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Abstract.  Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their 
singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity 
forces and mass induced forces compared to the isotropic constructions due to the high strength to weight 
ratio of the material. These light weight shells are preferred in the industry to cover large column free open 
spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral 
aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration 
responses of composite conoidal shells are studied. Lagrange’s equation of motion is used in conjunction 
with Hamilton’s principle to derive governing equations of the shell. A finite element code using eight noded 
curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for 
static bending analysis and three different load time histories for solution of forced vibration problems are 
considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary 
conditions are taken up in the present study. The study shows that relative performances of different shell 
combinations in terms of static behaviour cannot provide an idea about how they will relatively behave 
under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic 
displacement may not be same on a shell surface. 
 

Keywords:   conoidal shell; composite material; finite element method; forced vibration; Newmark’s 
method 
 
 
1. Introduction 

 
A shell structure is capable of covering large unsupported areas of stadiums, airports and 

shopping malls with small material consumption. They utilize their inplane stiffness in addition to 
bending stiffness due to the presence of curvature in their geometry. A doubly curved shell is 
aesthetically appealing and more rigid than singly curved shells. Use of a singly ruled surface is 
advantageous from execution point of view as it can be generated by placing straight shuttering 
between two curved boundaries. Conoidal shell (Fig. 1) is very popular in the industry as it is 
doubly curved and singly ruled at the same time. Moreover conoidal shell allows entry of daylight 
and natural air which is preferred in food processing and medicine units. 
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A closed form solution cannot be obtained for dynamic analysis of shells with complex 
geometry and boundary condition. Such problems can be solved efficiently by finite element 
method. Application of finite element method to analyze shell configurations by singly curved 
finite element was first reported by Ergatoudis et al. (1968). Later it was modified by Greene et al. 
(1968) by introducing doubly curved finite element to solve dynamic problems of isotropic shells. 
The use of laminated composites to fabricate shells became preferred to civil engineers from 
second half of the last century. The reasons were high strength/stiffness to weight ratio, low cost of 
fabrication and better durability of the composites. Moreover, the stiffness of laminated 
composites can be altered by varying the fiber orientations and lamina thicknesses which gives 
design flexibility. Moreover the mass induced seismic forces and hence foundation costs for 
composites are less. Naturally study of composite shells has emerged as an active area of research. 
Reddy (1984) reported exact displacements and fundamental frequencies of laminated cylindrical 
and spherical shells. Fundamental frequencies of cylindrical, conoidal, elliptic paraboloidal and 
hyperbolic paraboloidal shells were reported by Chakravorty et al. (1995a, 1995b, 1998) for varying 
boundary conditions and laminations. Nayak and Bandyopadhyay (2005, 2006) worked on free 
and forced vibrations of conoidal shells using the finite element method. Bending and free 
vibration characteristics of laminated conoidal shells with and without stiffeners were studied by 
Das and Chakravorty (2007, 2008, 2009, 2010, 2011). Kumari and Chakravorty (2010, 2011) 
reported bending characteristics of delaminated conoidal shells. Pradyumna and Bandyopadhyay 
(2008, 2011) used higher order shear deformation theory to study vibration and dynamic instability 
behaviors of laminated conoidal shells. 

A shell surface may subjected to short time dynamic forces in its service life by internal wind 
suction, snow loading in low temperature areas and seismic waves. A detail dynamic study 
including free and forced vibration studies is thus required to ensure long and uninterrupted 
service life of the laminated shells. Feeling this necessity a number of researchers like Chakravorty 
et al. (1998), Nayak and Bandyopadhyay (2006), Reddy and Chandrashekhara (1985), Lee and 
Han (2006), Nanda and Bandyopadhyay (2008, 2009) and Ribeiro (2008) worked on forced 
vibration of laminated shells. Reddy and Chandrashekhara (1985) reported linear and nonlinear 
transient responses of laminated spherical shells. Forced vibration responses of laminated 
cylindrical and spherical shells were reported by Lee and Han (2006). Nanda and Bandyopadhyay  
(2008, 2009) worked on nonlinear dynamic responses of laminated cylindrical and spherical 

 
 

Fig. 1 Conoidal shell with degrees of freedom
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shells subjected to transient loads. Similar studies on laminated conoidal shells are really scanty. 
Chakravorty et al. (1998) and Nayak and Bandyopadhyay (2006) were the only authors who reported 
transient responses of laminated conoidal shells. Nayak and Bandyopadhyay (2006) reported 
forced vibration of stiffened isotropic conoidal shells and Chakravorty et al. (1998) carried out 
limited study on transient responses of composite conoids. Hence, the present paper aims to study 
forced vibration characteristics of laminated composite conoidal shells subjected to three different 
load time histories. Complicated boundary conditions are chosen which the shell may have in 
industrial conditions. 
 
