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Abstract.  This paper deals with the multi-objective optimization of tire reinforcement structures such as 
the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type 
design variables and approximated by artificial neutral network, and the sensitivity analyses of these 
functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm 
introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other 
multi-objective optimization problems in which the objective function, the design variables and the 
constraints are not continuous but discrete. Through the illustrative numerical experiments, the 
fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm 
is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective 
structural optimization problems in various engineering applications. 
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1. Introduction 

 
The most significant feature of tire is that the structural and material composition is highly 

complex, so that the tire performances such as the ride comfort, maneuverability and durability are 
affected by a number of design variables (Clark 1982). In the early days before the computer-aided 
simulation and the design technologies had not come into wide use, a new tire model was designed 
by either the designer’s empirical intuition or by the fundamental engineering theories (Purdy 
1963). The early studies were mostly limited to the configuration design of tire carcass using quite 
2-D simple tire models, targeting for the ride comfort improvement. But since the 1990s, the 
computer-aided techniques have been extensively employed to model, analyze and design the tire 
(Lindtner and Tseng 1992, Meschke et al. 1995, Danielson et al. 1996, Shiraishi et al. 2000). 

Restricting to the optimum tire design, the most studies focused on either the stiffness 
distribution of rubber (Abe et al. 1996) or the sidewall and crown contours (Nakajima et al. 1996, 
Cho et al. 2002, 2005), in order to enhance the wear resistance, durability, ride comfort and 
maneuverability. In aspect of the objective function, the design problems in the early days were 
                                                 
Corresponding author, Vice Director, E-mail: jrcho@pusan.ac.kr 



 
 
 
 
 
 

J.R. Cho, J.H. Lee, K.W. Kim and S.B. Lee 

mostly single-objective but later multi-objective optimization problems became a main stream. 
Besides the numerical complexity stemming from the multi-objective optimization, the use of 3-D 
tire model (Shiraishi et al. 2000, Cho et al. 2005) significantly increased the size of the tire 
optimization problem, requiring the extremely long CPU time for the sensitivity analysis invoking 
the direct finite element analysis. To resolve this difficulty, the evolutionary optimization methods 
(Huang and Xie 2009, Sarker et al. 2002, Gao et al. 2012, Brunskill and Lubitz 2012) by utilizing 
the response surface method, artificial neural network or polynomial functions were adopted to 
transform the implicit objective function to an explicit approximate one (Nakajima et al. 1992, 
Abe et al. 2004). 

However, a prominent feature of the tire optimization methods introduced so far is the 
necessity of the mathematical sensitivity analysis to seek the direction vector of design variables. 
Regardless of whether the mathematical sensitivity scheme is direct or indirect, the mathematical 
sensitivity schemes evaluate the gradient of the objective function subject to a set of constraints. 
Thus, an underlying assumption for conventional tire optimization problems is that the design 
variables, objective function and the constraints are continuous within the predefined design 
domain. It implies that conventional sensitivity-driven optimization methods are restricted to 
improve the initial design models exhibiting a continuous spectral variation in the performances 
with respect to the continuous design variables and constraints. 

The decision of the number of belt layers in the tire tread region becomes an illustrative design 
problem for which the optimization methods relying on the mathematical sensitivity analysis 
encounter the difficulty in seeking an optimum solution. This kind of situation may, but frequently, 
occur when the designer tries to improve the target performances by introducing a new design 
model which is different from the initial one in aspects of the structural or/and material 
composition. A distinct characteristic of this kind of optimization problems is that the design 
variables change in the discrete manner, so that the continuous spectral variation of the objective 
functions to the design variables does not secure any more. In short, in this kind of discrete-type 
optimization problems, neither the objective function gradient is defined nor the mathematical 
sensitivity to the design variables is derivable. 

