 

Wind acting on end of frame (WL1) – 0.65 – 0.9 – 0.9 – 0.65 

Wind acting on end of frame (WL2) – 0.2 0.2 0.2 – 0.2 

 
 
multiplier), Ms (shielding multiplier), and Mt (topographic multiplier). It is worth noting that Mz,cat 
depends on both the terrain category and the average height of the building. A detailed example of 
determining the design wind speed and basic wind pressure for a typical portal frame building 
having span of 20 m, column height of 4 m, and pitch of 10° was presented in Phan et al. (2013). 
In this case, the design wind speed Vdes is 42.98 m/s and the basic wind pressure qu is 1.1 kN/m2. 

The design wind pressures acting on each of the four sides of the frame are obtained by 
multiplying qu by a coefficient of pressure and other related factors. The coefficient of pressure 
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acting on each face is obtained from a combination of the external pressure coefficient Cpe and the 
internal pressure coefficient Cpi. The external pressure coefficients Cpe should be calculated for 
wind acting on the side and on the end. These values are shown in Table 2, calculated based on 
AS/NZS1170-2 (2002). For buildings of normal permeability, without dominant openings, Cpi has 
a minimum value of – 0.3 for suction, and a maximum value of + 0.2 for pressure. 

The eight wind load combinations (WLC1 to WLC8) for the frame, and their corresponding 
coefficients for both side wind and end wind, are shown in Table 3. The coefficients of pressures 
Cpe given by WLC1 are illustrated in Fig. 4. As can be seen, the frame will be checked for all eight 
wind load combinations (Table 3) in the design procedure to be described in Section 2.4. 

 
2.3.3 Limit state design 
In accordance with the Australian code in AS/NZS1170-0 (2002), the frame will be checked at 

the ultimate limit state for the following three ultimate load combinations (ULCs) 

WLCGULC
WLCGULC

QGULC





9.03
2.12

5.12.11
                            (2) 

It should be noted that ULC3 is used for the uplift wind load combination. 

 
 
Table 3 Coefficients of pressure (Cpe + Cpi) corresponding to different wind load cases (AS/NZS1170-2 2002) 

Wind load 
combination 

Description 
Coefficient on face 

AB BC CD DE 

WLC1 Wind on side + internal pressure 0.7 + 0.2 – 0.3 + 0.2 – 0.3 + 0.2 – 0.3 + 0.2

WLC2 Wind on side + internal suction 0.7 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3

WLC3 Wind on side + internal pressure 0.7 + 0.2 – 0.7 + 0.2 – 0.3 + 0.2 – 0.3 + 0.2

WLC4 Wind on side + internal suction 0.7 – 0.3 – 0.7 – 0.3 – 0.3 – 0.3 – 0.3 – 0.3

WLC5 Wind on end + internal pressure – 0.65 + 0.2 – 0.9 + 0.2 – 0.9 + 0.2 – 0.65 + 0.2

WLC6 Wind on end + internal suction – 0.65 – 0.3 – 0.9 – 0.3 – 0.9 – 0.3 – 0.65 – 0.3

WLC7 Wind on end + internal pressure – 0.2 + 0.2 0.2 + 0.2 0.2 + 0.2 – 0.2 + 0.2

WLC8 Wind on end + internal suction – 0.2 – 0.3 0.2 – 0.3 0.2 – 0.3 – 0.2 – 0.3

 
 

Fig. 4 Coefficients of wind pressure for wind load combination 1 (WLC1) 
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2.4 Frame design 
 
A first-order elastic frame analysis program is used to analyze the portal frame. For each load 

combination, bending moment, shear force and axial force diagrams for the frame are determined. 
The frame analysis program is called to analyse each candidate solution from current population in 
each generation as shown in Fig. 5. 

 
Columns and rafters 
In accordance with AS/NZS 4600 (2005), the column and rafters are checked for combined 

axial compression and bending, distortional buckling, and combined bending and shear.  In the 
case of portal frames having knee braces at eaves, the knee braces are checked for both buckling 
under compression and tension. The section capacities of lipped channel-sections without swages 
is calculated on the basis of effective width method (EWM) given in the Chapter 2 and 3 of this 
code; the effect of swages on the web is neglected to simplify the problem. 