 
2. Mathematical formulation 

 
A composite conoidal shell of uniform thickness (h) and radii of curvatures Ry and Rxy is 

considered in the present study. The thickness of the shell may consist of any numbers of thin 
laminae in each of which the fibers are orientated at an angle θ with respect to the x axis of the 
shell (Fig. 2). The constitutive relationship of laminated composites is stated below 
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where 

  





































































2/

2/

h

h

yz

xz

xy

y

x

xy

y

x

y

x

xy

y

x

xy

y

x

dz
dz
zdz
zdz
zdz
dz
dz
dz

Q
Q
M
M
M
N
N
N

F










                 (refer to Fig 3) 

 
 

 
Fig. 2 General doubly curved laminated composite shell element 
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Fig. 3 Shell stress resultants 

 
 

The laminate stiffness matrix [D] is given by 
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(Qij)k are elements of the of axis elastic constant matrix which is expressed below 
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where m =cos and n =sin. 
The element strain vector is given by 

     Tyzxzxyyx

T

yzxzxyyx
T

yzxzxyyx kkkkkz ,,,,,,,,, 00000
,,,         (8) 

where the first vector contains the mid-surface strains for a conoidal shell and the second vector 
contains the change of curvatures due to loading. The strain displacement matrix adopted in the 
present study is same as reported by Das and Chakravorty (2007). 
 

2.1 Finite element formulation 
 
An eight noded curved quadratic isoparametric element is used here which consists of five 

degree of freedoms (u, v, w, α and β) at each node. The following shape functions are used to 
relate the element degree of freedoms with their nodal values. 
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2.2 Governing differential equation 
 
Lagrange’s equation of motion is derived using Hamilton’s principle to express the governing 

differential equation of motion for an undamped forced vibration condition of an elastic system 
undergoing small displacement. 
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where U1 = work done by conservative forces in shell element and is given by 
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U2 = kinetic energy due to vibratory motion of an element and is expressed as 
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where dot (.) represents derivative with respect to time and [m] is element mass matrix 
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The work done U3 by surface tractions in an element is given by 
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where   .00   00][ Tqq   
In the present analysis the conoidal shell is subjected to transverse loads only and the load is 

represented by the scalar notation ‘q’ hereafter. 
Using Eqs. (11)- (12) - (13) into Eq. (10), we can get the following relationship 
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The coefficient of the element acceleration vector  ed  of Eq. (14) represents the consistent 
element mass matrix [Me] and that of the element displacement vector  ed  represents the 
element stiffness matrix [Ke] and the term on the right hand side represents the consistent element 
nodal load vector {Qe}. 

Thus, Eq. (14) results in 
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The element mass matrix, stiffness matrix and load vector are transformed to isoparametric 
coordinates ξ and for numerical integration by Gauss quadrature rule. The global stiffness [K] 
and mass [M] matrices and global load vector {Q} of the shell are obtained as 
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The dynamic equation of motion in the global form is 

      QdKdM                           (18) 
 
2.3 The static problem 
 
If the inertia force term of Eq. (18) is dropped and the displacement and load vectors are 

assumed to be time independent then the following equation of static equilibrium is obtained 
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    QdK                              (19) 

The above equation is solved by the Gauss elimination technique. 
 
2.4 The free vibration problem 
 
If the load vector of Eq. (18) is dropped the equation of free vibration is obtained as 

      0 dMdK                            (20) 

In Eq. (20) the displacement {d} is a function of space and time and solved using subspace 
iteration algorithm. 

 
2.5 The forced vibration problem 
 
In Eq. (18) the global load vector {Q} is transient in nature and solved using Newmark’s 

method to get the dynamic responses. Displacement for (n +1)th time step at time t + t can be 
obtained using the following equations 
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The acceleration vector  d  and the velocity vector  d  can be computed from the 

displacement vector  d  for nth time step at time‘t’ as 
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and 

          tatadadadd nnnn    431431      and     1          with,        (25) 

The values of α and β are taken as 0.5 and 0.25 respectively as proposed by Newmark. 
 