An alternative way to avoid the mathematical sensitivity analysis is to adopt the evolution of a 
number of design model candidates using genetic algorithm (Holland 1975, Goldberg 1989, Gao et 
al. 2012). As is well known, in the optimum design using genetic algorithm a best design model is 
chosen through the iterative genetic evolution composed of the fitness test, reproduction, crossover 
and mutation operations. As a result, both the sensitivity analysis and the direction vector which 
are essential for the conventional sensitivity-driven optimizations are completely unnecessary. 
Since the theoretical framework for genetic algorithm was laid down by Holland (1975), genetic 
algorithm has been rapidly spread to a variety of optimization problems in science and engineering 
fields (Govindaraj and Ramasamy 2005, Kameshki and Saka 2007, Rahami et al. 2008). But, the 
employment of genetic algorithm for the tire optimization was somewhat lately started from the 
late of 1990s. To the best of our literature survey, Hoffmeister and Bernard (1998) applied genetic 
algorithm to the optimum arrangement of tread pitch and Abe et al. (2004) used genetic algorithm 
to optimally design the fiber-reinforced belt layer. 

In this context, this paper addresses a generalized multi-objective optimization of fiber- 
reinforced belt layer of automobile tire by making use of genetic algorithm and artificial neutral 
network to simultaneously enhance the cornering performance and the durability. Here, the term 
generalized indicates that the proposed method is not subject to the types of design variable and 
objective function, even though only two specific numerical examples are presented in this paper. 
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In the multi-objective optimization of the fiber-reinforced belt layer, the fitness of each design 
model is evaluated with the help of the surrogate models of individual single-objective functions 
which are approximated by artificial neural network. In the current study, we present a number of 
Pareto solutions for different weighting factors, instead of seeking a best Pareto solution by 
trading-off the aspiration levels (Nakayama and Furukawa 1985). But, the seeking of a best Pareto 
solution using the proposed method is straightforward when the aspiration levels of each objective 
function are adjusted by the procedure introduced in our previous paper (Cho et al. 2002). 
 
 
2. Discrete-type tire structure design 

 
Referring to Fig. 1, tire is composed of a number of components which can be broadly 

classified into the pure rubber parts and the fiber-reinforced (FRR) parts. Here, the fiber-reinforced 
parts are belt layers in the tread region, polyester-cord layer called carcass and steel cords in the 
bead region. Besides forming the underlying skeleton of tire, these reinforcement components play 
an important role in the static and dynamic performances of tire, such as the ground contact, wear, 
durability, ride comfort and rim fitting. For this reason, these components have been importantly 
considered in the tire design, for which the specific design methods have been introduced by many 
investigators, from the earlier empirical and theoretical methods (Purdy 1963, Clark 1982) to the 
recent FEM-utilized mathematical optimization techniques. One of the significant features of the 
traditional optimum design of the tire structures design is that most concerns focused on the 
carcass contour in the sidewall, tread or bead regions. Regarding other design variables like the 
number of layers and cords and the belt angle and width, the decision making was mostly made 
based upon the parametric investigation of the target performance to these design variables 
(Satamurthy and Hirschfelt 1987). 

In the conventional optimum tire design, the change in geometry coordinates of the initial tire 
design does not remarkably change the finite element mesh. It is because not only the geometry 
change is not large but all the finite elements in the vicinity of the design object like the carcass 
layer move simultaneously during the mesh adaptation for the iterative sensitivity analysis 
(Nakajima et al. 1996, Cho et al. 2002). But, in the tire structure optimization in which the 

 
 

 
(a) (b) 

Fig. 1 Radial pneumatic tire: (a) composition; (b) major reinforcement components 
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(a) (b) 

Fig. 2 Representation: (a) local h-refinement; (b) instability of objective function 
 
 

 
(a) (b) 

Fig. 3 Discrete-type design variable: (a) carcass path; (b) fiber-reinforced belt layer 

 
 
configuration and dimensions of the design object change significantly as illustrated in Fig. 2(a), 
the uniformity of the initial finite element mesh may be significantly deteriorated. Being 
non-uniformity of finite element mesh during the mesh adaptation for the iterative sensitivity 
analysis inevitably causes the excessive fluctuation of the objective function to the optimization 
iteration number, as shown in Fig. 2(b). As a result, one may encounter the numerical difficulty in 
reaching a converged optimum solution, unless the local h-refinement (Demkowicz et al. 1989, 
Cho and Park 2003) is employed to recover the mesh uniformity. This kind of the fluctuation of 
objective function is different from the inherent fluctuation of objective function owing to the 
change of design variables in the iterative optimization process. 