 
 

Fig. 5 Flowchart of the real-coded niching genetic algorithm 
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The combined axial force and bending constraint is 

1
**


k
sb

xk
k
sc

k

M

M

N

N


                           (3) 

where 
Ns

k
 is the nominal section capacity of member k in compression 

M s
k
 is the nominal section moment capacity of member k about the x-axis 

Nk
* is the design axial compression in member k 

M *
xk  is the design bending moment in member k about x-axis of the effective cross-section 

ϕc  is the capacity reduction factor for compression 
ϕb  is the capacity reduction factor for bending 
 
The distortional buckling check is 

k
bxbxk MM *                              (4) 

with M k
bx = Zcfc and fc = Mc / Zf 

where 
M *

xk is the design bending moment in member k about x-axis of the effective cross-section 
ϕb  is the capacity reduction factor for bending 
M k

bx  is the nominal member moment capacity of member k 
Zc  is the effective modulus at a stress fc in the extreme compression fibre  
Mc is the critical moment 
Zf  is the full unreduced section modulus for the extreme compression fibre 
 
The combined bending and shear check is 

1
**


vkv

k
k
sb

xk

V

V

M

M


                           (5) 

where 
M *

xk   is the design bending moment in member k about x-axis of the effective cross-section 
M s

k
 is the nominal section moment capacity of member k about the x-axis 

Vk
*
  is the design shear force in member k 

Vvk  is the nominal shear capacity of the web of member k  
ϕb  is the capacity reduction factor for bending 
ϕv  is the capacity reduction factor for shear. 

 
Eaves knee braces 
The knee brace is a pin-ended member and is checked for both compression and tension. The 

compression check is 

ckcck NN *                               (6) 

where 
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M *
ck is the design compressive axial force of member k 

Nck  is the nominal member capacity of the member k in compression 
ϕc   is the capacity reduction factor for compression 
 
The tension check is 

tkttk NN *                               (7) 

where 
N *

tk  is the design tensile force of member k 
Ntk  is the nominal section capacity of the member k in tension 
ϕt   is the capacity reduction factor for tension. 

 
 
3. Real-coded niching genetic algorithm (RC-NGA) 
 

The design optimization considered in this paper contains mixed discrete and continuous 
decision variables. As demonstrated in Deb (2001), RC-GA is appropriate for this problem, 
especially as the optimization of the topology of the cold-formed steel portal frame building 
involves continuous decision variables. The benefit of RC-GA is that genetic operators are directly 
applied to the design variables without coding and decoding as with binary GAs. In addition, for 
discrete design variables, a technique that rounds off the results of the simulated binary crossover 
(SBX) and polynomial mutation that are described later in this section is used. 

 
3.1 The niching strategy in the selection operator 
 
In the proposed RC-NGA, tournament selection with a niching technique is applied. The 

process is conducted by selecting at random two individuals from the current population, namely 
x(i) and x(j). The normalized Euclidean distance (Deb 2000) between the two solutions is 

sizePopji
xx

xx

n
d

n

k
l
k

u
k

j
k

i
k

ij 











 


,1   ; 
1

2

1

)()(

                  (8) 

where 
dij   is a normalized Euclidean distance between xk

(i) and xk
(j) 

n   is the number of decision variables 
Pop-size is the population size in the RC-NGA 
xk

(i) and xk
(j)  are the corresponding kth decision variable in two vectors xk

(i) and xk
(j). 

xk
u and xk

l   are the upper and lower bounds respectively of the kth decision variable. 
 
If this Euclidean distance is smaller than an empirical user-defined critical distance, these 

solutions are compared using their fitness function values. Otherwise, they are not compared and 
another solution x(j)is selected at random from the population for comparison. If after a certain 
number of checks, no solution x(j) is found to satisfy the critical distance, x(i) is selected for the 
crossover operation. In this way, only solutions in same region (or niche) compete against each 
other for selection and crossover. 
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3.2 The real-coded genetic operators 
 
The crossover operator for RC-NGA uses the simulated binary crossover (SBX) formula to 

apply directly to real variables (Deb and Agrawal 1995). Apart from that, Deb (2001) observed 
that with the crossover operator applied uniformly to the whole population, some search effort is 
wasted in the recombination of solutions as their distance is larger than the critical distance. A 
mating restriction scheme is therefore applied to prevent individuals in different niches from 
mating each other. Only two individuals that are located within a normalized Euclidean distance 
(see Eq. (8)) smaller than a predefined distance, or in the same niche, should be allowed to become 
mating partners. For two solutions satisfying the mating restriction, the SBX operator is as follows 

])1()1[( 5.0
])1()1[( 5.0

),2(),1()1,2(

),2(),1()1,1(

t
k

t
k

t
k

t
k

t
k

t
k

xxx
xxx











                    (9) 

where 
β    is the probability distribution function for crossover 
xk

(1,t) and xk
(2,t)  are the values of the kth decision variable for the parent solutions 

xk
(1,t+1) and xk

(2,t+1)  are the values of the kth decision variable of the children created for the next 
generation. 