 
3. Numerical problems 

 
The validation of the proposed static bending and free vibration formulations are established by 

comparing the present results with those published by Reddy (1984). The comparison of static 
displacements and fundamental frequencies of the cross ply simply supported spherical shells are 
presented in Tables 1 and 2 respectively. The material and geometric properties of the spherical 
shells are reported with the tables as footnote. For establishing the correctness of the forced 
vibration formulation proposed in this paper authors solve two problems as benchmark. The first  
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Table 1 Nondimensional central displacements ( w × 103) of simply supported composite spherical shell 
under uniformly distributed load 

Lamination 00 / 900 00 / 900 / 0
0 00 / 900 / 900 / 0

0 

J.N Reddy [2] 16.980 6.697 6.833 

Present FEM (2 × 2) 8.294 5.116 4.644 

(4 × 4) 16.898 6.724 6.820 

(6 × 6) 16.969 6.710 6.826 

(8 × 8) 17.009 6.707 6.835 
a a/b = 1, a/h = 100, E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, ν = 0.25, E22 = 106 N/cm2, R/a = 1030 
 
 
Table 2 Nondimensional fundamental frequencies   of simply supported composite spherical shell 

Lamination 00 / 900 00 / 900 / 0
0 00 / 900 / 900 / 0

0 

J.N Reddy [2] 9.687 15.183 15.184 

Present FEM (2 × 2) 14.897 15.209 15.221 

(4 × 4) 9.722 15.209 15.222 

(6 × 6) 9.691 15.179 15.195 

(8 × 8) 9.681 15.180 15.183 
a a/b = 1, a/h = 100, E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, ν = 0.25, EZ22 = 106 N/cm2, R/a = 1030 

 
 

R = 1000 cm, E11 = 25E22, G12 = G13 = 0.5E22, E22 = 106 N/cm2, ν = 0.25, ρ = 1 N-S2/cm6, lamination = 00 / 900

Fig. 4 Dynamic response of laminated composite spherical shell under uniformly distributed step load 
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a/b = 1, b/h = 250, b/hh = 0.15, hl / hh = 0.25, b = 25.0 cm, E = 25.491 × 109 N/m2, ν = 0.15, ρ = 2500 kg/m3

Fig. 5 Dynamic response of isotropic conoidal shell under uniformly distributed step load 

 
 
problem relates to the dynamic response of simply supported laminated composite spherical shell 
under step load of infinite duration which was solved earlier by Reddy and Chandrashekhara 
(1985). Authors have taken the liberty to incorporate the curvature term along x-axis in their strain 
displacement relations to work the formulation for spherical shell. The radius of cross curvature is 
assigned a high values (1030) to make the cross curvature effectively zero. The geometric and 
material details of the problem are furnished with the Fig. 4 which shows the comparative 
response curves. 

The second benchmark problem is one that was solved earlier by Nayak and Bandyopadhyay 
(2006) and deals with transient response of clamped isotropic conoidal shell under rectangular step 
load of infinite duration. Present formulation developed for composite shell is used for the 
isotropic material by making the elastic and shear modulii equal in all directions. For this problem 
also the relevant parameters are furnished with Fig. 5 shown the response curves. 

Apart from the benchmark problems, the authors solved additional problems of forced vibration 
response of graphite-epoxy multilayered composites. The laminations include symmetric and 
antisymmetric, cross and angle ply stacking sequences for two different boundary conditions (Fig. 
6) and three different uniformly distributed load-time histories (Fig. 7). To have a comprehensive 
idea about the relative performances of the shell options nondimensional values of static and 
dynamic displacements, nondimensional fundamental frequencies and dynamic magnification 
factors (henceforth referred as DMF) are presented systematically in Tables 3 and 4. The material 
and geometric properties of the conoidal shells for additional problems are presented with Table 3 
and 4 as footnote. The magnitude of the static load is considered equal to the peak step load value  
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Fig. 6 Arrangement of the support conditions 
 
 

 
(a) (b) (c) 

Fig. 7 Transient load cases. (a) case I; (b) case II; (c) case III 

 
 
of different load-time histories considered here. The DMF values calculated as ratios of maximum 
dynamic displacements to the corresponding static ones are also furnished to conclude on 
vulnerabilities of the shell combinations against transient loads. 
 
 
4. Results and discussion 

 
Tables 1 and 2 show good agreement of the present results with the values reported by Reddy 

(1984). Close agreement of static displacements in Table 1 ensure correct formulation of laminate 
stifness matrix in the corrent code. The results of the second benchmark problem indicated in 
Table 2 confirms accurate incorporation of mass matrix in the computer code. The natures of 
published response curves and those obtained by present approach that are shown in Figs. 4-5 
establish correct incorporation of the time step integration scheme of Newmark’s in the present 
code. 