Meanwhile, the design variables in the tire design may change in the discrete manner, which 
may frequently happen when the designer tries to generate a new tire model by greatly modifying 
the existing design model. As depicted in Fig. 3, the carcass path, the total number and the division 
number of belt layers could be the representative examples of the discrete-type design variables. 
This kind of tire structure design has never done before by the mathematical optimization method, 
rather it was made based on either the bench mark test or the parametric numerical analysis. It is 
because the gradient of objective function to the design variables is not mathematically defined as 
mentioned earlier, which became a main motivation that genetic algorithm has been introduced to 
the tire structure design. Not being confined to the discrete-type optimization problems, genetic 
algorithm would also be applied to the conventional optimum design in which the design variables 
and objective function vary continuously. Furthermore, the CPU time required for the fitness test 
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of each genome during the iterative genetic evolution can be greatly reduced if the direct finite 
element analysis is replaced with the surrogate models (Simpson 1991, Cho et al. 2011, Gao et al. 
2012), particularly for the large-scale optimization problems. 
 
 
3. Generalized evolutionary multi-objective structure optimization 

 
3.1 Formulation of discrete-type multi-objective optimization 
 
In this section, we consider the generalized multi-objective optimization problems 

characterized by distinct discrete-type design variables. According to the type of design variables, 
a design variable vector X consisted of the total of nd design variables is divided into a number of 
distinct design variable vectors XI (I = 1, 2, ..., ng) such that 

  ndng,X,,,XXXXXX T
ndng  2121               (1) 

 T
II ,,XXX  21                               (2) 

Note that ng becomes identical to nd when all the distinct design variable vectors XI include 
only one design variable. In the similar manner, a multi-objective function F(X) is composed of a 
finite number of single-objective functions fi (X)(i = 1, 2, ..., no), 

        X,f,X,fXfXF no 21                         (3) 

subject to a set of inequality and equality constraints given by 

  m,,,j,Xg j  210                           (4) 

  nc,,mj,Xg j  10                          (5) 

Hereafter, we denote the quantities (.)k be those at the k-th trade-off stage in an iterative 
multi-objective optimization process. Referring to the satisficing trade-off method (STOM) 
introduced by Nakayama and Furukawa (1985) and Cho et al. (2002), we employ the concept of 
the ideal and aspiration levels of each single-objective function fi (X) is introduced to define a 
weighted multi-objective function Fk (X) at the k-th trade-off stage 

     1

1

ˆmax



 k

i
*
i

k
ii

*
i

k
i

noi

k ffw,XffwXF                  (6) 

The ideal levels f *
i indicate the highest values which fi are expected to be reached, while the 

aspiration levels f̂ i are the desired values to be improved from the current values. In general, the 
former levels are determined by the single-objective optimization while the latter levels are set by 
the designer. The weighting factors wi are to be automatically set once these two levels are given. 

Next, the weighted multi-objective function Fk (X) subject to the constraints is transformed to 
an unconstrained pseudo-objective function Uk (X, rp) given by 
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      



nc

j
j

k
jp

k
p

k Xgc,rXFrX,U
1

2
0max                    (7) 

with a penalty parameter rp. The factors ci for scaling the magnitudes of each constraint with 
respect to the magnitude of the weighted multi-objective function F(X) are calculated through 

   Xg/XFc j
kk

j                              (8) 

Letting Xi be the discrete-type design variables governing the tire reinforcement structure and fi 
(X) be the tire performances evaluated by the tire static contact analysis, the multi-objective 
optimization of the tire reinforcement structure is formulated as follows 

 p
k

X
rX,UMinimize                             (9) 

     


k
N

kk
dsvtdVbdVeS ii

k
iijij ,0,00,

00 ˆ     :Subject to vu            (10) 

  mjg j  0,0X                          (11) 

  ncjmg j  1,0X                        (12) 

with 0k, , 0,k
N and bk

i being the initial material domain, the traction boundary region and the 
body force of the k-th discrete tire structure model. And, t̂

0
i is the traction force converted to the 

initial tire configuration and Sij (u) and eij (v) are the Second Piola-Kirchhoff stresses and the 
green-Lagrange strains, respectively. Note that Eq. (10) stands for the total Lagrangian formulation 
of the tire static contact problem (Bathe 1996, Cho et al. 2005). 