 
To ensure the new values of the decision variable remain within the range [xk

l, xk
u], where xk

l and 

xk
u are the lower and upper bounds, respectively, the probability distribution for the crossover 

operator has the form 

 
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where 
u  is a random number between 0 and 1, 
ηc  is the distribution index for crossover; ηc = 1 herein. 
 
The mutation operator for RC-NGA mutates at random one solution in the population and 

employs the polynomial mutation formula (Deb 1989, Deb and Gulati 2001) 

)()1,1()1,1( l
k

u
k

t
k

t
k xxxy                          (11) 

where 
xk

u and xk
l   are upper and lower bounds, respectively, of the kth decision variable 

yk
(1,t+1)     is a new value obtained from the mutation operator and it replaces yk

(1,t+1). 
 
To ensure that no solution would be created outside the range of xk

u and xk
l the parameter δ̄ (ηm) 

529



 
 
 
 
 
 

D.T. Phan, J.B.P. Lim, T.T. Tanyimboh and W. Sha 

has the form (Deb and Gulati 2001) 
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  )/()(),(min )1,1()1,1( l

k
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k
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k

l
k

t xxxxxx    

where 
u  is a random number between 0 and 1 
ηm  is the distribution index for mutation; ηm = 1 herein. 
 
The flowchart of the RC-NGA used in this paper is shown in Fig. 5. Constant probabilities are 

assigned to both crossover and mutation operators. Based on a number of trials, a crossover 
probability Pc of 0.9 is used throughout in this study. It was observed that premature convergence 
happens with a low mutation probability. To increase the GA’s exploration capacity in the solution 
space to increase the chance of locating the optimum solution, the mutation probability Pm is tuned 
empirically to as high as 0.1. The high value of mutating probability used in this paper was also 
used in Deb and Gulati (2001). 

 
3.3 Fitness function and penalized technique 
 
The ultimate limit state (ULS) described in Section 2.4 is the basis of the design constraints for 

the optimization problem. A penalty function is used to transform this constrained problem to an 
unconstrained one. Penalty values are imposed empirically, in proportion to the severity of 
constraint violation. The fitness function adopted has the form as follows 

]1[ CWF                                (13) 
where 

F  is the fitness function 
W  is the objective function being the cost of frame per unit area 
C  is the constraint violation penalty. 
 
The normalized forms of the design constraints or unity-factors given in Eqs. (3)-(7) are 

processed in GA as follows 
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The penalty value is assigned through the maximum level of violation of the unity-factor 
constraints in Eqs. (14a)-(14e) as follows 

],,,,max[ 54321 gggggg                           (15) 

Through a numbers of trials, it is observed that two levels of constraint violation penalties with 
the magnitudes as shown in Eq. (16) are suitable 
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The proposed optimization procedure aims to minimize the value of the fitness function F (Eq. 
(13)). This is achieved by minimizing the cost W and reducing the penalty C to zero. The 
procedure involves RC-NGA and frame analysis modules (Fig. 5). In this optimization process, the 
evaluation process computes the fitness function values using the objective function (Eq. (1)) 
along with the corresponding penalty values defined in Eq. (16). Better (i.e., cheaper) solutions 
will yield smaller fitness values, and consequently are selected preferentially by the tournament 
selection operator. The criterion for terminating the program is a predefined total number of 
function evaluations or generations. 
 
 
4. Benchmark examples 

 
4.1 Portal frame without knee braces (Type 1) 
 
The design optimization for Frame Type 1 is considered using RC-NGA. The frame has a span 

of 20 m and column height of 4 m. This benchmark example was described in Phan et al. (2013) 
and solved using RC-GA. The design optimization that accounts for the effect of both the pitch 
and frame spacing is conducted with the GA parameters and operators described in the Section 3. 
This problem has four decision variables, viz. pitch and frame spacing processed as continuous 
variables, whilst cross-section sizes of the columns and rafters being the discrete ones. 