The shells are ranked from 1 to 16 in terms of static and dynamic displacements and the first 
rank being given to the shell option showing least displacement value. In terms of fundamental 
frequency the first rank goes to the shell exhibiting the highest fundamental frequency. Such ranks 
are provided in parentheses in Tables 3 and 4 and are very helpful to understand the relative 
behaviors of shell combinations comprehensively. 

Two practical boundary conditions that are considered here involve a set of opposite edges 
being clamped (straight edges for FCFC and curved edges for CFCF boundary condition) and 
other set of opposite edges being free (straight edges for CFCF and curved edges for FCFC 
boundary condition). Naturally a practicing engineer may be interested to explore the relative 
performances of shells in terms of these two edge conditions as they have equal number of support 
movement locked but arranged in different manner. It is interesting to note from Table 3 that for 
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Table 3 Values of nondimensional static displacement, nondimensional fundamental frequency and DMF of 
composite conoidal shells for different laminations and boundary conditions 

Lamination 
(Degree) 

Boundary 
condition 

Nondimensional
downward static

displacement 

Nondimensional
fundamental 

frequency 

Dynamic magnification factors 

Load case I Load case II Load case III

0 / 90 
CFCF 0.00069276 (13) 43.68 (12) 2.47 (10) 2.47 (10) 1.08 (15)

FCFC 0.000075639 (4) 43.25 (14) 2.47 (11) 2.47 (11) 1.04 (5) 

0 / 90 / 0 
CFCF 0.00078165 (15) 43.70 (11) 2.38 (5) 2.38 (4) 1.06 (10)

FCFC 0.000058068 (1) 85.37 (1) 2.53 (12) 2.87 (16) 1.03 (3) 

45 / -45 
CFCF 0.00080401 (16) 42.36 (15) 2.33 (3) 2.33 (2) 1.05 (7) 

FCFC 0.000366430 (7) 38.96 (16) 2.44 (8) 2.44 (7) 1.05 (8) 

45 / -45 / 45 
CFCF 0.00069466 (14) 46.08 (10) 2.41 (7) 2.41 (5) 1.10 (16)

FCFC 0.000369990 (8) 43.28 (13) 2.39 (6) 2.42 (6) 1.07 (12)

0 / 90 / 0 / 90 
CFCF 0.000536680 (9) 50.90 (5) 2.34 (4) 2.34 (3) 1.02 (1) 

FCFC 0.000072675 (2) 60.73 (3) 2.31 (1) 2.44 (8) 1.02 (2) 

0 / 90 / 90 / 0 
CFCF 0.00064587 (12) 47.42 (9) 2.45 (9) 2.45 (9) 1.07 (13)

FCFC 0.000073215 (3) 81.90 (2) 2.61 (16) 2.61 (15) 1.03 (4) 

45 / -45 / 45 / -45 
CFCF 0.00059939 (10) 50.60 (6) 2.31 (2) 2.31 (1) 1.05 (9) 

FCFC 0.000351320 (5) 51.33 (4) 2.60 (15) 2.60 (14) 1.04 (6) 

45 / -45 / -45 / 45 
CFCF 0.00062955 (11) 49.35 (7) 2.58 (14) 2.58 (13) 1.07 (14)

FCFC 0.000357110 (6) 48.22 (8) 2.53 (13) 2.53 (12) 1.06 (11)

a/b = 1, a/h = 100, hh / a = 0.2, hl / hh = 0.25, E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, ν12 = 0.25, 
 = 100 N-sec2/m4 

Values in parentheses indicate ranks for respective shell actions 

 
 
any given lamination the shells with straight edges clamped exhibit lower values of static 
displacements. The conoidal shell is relatively strong along the curved direction compared to the 
straight beam direction. Along arch direction, bending rigidity combines with axial rigidity to 
contribute to the stiffness of the shell. Hence a proper balance in stiffness may be achieved by 
locking the degree of freedoms along straight boundaries of the shell and this is why the FCFC 
boundary condition shows less static displacements then the CFCF one, as in CFCF boundary 
condition, the degree of freedoms along straight boundaries are free. When these two edge 
conditions are compared in terms of fundamental frequency, no such unified trend is evident. 
These establishes the fact that on observing a particular shell option stiffer than another in terms of 
deflection one cannot form an idea about their relative dynamic behavior and a free vibration 
analysis is absolutely necessary. 