A best Pareto solution of the problem Eq. (9) is to be sought through the iterative trade-off 
process in which each trade-off involves the inner loop of iterative genetic evolution. All the 
single-objective functions fi are approximated using artificial neural network, and all the ideal 
levels f *

i are chosen by the single-objective optimization utilizing genetic. The sensitivity analysis 
required for the inner iteration loop is replaced with the iterative genetic evolution process. 

 
3.2 Genetic algorithm 
 
Once an initial population of genomes is generated, a genetic evolution of the genome 

population undergoes a series of fitness test, selection, crossover and mutation in sequence 
(Holland 1975, Goldberg 1989). And, the genome ranked top among all the genomes which are 
survived through a number of genetic evolutions is taken as a best one. In order to apply genetic 
algorithm to an engineering optimization problem, each design model MID = {X1, X2,..., Xnd}

T
ID 

under consideration should be transformed to genomes GID which are expressed by the total 
number of mnd bits. Here, ndm  is determined from the relation of case

TOT
m Nnd 2  with case

TOTN  
calculated by 

case
nd

casecasecase
TOT NNNN  21                        (13) 

when case
iN  is denoted as the case number of the i-th design variable. For the current study, the 
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genome GID corresponding to the ID-th discrete-type tire structure model MID in the following 
binary form 

  popmmmmID N...,,,ID,bbbbbbG
ndjj

21
1121 


             (14) 

where bi are either 1 or 0 and 
  jj mm bb ...

1
 stands for the j-th design variable Xj. Then, an initial 

population 0
G  of popN  genomes is defined by 

 popIDG N...,,,: IDG 2100                          (15) 

On the other hand, the decoding of a binary string to transform genomes GID to corresponding 
discrete-type tire structure models MID = {X1, X2,..., Xnd}

T
ID is carried out string-interval-wise. For 

example, once a string interval 
  jj mm bb ...

1
 is mapped into a decimal number, then this decimal 

number indicates the specific one among the total of case
jN  number of jX . 

The initial population of genomes is generated randomly so that the selection of genomes 
having high fitness is needed to seek a best genome in the minimum number of genetic evolutions. 
The selection process is made based on the fitness test of each genome in the population, and it 
prepares parents to reproduce offsprings through the crossover and mutation operations. Both the 
fitness test and the selection operation are carried out after an initial genome population is 
generated and after every mutation operation in the iterative genetic evolution process. Several 
methods such as roulette-wheel, tournament, ranking and sharing have been introduced for the 
genome selection operation (Kameshki and Saka 2007), but the roulette-wheel selection method is 
adopted for the current study. The fitness of each genome GID at the  -th genetic evolution stage is 
calculated using the fitness function defined by 

      



nc

j
IDj

k,
jpID

k,
pID

k, ...,,,Ggc,rGFr,GU
1

2
210max            (16) 

where the superscript k stands for the iteration number of trade-off between the single-objective 
functions fi (GID). As a convergence criterion to terminate the iterative genetic evolution, we use 
the maximum repetition times con

GAN  of successive generations with the best fitness value 
unchanged. Meanwhile, the genetic evolution is forced to iterate up to the preset minimum 
generation number for

GAN  without the fitness test at the initial stages, in order to rule out any 
pre-converged unsatisfactory solution. 