For the proposed optimization algorithm, the initial population is established randomly. 
Through a number of trials with different sizes, the size of population is chosen as 40, in the 
design example considered. Since the normalized Euclidean distance in Eq. (8) has a range from 0 
to 1, it is found empirically that a suitable value of dij is 0.3, for which tournament selection and 
crossover operators worked effectively in this study, relating to the selected population size. 
Crossover probability of 0.9 and mutating probability of 0.1 are used for implementing genetic 
operators in RC-NGA. Due to the random aspect of the proposed algorithm, the design of frame 
Type 1 is optimized ten times with different seed values to check for the consistency of the 
optimum result obtained from every optimization algorithm, namely, RC-NGA and RC-GA. The 
maximum number of generations was empirically selected as 250 to terminate the program. 

It was observed that the RC-NGA, with a population size of 40, produced the same optimum 
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solution in 8 out of 10 runs. The optimization process converged to the optimum solution within 
the predefined number of generations. The results obtained from 8 runs generating the same 
solution showed that the most appropriate cross-section size for both the columns and rafters is 
BBC25024; the optimum pitch is 21°, the optimum bay spacing is 3 m, and the unit cost is 
A$ 17.75/m2. As expected, these results obtained were the same as the result generated from the 
RC-GA in Phan et al. (2013). The design constraint for the combined actions of axial compression 
and bending on rafter was critical, i.e., g1 = 0, with ULC3 load combination. The CPU time for 
RC-NGA was 1.5 hours for a machine having a processor speed of 2.0 GHz, and memory of 2.0 
GB. It is interesting to observe that the other 2 runs generated the frame weight only 5.2% higher 
cost than the optimum solution, in which the same optimum cross-section size and pitch was 
obtained, whilst frame spacing was slightly smaller. This clearly showed that the proposed 
optimization algorithm generated the near-global optimum solution if not global one. 

It should be noted that with the same population size of 40, the authors also optimized this 
design using the RC-GA within 250 generations. The optimization procedure following the GA 
flowchart as shown in Fig. 5 is applied; however, conventional selection and crossover operators 
are applied. Conveniently, the RC-NGA will be converted to RC-GA when the niching value is set 
to unity. It is observed that the best result obtained after ten runs has a unit cost A$ 21.55/m2, 
which is 24% higher than the optimum cost obtained from RC-NGA. Browsing the unity factors of 
constraints, all results are slack, in which the maximum unity factor for the combined actions of 
axial compression and bending on rafter was critical, i.e., g1 = – 0.2, with ULC3 load combination. 

The individuals’ distribution in the population through the evolutionary process, which 
generated the best solution after 10 runs, is typically displayed in Fig. 6 for RC-NGA and Fig. 7 
for RC-GA. Three parameters, namely, maximum, mean, and minimum costs, are chosen to show 
the distribution of those individuals in the population. As can be seen in Fig. 6, the diversity of the 
population was maintained through the mean cost is around half way between maximum and 
minimum costs. On the other hand, as can be seen in Fig. 7, the diversity of the population 
declined considerably; the better fitness solutions dominated the population after 100 generations, 
so the mean value obtained is rather close to the minimum weight. It explained the weak capacity 
of RC-GA in searching for the optimum solution with a small population size. 

 
 

 

Fig. 6 Convergence progress of RC-NGA for Frame Type 1 
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Fig. 7 Convergence progress of RC-GA for Frame Type 1 

 
 

This showed that the capacity of RC-GA for searching the optimum solution using a small 
population size is not effective. As observed in the previous research (Phan et al. 2013), the 
suitable population size for RC-GA was 120 to reach a better optimum solution. It was observed 
that only 5 out of 10 runs, with population size of 120, generated the same optimum solution. 
Comparing the time for solving the problem, RC-NGA generates the optimum results three times 
more efficiently than RC-GA. 