It is also interesting to observe that for FCFC boundary condition cross ply laminates show 
relatively better performances than the angle ply ones. This means in order to get the static 
displacement restrained an engineer’s choice will be FCFC shells with cross ply laminations. The 
above conclusion is further reinforced by the fact that in terms of fundamental frequency also cross 
ply shells are better choices than angle ply laminations. 
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Table 4 Values of non-dimensional dynamic displacement of composite conoidal shell for different 
lamination and boundary condition 

Lamination 
(Degree) 

Boundary 
condition 

Non-dimensional dynamic displacement 

Load case I Load case II Load case III 

0 / 90 
CFCF 0.001709907 (14) 0.001709907 (14) 0.000748884 (13) 
FCFC 0.0001871060 (3) 0.0001871060 (3) 7.869650E-05 (4) 

0 / 90 / 0 
CFCF 0.001861472 (15) 0.001861472 (15) 0.000831947 (15) 

FCFC 0.0001467400 (1) 0.0001666780 (1) 5.963620E-05 (1) 

45 / -45 
CFCF 0.001874397 (16) 0.001874397 (16) 0.000845103 (16) 

FCFC 0.0008943230 (6) 0.0008943230 (5) 0.0003829420 (7) 

45 / -45 / 45 
CFCF 0.001674276 (13) 0.001674276 (13) 0.000762697 (14) 
FCFC 0.0008853630 (5) 0.0008955810 (6) 0.0003960180 (8) 

0 / 90 / 0 / 90 
CFCF 0.0012555590 (9) 0.0012555590 (9) 0.0005488560 (9) 

FCFC 0.0001680090 (2) 0.0001773890 (2) 7.44650E-05 (2) 

0 / 90 / 90 / 0 
CFCF 0.001583404 (11) 0.001583404 (11) 0.000693711 (12) 

FCFC 0.0001910040 (4) 0.0001910040 (4) 7.546840E-05 (3) 

45 / -45 / 45 / -45 
CFCF 0.001383673 (10) 0.001383673 (10) 0.000629455 (10) 
FCFC 0.0009146110 (8) 0.0009146110 (8) 0.0003662540 (5) 

45 / -45 / -45 / 45 
CFCF 0.001625347 (12) 0.001625347 (12) 0.000670493 (11) 

FCFC 0.0009043670 (7) 0.0009043670 (7) 0.0003781450 (6) 

a/b = 1, a/h = 100, hh / a = 0.2, hl / hh = 0.25, E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, ν12 = 0.25, 
 = 100 N-sec2/m4 

Values in parentheses indicate ranks for respective shell actions 

 

 

Fig. 8 Response curve for conoidal shell at x = 0 m, y = 0.5 m 
Boundary condition: FCFC; Lamination: 00 / 900 / 00 
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Fig. 9 Response curve for conoidal shell at x = 0 m, y =0.5 m 
Boundary condition: FCFC; Lamination: 00 / 900 / 00 / 900 

 
 
 

 

Fig. 10 Response curve for conoidal shell at x = 0 m, y = 0.5 m 
Boundary condition: FCFC; Lamination: 00 / 900 
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Fig. 11 Response curve for conoidal shell at x = 0 m, y = 0.5 m 
Boundary condition: FCFC; Lamination: 00 / 900 / 900 / 00 

 
 
With the dynamic displacements studied from Table 4 the relatively superior performances of 

FCFC cross ply shells is re-established. The dynamic responses of the shells are studied upto 2 
seconds duration. This is required to observe the displacement responses that continue to act even 
after the loads are removed at the end of 1second for load cases II and III. It is established from the 
results furnished in Table 3 that DMF values are nearly equal for load cases I and II for almost all 
the shell options and these values are more than 2. In load case III both the application and 
withdrawn of pressure are gradual and DMF values are marginally greater than 1. Based on ranks 
of nondimensional dynamic displacement values in Table 4 best six cases are selected for more 
detailed dynamic analysis. Time variation of dynamic displacements for all the load cases 
including the static displacement are presented graphically in Figs. 8-13. Dynamic displacements 
are studied at the location of maximum static displacements and their respective x and y 
coordinates are presented with the figures. The difference of shell responses under load cases I and 
II is that for load case I the dynamic displacement tend to converge to static ones with passage of 
time and for load case II the shell vibrates at almost its fundamental frequency (free vibration) 
when the load is withdrawn as shown in Figs. 8-13. 