Once the parent genomes are prepared through the fitness test and the selection job, the 
offspring genomes are reproduced through crossover and mutation in sequence. Crossover and 
mutation are performed in order to extend the search space of genomes, which may produce more 
excellent offspring genomes with higher fitness. In proportion to the crossover and mutation ratios, 
the search space becomes larger but the convergence speed becomes lower, so the crossover and 
mutation ratios are usually set by 80~95% and 0.1~1.0% respectively. For the current study, we 
employ the one-point crossover operator and the classical mutation operator (Smith and Holland 
1987). 

 
3.3 MOGA optimization algorithm 
 
Flowchart of a multi-objective genetic algorithm (MOGA) optimization method is represented 
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Fig. 5 Flowchart of MOGA optimization method 

 
 
in Fig. 5, where trade-off, genetic algorithm and artificial neural network are combined. This 
method is basically composed of two main iteration loops, the outer loop for the trade-off between 
the single-objective functions and the inner loop for the genetic evolution of genomes. Individual 
single-objective functions fi (GID) approximated by artificial neural network are used for the 
single-objective optimization and the fitness test, and the single- and multi-objective optimizations 
are carried out by genetic algorithm. The inner loop terminates when the preset convergence 
criterion is satisfied, while the outer loop is terminated by the designer’s own judgment. 

The MOGA optimization starts with the initial design variables X 0 and a penalty parameter rp 
after each single-objective function is approximated by artificial neural network. Next, the ideal 
levels for each single-objective functions are chosen with the help of the single-objective 
optimization and the initial aspiration levels are set by the designer. With the initial setting of the 
aspiration levels f̂ i, an optimum solution is sought through the iterative genetic evolution 
composed of fitness test, selection, crossover and mutation. The optimum solution k,X  satisfying 
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the convergence criterion set for genetic algorithm is satisfactory then the optimization process is 
completely terminated, otherwise the trade-off iteration repeats with the modified aspiration levels. 
The reader may refer to Nakayama and Furukawa (1985) for more details on the trade-off process 
between single-objective functions. 

Referring to our previous paper (Cho et al. 2005), an artificial neural network with two hidden 
layers and the sigmoid transfer function f(x) = 1 / (1 + e–x) is employed. And the design of 
experiments (DOE) is prepared by an orthogonal array )3( 2)13(

3
/m

mL  , where the level of design 
variables is set by three. The target output data TAR

if  of individual single-objective functions to the 
input design variables INPX  in DOE are prepared by the finite element analysis. The weighting 
factors ijw  connecting the input, hidden and output layers are iteratively computed through a series 
of the forward computing and the backward learning. The iteration for determining the weighting 
factors terminates when the output signals OUT

if  satisfy the convergence criterion defined by 

DOEANN
TAR

i,s
TAR

i,s
OUT

i,s
s,i

...,N,,sno,...,,,i,εf/ff 2121max             (17) 

where no and NDOE denote the number of individual single-objective functions  Xfi  and  the 
experiment cases in DOE, respectively. 
 
 
4. Numerical experiments 

 
A test multi-objective optimization program called MOGA(multi-objective genetic algorithm) 

program is coded according to the theoretical formulae described in Section 3. The finite element 
analyses required to learn artificial neural network are performed by ABAQUS/Standard (2002). 
The structure of tread belt of an automobile tire mode P225/55R16 shown in Fig. 6(a) is desired to 
be tailored to simultaneously improve the durability and the cornering coefficient (CC). This tire 
model is composed of a single carcass layer, two tread belt layers and two capply layers with the 
geometry and material properties given in Table A1 in appendix. The hyperelastic rubber 
components are modeled using a two-term linear Moonley-Rivlin model and the detailed 
properties may be referred to our previous paper (2005). The tire durability is mostly influenced by 
the peak strain energy in the shoulder region as depicted in Fig. 6(b), so the peak strain energy in 
this region is taken as a single-objective function. Fig. 6(b) is cut from the tire part which is in 
contact with the ground, and note that the finite element analysis was carried out with 3-D full tire 
model shown in Fig. 6(a). While the tire cornering coefficient is defined by the ratio of the lateral 
force to the vertical force acting on the tire, and it is determined once the lateral force is obtained 
by finite element analysis. 