 
4.2 Portal frame with knee braces (Type 2) 
 
The optimal design of a portal frame with knee braces at eaves (Type 2), having the same span 

and column height as in Frame Type 1, is considered in this section. There are five design decision 
variables in this problem: pitch and frame spacing were considered as continuous variables, whilst 
the column, rafter and knee brace cross-sections were considered as discrete variables. This 
optimization problem is more complicated than the previous example as there are more design 
variables and the solution space is larger. The population size was therefore set as 50 and a number 
of generations of 250 is used to terminate the RC-NGA program. The other genetic parameters, 
namely, crossover probability of 0.9, mutation probability of 0.1, and niching distance of 0.25 are 
used for the evolutionary process, as shown in Fig. 5. 

 
 
Table 4 Optimum solution for Frame Type 2 with variable topography (Phan et al. 2013) 

Member type 
Cold-formed 
steel sections 

g1 g2 g3 g4 g5 θf 
bf 

(m) 
W 

(A$/m2)

Column BBC 25024 – 0.01 – 0.03 – 0.09 – 1.00 – 1.00

17.5° 4.0 13.5 Rafter BBC 25024 0 – 0.01 – 0.07 – 1.00 – 1.00

Knee brace C 20015 – 1.00 – 1.00 – 1.00 – 0.02 – 0.38
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Fig. 8 Convergence progress of RC-NGA for Frame Type 2 

 
 

With a population size of 50, it was observed that RC-NGA generated the best-known optimum 
solution in 7 out of 10 runs. The progress of RC-NGA converging to the best optimum solution is 
shown in Fig. 8. As can be seen, the optimum unit cost obtained is A$ 13.5/m2 with corresponding 
parameters as shown in Table 4, which is the same as those results shown in Phan et al. (2013). It 
is interesting to note that the knee braces at the eaves lead to a larger frame spacing being achieved, 
which makes the unit cost of the Frame Type 2 lower than the cost of Frame Type 1 by 24%. The 
knee braces also result in the optimum pitch reducing by around 3°, compared with the optimum 
pitch of the same frame without knee braces. The combined actions of bending moment and axial 
compression on the rafter is active (g1 = 0) in the case of load combination ULC3. 

Similar to the case of the optimization of Frame Type 2, the niching strategy effectively 
maintained the diversity of the population (see Fig. 8), which can achieve an optimum solution 
with a small population size. As compared to the RC-GA routine, launched by setting the niching 
value of unity, it is observed that the procedure converged prematurely at a local optimum solution 
in all ten runs with the same population size of 50. To improve the performance of the RC-GA, the 
necessary population size was found as 120 within 250 generations. This enabled 4 runs out of 10 
to converge to the lowest cost solution, as found in this work. 

It was observed that the computational time for solving the optimization problem using 
RC-NGA was 2.4 hours using a machine having a processor of 2.0 GHz and memory of 2.0 GB. 
The improved efficiency of RC-NGA over RC-GA is due to the fact that the diversity of 
population has been maintained in RC-NGA by niching. Also, the mating restriction increased the 
exploitation capacity of the algorithm in the local areas. This distinct characteristic is the reason 
for the greater effectiveness of the smaller population being used. 
 
 
5. Parametric study 

 
It has been shown that RC-NGA can generate (near) global optimum solutions with a higher 

consistency and in a reasonable computation time compared with RC-GA. In this section, 
RC-NGA is therefore used for the purpose of a parametric study on the effect of the pitch and 
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frame spacing on Frames Types 1 and 2. The frames considered all have a span of 20 m. Four 
typical column heights, as commonly used for cold-formed steel portal frame buildings, are 
considered: 3 m, 4 m, 5 m, and 6 m. The parameters used in the RC-NGA are as follows: population 
size of 50, crossover probability of 0.9, mutating probability of 0.1, and niching distance of 0.25. 
These frames are optimized ten times with different seed values due to the random aspect of the 
optimal problem. The best results obtained after ten optimization runs are shown in Tables 5, 6 and 
7. 

Table 5 shows the optimum cross-section sizes of structural members and corresponding unit 
costs for Frame Type 1 and Frame Type 2 having a small column height of 3 m, with a typical 
topology (i.e., a frame spacing of 4 m and pitch of 10°). As can be seen, for such portal frame 
buildings, taking into account the optimum topology, the cost per unit plan area of the building 
shows the largest savings, for instance 39% for Frame Type 1 (Table 6) and 47% for Frame Type 
2 (Table 7), compared with those results shown in Table 5. 