The ranks of the shell options in terms of static displacement and dynamic displacement for 
load case III are identical, whereas such ranks for load case I and II are drastically different, 
though the peak values for all the transient load cases are equal. Theses show that the mode of load 
application is more important than its actual magnitude. Dynamic responses against rapidly 
applied or withdrawn loads are much more severe than gradually applied and withdrawn (quasi 
static) loads. Dynamic displacements in the above figures are observed to oscillate at different 
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Fig. 12 Response curve for conoidal shell at x = 0 m, y = 0.44 m 
Boundary condition: FCFC; Lamination: 450 / -450 / 450 

 
 

 

Fig. 13 Response curve for conoidal shell at x = 0 m, y = 0.5 m 
Boundary condition: FCFC; Lamination: 450 / -450 
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points of time for all the transient load cases, resulting in even upward displacements. This 
observation brings out the importance of forced vibration analysis as static simplification of 
dynamic problems using a suitable factor cannot account for the reversal of dynamic 
displacements and hence stresses. 

Another very interesting observation is that the points of occurrence of maximum static and 
maximum dynamic displacement may not match at a few places. Response curves in Figs. 10 and 
12 show that dynamic displacements for all the load cases either marginally or do not exceed the 
static one but Table 3 shows that for all the conditions DMF greater than unity. This is because the 
DMF considered in present study is the ratio of the maximum dynamic displacement to the 
maximum static displacement irrespective of their point of occurrence and the response curves are 
plotted taking the static and dynamic displacement at the point of occurrence of maximum static 
displacement. Although in the previous cases it is found that some correlation exists between 
boundary condition and lamination for static displacement and fundamental frequency but such 
relationships cannot be formulated so far the variation of dynamic magnification factor is 
concerned. 
 

 
 
5. Conclusions 

 
The comparative study of composite conoidal shells for different boundary conditions and 

laminations reveal that cross ply laminated FCFC shell is the best choice from all the static 
bending, free and forced vibration points of view among the shell combinations considered here. 
Conclusions drawn by analyzing relative performances of shells for static analysis cannot provide 
an idea about the behavior of those shells under dynamic conditions and to get that a separate 
vibration analysis is needed. A detail dynamic analysis under different transient load-time histories 
reflect that dynamic responses are magnified than the static ones and for that matter time variation 
of transient loads are more important than their magnitudes. The dynamic displacements are not 
only magnified by the transient loads but also they show a reversal nature in them. Hence, the 
static simplification of a dynamic problem using a suitable factor does not give the full picture of 
the dynamic behavior of the shell. It is also important note that the point of occurrence of 
maximum static and dynamic displacement may not be same in a shell. Hence dynamic analysis at 
the point of maximum static displacement will underestimate the maximum dynamic displacement 
and stresses. 
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Notations 
 
 
The following symbols are used in this paper 
 

A  Area of the shell. 

a,b  Length and width of shell in plan. 

D  Flexural rigidity matrix of the conoidal shell. 

de  Element displacements. 

d  Global displacements. 

E11, E22, E33  Young’s moduli. 

G12,G13, 
G23 

 Shear moduli. 

hh, hl  Higher and lower heights of conoidal shell. 

h  Shell thickness. 

Mx, My, Mxy
  Moment resultants per unit length. 

Nx, Ny, Nxy
 

 Force resultants per unit length. 

np  Number of plies in a laminate. 

n  Number of elements. 

Qx, Qy
  Transverse shear resultants per unit length. 

q0  Peak value of the transient load cases. 

Rxy  Radius of cross curvature of conoidal shell. 

Ry  Radius of curvature of conoidal shell along y axis. 

R  Radius of the spherical shell. 

u, v, w  Degree of freedoms along x, y and z directions respectively. 

w   Nondimensional transverse displacement of shell   43
22 / qahwE  

u   Global acceleration vector. 

x,y and z  Global co-ordinates of the laminate. 

1,2 and 3  Local co-ordinates of a lamina. 

,  Rotational degrees of freedom about y and x axes respectively. 

x, y  Inplane strains. 

xy ,xz, yz  Shear strains. 

θ  Fiber orientation with respect to the x axis of the shell. 

ij  Poisson’s ratio. 
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,  Isoparametric coordinates of isoparametric elements. 

  Mass density of material. 

x, y  Inplane stresses. 

xy, xz, yz  Shear stresses. 

yx kk , xyk   Curvatures of the element. 

   Fundamental frequency. 

   Nondimensional fundamental frequency   





2/12
22

2 / hEa   
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