The 3-D finite element model shown in Fig. 6(a) is constructed by considering only the main 
grooves and the tire model is non-uniformly discretized with the total of 28,800 C3D6H and 
C3D8H elements provided by ABAQUS. Two tread belt layers and a carcass layer embedded in 
the underlying rubber matrix are modeled using rebar elements, and steel cords and underlying 
rubber matrix in the bead region are modeled as homogenized solid elements based on the linear 
rule of mixture. The tire axis and the outer bead nodes being in contact with the tire rim are 
connected using a number of massless rigid elements, and the tire axis is constrained to be 
clamped. The ground is modeled as a rigid plate and the vertical load FY of 495 kgf is applied to 
the tire bottom surface by moving up the rigid plate. The tire model is inflated up to the internal 
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    (a)    (b) 

Fig. 6 Design model: (a) finite element mesh; (b) peak strain energy and cornering coefficient (CC) 

 
 
pressure p of 30 psi, and the friction coefficient μ between the tire and the ground is set by 1.0. 

As shown in Fig. 7, there exist two belt layers in the tread region and two types of design 
variables, the belt angle X1 and the belt width increment X2, constitute a design variable vector 

21 XXX  . Here, X1 is composed of angles θ1 and θ2 of belt #1 and #2 while X2 consists of the 
belt width increments Δb1 and Δb2 of belt #1 and #2. As a result, the total number of design 
variables contained in the design variable vector X is as follows: nd = 2 + 2 = 4. These two types of 
design variables are subjected to the constraints given by 21° ≤ X1 ≤ 27° and –10 mm ≤ X2 ≤ +10 
mm respectively, so that the case numbers of each design variable are 6121  casecase NN  and 

20143  casecase NN . Using the relation of case
TOT

m Nnd 2  in Section 3.2.1, a binary string must have 
27 bits to express each design variable vector X. In order to approximate the two single-objective 
functions fi (X) by artificial neural network, 9 cases of finite element analyses are carried out 
according to the L9 (3

4) orthogonal array DOE. Three levels set for the belt angle and the belt width 
increment are (21°, 24°, 27°) and (–10 mm, 0, +10 mm) respectively, and the convergence 
tolerance εANN is set by 0.01. 

The simulation parameters taken for genetic algorithm are as follows: popN  of 50, the crossover 
ratio of 0.8, the mutation ratio of 0.01, for

GAN  of 30, and con
GAN  of 7, respectively. It was observed 

through the preliminary experiments that the total number of genetic evolutions required to obtain 
a converged genome increases in proportion to popN , the crossover and mutation ratios and con

GAN . 

 
 

 

    (a)    (b) 

Fig. 7 Design variables for the optimum design of fiber-reinforced belt layer 
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Fig. 8 Pareto curve for the fiber-reinforced belt layer 

 
 

    (a)    (b) 

Fig. 9 Sensitivity of the peak strain energy: (a) to the belt angle, (b) to the belt width increment 
 
 

 
Fig. 10 Pareto curve for the adjusted constraints 
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Table 1 Multi-objective optimization results when the constraints are extended 

Aspiration-level 
adjustment 

Objective functions Optimum design variables 

Peak strain 
Energy (psi) 

Cornering 
coefficient 

Belt angles (deg) Width increments (mm)
#1 #2 #1 #2 

1 36.9342 0.22001 19.0 19.0 +11.4 -6.9 
2 36.9903 0.22001 19.0 19.2 +9.3 -9.9 
3 37.0115 0.22010 19.2 19.2 +10.2 -9.4 
4 37.0303 0.22008 19.0 19.0 +10.2 -7.5 
5 37.0541 0.22013 19.0 19.4 +10.8 -7.8 
6 37.1176 0.22018 19.0 19.1 +9.3 -7.8 
7 37.1812 0.22027 19.0 19.1 +9.6 -11.1 
8 37.2246 0.22022 19.7 19.1 +9.6 -7.5 
9 37.2499 0.22031 19.1 19.1 +9.3 -11.7 