As can be seen from Table 6 and Table 7, there is a reducing trend of the optimum frame 
spacing and pitch when the column height increases from 3 m to 6 m. This is because reducing 
frame spacing will lead to lower loadings being subjected to the frame. The section sizes of 
members are therefore smaller/cheaper. It should be noted that the wind load is in proportion to the 
apex height of the building. This is the reason why the roof pitch achieved a small angle in the 
case of high column, whilst the large pitch in portal frame gives a better structural performance in 
the case of small column height. 

For the frame without knee braces at eaves, it is interesting to see that the optimum 
cross-section sizes with the back-to-back channel section BBC25024 are the most appropriate 
sizes for the four cases of the column heights corresponding to the optimum pitch and frame 
spacing (Table 6). In addition, the use of knee braces at the eaves results in the optimum pitches 
being smaller to reduce the length of rafters; the frame spacings, larger than in the case of Frame 
Type 1, are observed to reduce the unit cost per area on the plan of building. These factors made 

 
 
Table 5 Optimum section sizes for portal frame with column height of 3 m (θf = 10° and bf = 4 m) 

Column 
height 

Members Frame Type 1 Frame Type 2 
Cost (A$/m2) 

Frame Type 1 Frame Type 2 

3 m 

Columns BBC30030 BBC30024 

23.8 23.3 Rafters BBC30030 BBC30030 

Knees N/A C15019 

 
 
Table 6 Optimum designs for Frame Type 1 as function of column height 

Column height Optimum pitch Optimum frame spacing (m) Cost (A$/m2) 

3 m 23° 3.4 14.5 

4 m 21° 3.0 17.8 

5 m 18° 2.6 21.1 

6 m 14° 2.3 25.3 
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Table 7 Optimum designs for Frame Type 2 as function of column height 

Column 
height 

Optimum pitch 
and frame spacing Members Section sizes 

Cost 
(A$/m2) 

Reduction over 
Frame Type 1 (%)

3 m 
θf   =  20.5° 
bf  =  5.0 m 

Columns C35030 

12.4 14.5% Rafters C35030 

Knees C15015 

4 m 
θf   =  17.5° 
bf  =  4.0 m 

Columns BBC25024 

13.5 24.2% Rafters BBC25024 

Knees C20015 

5 m 
θf   =  12° 
bf  =  3.3 m 

Columns BBC25024 

17.3 18.0% Rafters BBC25024 

Knees BBC10015 

6 m 
θf   =  10° 
bf  =  2.6 m 

Columns BBC25024 

21.3 15.8% Rafters BBC25019 

Knees C20019 

 
 
the unit costs of Frame Type 2 lower than Frame Type 1 by up to 24%. 

It was observed that all frames shown in this parametric study are optimal design with the 
critical design constraint for combined axial force and bending moment reaching the upper bounds. 
The optimum solutions converged within the predefined generations. The consistency of achieving 
the same optimum solution for all designs above is around 8 out of 10 runs. The time for solving is 
around 2.4 hours using a machine having a processor of 2.0 GHz and memory of 2.0 GB. 
 
 
6. Conclusions 

 
The RC-NGA was developed to minimize the cost of the primary members per square meter of 

floor plan for cold-formed steel portal frame buildings. The consistency of the optimum solution 
being obtained has been improved, conducted with a medium population size and within a more 
reasonable computational time. It was shown the diversity in the population has been maintained, 
so that the probability of achieving the optimum result increased effectively. 

For each building, the optimization program aims to determine the optimum topology and the 
most suitable cross-sections for the members. The frame design obtained from the program can be 
considered as the most economical design in each case, since the critical design constraint in all 
examples becomes active. The computational efficiency and robustness of the algorithm has also 
been demonstrated. The length of computational time for solving the optimization problem was 
therefore reduced by more than four times in comparison with RC-GA. 

A parametric study on a building having a span of 20 m, with four different column heights, 
shows that the optimum pitch reduces as the column height increases. As expected, the knee brace 
at the eaves results in larger frame spacing. Although the cost is calculated based on material used 
for the main frames, the reduction is very remarkable when the optimum topology is reached. For 
example, for a portal frame having a column height of 3 m and span of 20 m, the optimum 
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topology results in savings of 39% for the frame without knee braces at eaves, and 47% for the 
frame having knee braces at the eaves, compared with the typical topology of 4 m for the frame 
spacing and 10° for the pitch. 
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