10 37.2920 0.22028 19.5 19.0 +9.9 -6.9 
11 37.3170 0.22035 19.2 19.3 +8.7 -8.4 
12 37.3176 0.22039 19.2 19.0 +9.3 -10.8 
13 37.3319 0.22035 19.3 19.4 +8.1 -10.5 
14 37.3429 0.22043 19.0 19.0 +9.3 -10.5 
15 37.3452 0.22040 19.0 19.1 +9.3 -8.4 
16 37.3472 0.22038 19.1 19.4 +8.1 -10.8 
17 37.3519 0.22043 19.0 19.1 +9.0 -10.2 
18 37.3551 0.22040 19.0 19.4 +8.1 -10.8 
19 37.3860 0.22044 19.2 19.0 +9.0 -11.7 
20 37.4583 0.22044 19.7 19.2 +8.1 -9.6 

 
 
The total generation number is also influenced by the ideal and aspiration levels and the initial 
population size of genomes, but in the averaged sense it was within the rage between 110 and 140. 
The penalty parameter rp is set by 1.0 and the ideal levels for the peak strain energy and the 
cornering coefficient which were determined by the single-objective optimization using genetic 
algorithm were 30.605 and 0.2208 respectively. In order to obtain a Pareto curve shown in Fig. 8, 
the aspiration levels of two single-objective functions are adjusted simultaneously in the opposite 
direction to each other; from the ideal level to the current value for the peak strain energy and vice 
versa for the cornering coefficient. 

Referring to Fig. 8, the peak strain energy and the cornering coefficient of the current design 
model are 38.50 and 0.22, and there is no Pareto solution better than the current design model 
within the predefined range of design variables. The detailed numerical values of the optimum 
design variables and the single-objective functions for 16 different adjustment cases of the 
aspiration levels are given in Table A2 in appendix. It is observed that the cornering coefficient 
improves as the belt angle and width become smaller and vice versa for the peak strain energy, 
showing the apparent reverse trend of two single-objective functions to each other to the change of 
design variables. Referring to Fig. 9, the two belt angles are lower-bounded when the peak strain 
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energy is greater than 30.7 and 35.3 respectively, while the two belt widths are upper-bounded 
when the peak strain energy is lower than 35.3 and 30.9 respectively. Referring to the tire structure 
shown in Fig. 1(a), the lateral bending stiffness of tire increases in proportional to the belt width 
and belt angle, so the resulting lateral bending deformation and the peak strain energy become 
smaller. 

In order to obtain a Pareto curve better than one shown in Fig. 9, the range of design variables 
is extended by changing the preset constraints to 19° ≤ X1 ≤ 29° and –15 mm ≤ X2 ≤ +15 mm. 
According to the extension of the design variable range, the case numbers of each design variable 
increase to 10121  casecase NN  and 30143  casecase NN , requiring 27 bits to express each design 
variable vector X using a binary string. The previously approximated artificial neural networks and 
the previous ideal levels chosen for the peak strain energy and the cornering coefficient are used 
without change, as well as the simulation parameters taken for the MOGA optimization are kept 
unchanged. 

It is observed from Fig. 10 that the Pareto curve moves towards the ideal level and its upper 
part is better than the current design model. Thus, one can choose a Pareto solution providing the 
peak strain energy and cornering coefficient better than those of the current design model. The 
detailed numerical values of the optimum design variables and the corresponding single-objective 
functions in the upper Pareto region are recorded in Table 1. When restricted to the upper Pareto 
region, it can be observed from the comparison with the values in Table A1 that the angles of belt 
#1 and #2 increase from 19° to 21°, while the width of belt #1 becomes larger and vice versa for 
belt #2. 

 
 
5. Conclusions 

 
The multi-objective optimum design of the belt composite structure automobile tire was carried 

out, in which the continuous design variables were discretized into a number of discrete ones and 
each discrete tire structure model was coded into a binary string. In order to rule out the possibility 
of any pre-matured Pareto solution, the genetic evolution was forced to iterate up to the preset 
minimum generation number without the fitness test at the initial stages. And, the convergence of 
the genetic evolution was judged by the preset maximum repetition times of successive 
generations with the best fitness unchanged. 

Through the numerical experiments, it has been verified that the proposed MOGA optimization 
algorithm successfully seeks the Pareto solutions for all the combinations of aspiration levels. 
Even though the numerical experiments dealt in this paper are restricted to the tire reinforcement 
structure and the aspiration levels are adjusted by rather uniformly, it is convinced that the 
presented MOGA optimization method can successfully provide one a best Pareto solution for any 
kind of discrete-type multi-objective optimization problem in various engineering applications. 
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Appendix A: Material properties and optimization results 
 
Table A1 Structural composition and material properties of fiber-reinforced composite parts 

Item 
Components 

Carcass Belt Capply 

Number 1 2 2 

Angle () + 90 variable (21~27) 0 / 0 
EPI 26 16 30 

Modulus (psi) 0.478 × 106 0.182 × 108 0.230 × 105 
 
 
Table A2 Multi-objective optimization results of fiber-reinforced belt layer (PSS: peak strain energy, CC: 

cornering coefficient) 

Aspiration level 
adjustment 

Objective functions 
Optimum design variables 

Belt angles (deg) Width increments (mm)
PSS (psi) CC #1 #2 #1 #2 

1 30.6116 0.2055 21.9 25.0 + 10.0 + 10.0 
2 30.7287 0.2065 21.0 25.1 + 10.0 + 10.0 
3 30.9679 0.2075 21.0 24.5 + 9.8 + 9.8 
4 31.2580 0.2085 21.0 23.9 + 10.0 + 10.0 
5 31.6044 0.2095 21.0 23.6 + 10.0 + 8.8 
6 31.9762 0.2105 21.0 23.4 + 9.8 + 7.2 
7 32.3379 0.2115 21.0 23.1 + 10.0 + 5.8 
8 32.7265 0.2125 21.0 22.8 + 10.0 + 4.6 
9 33.1302 0.2135 21.0 22.5 + 10.0 + 3.2 

10 33.5762 0.2145 21.0 22.2 + 10.0 + 1.0 
11 34.0509 0.2155 21.0 21.8 + 10.0 – 0.4 
12 34.6086 0.2165 21.0 21.3 + 10.0 – 0.4 
13 35.3283 0.2175 21.0 21.0 + 9.0 – 3.0 
14 36.2491 0.2185 21.0 21.0 + 6.6 – 4.4 
15 37.6152 0.2195 21.0 21.0 + 3.4  – 5.8 
16 40.4787 0.2205 21.0 21.0 – 0.8 – 5.2 
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List of symbols 
 

X   Design variable vector 

IX   I-th distinct design variable vector 

)(Xfi   Individual single-objective functions 

nond  ,   Numbers of design variables and single-objective functions 

ng   Number of distinct design variable vectors 

)(XF   Multi-objective function 

)(Xg j   j-th constraint 

*
if   Ideal level for the i-th single-objective function 

if̂   Aspiration level for the i-th single-objective function 

)(XF k   Weighted multi-objective function at the k-th trade-off stage 

k
iw   Weighting factor for the i-th single-objective function 

)( p
k X,rU   Unconstrained multi-objective function at the k-th trade-off stage 

k
jp cr   ,   Penalty parameter and scaling factor for the j-th constraint 

ndpop mN   ,  Population size and the binary string size 

IDG   ID-th genome (design model) in the population 

case
TOTN   Total case number of design variable vector X 

case
iN   Case number of the i-th design variable Xi 

0
G   Initial population of genomes 
,kU   Fitness value of the i-th genome at the  -th genetic evolution 

con
GAN   Maximum repetition times of successive generations with the best fitness unchanged 

for
GAN   Minimum forced generation number 

TAR
if   Target output data for the i-th single-objective functions fi 

INP
if   Input data for single-objective function fi 

OUT
if   Output signal of the i-th single-objective function from ANN 

ijw   Weighting factors for ANN 

ANN   Convergence tolerance for determining the weighting weights wij 

DOEN   Number of experiments in DOE 
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