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Abstract. The super convergent laminated composite beam element is newly derived for the lateral
stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the
first-order shear deformation beam theory. The present laminated beam takes into account the transverse
shear and the restrained warping induced shear deformation. The second-order coupling torque resulting
from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy,
the stability equations and force-displacement relationships are derived and the explicit expressions for the
displacement parameters are presented by applying the power series expansions of displacement
components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is
determined using the force-displacement relationships. In order to show accuracy and superiority of the
beam element developed by this study, the critical lateral buckling moments for bisymmetric and
monosymmetric [-beams are presented and compared with other results available in the literature, the
isoparametric beam elements, and shell elements from ABAQUS.
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1. Introduction

The structural members made of composite materials are increasingly used in the fields of civil,
mechanical, and aeronautical engineering applications, where high stiffness and strength, and low
weight are of primary importance. The excellent fatigue characteristics in the direction of the
fibers, corrosion resistance, and magnetic transparency are the main advantages of composite
materials. A lot of structural members made of composite materials have the form of thin-walled
cross-sections. These laminated composite beams might be subjected to the pure bending when
used in above applications and are very susceptible to the lateral buckling. Therefore, the accurate
prediction of their lateral stability limit state is of fundamental importance in the design of
composite beams.

Up to the present, for the stability analysis of the laminated composite beams, the finite element
method has been widely used because of its versatility and accordingly a large amount of work
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was devoted to the improvement of composite finite elements. Lee et al. (2002) performed the
lateral stability analysis of the laminated composite beams with bisymmetric I-section. The
displacement-based finite element model with 7 DOFs per node was developed. The generalized
displacements were expressed over each element as a linear combination of the one-dimensional
Lagrangian interpolation function and Hermite-cubic interpolation function. Lee (2006) studied the
lateral buckling problem of the monosymmetric I-beams using the general geometrically nonlinear
model based on the classical lamination theory. The theoretical model was developed by Cortinez
and Piovan (2006) for the lateral stability analysis of composite thin-walled beams with general
cross-sections. The model was presented using a non-linear displacement field, whose rotations
were based on the rule of semi-tangential transformation, and the finite element with two-node and
14 DOFs was developed to solve the governing equations. Lin et al. (1996) developed the finite
element stability analysis for a pultruded open section beam having 7 DOFs at each node by
extending the study of Gunnlaugsson and Pedersen (1982). However, the main drawback of the
above finite element analysis techniques is that a considerable number of finite elements are
required to obtain the satisfactory results due to the use of the approximate shape functions.

In contrast to the finite element method, considerable research efforts to obtain analytical
solutions for stability analysis of composite beams have been made by many researchers. Kollar
and Springer (2003) and Sapkas and Kollar (2002) presented the solutions for the lateral buckling
moments of the open section composite beams subjected to end moments. Vlasov’s classical
theory of the thin-walled beams was modified to consider the shear effects. Zhen and Wanji (2008)
assessed several displacement-based theories by analyzing the buckling and free vibration
behaviors of laminated beams with arbitrary layouts. Qiao et al. (2003) presented a combined
analytical and experimental study of the flexural-torsional buckling of FRP composite cantilever
I-beams. Three different type of buckling mode shapes of transcendental function, polynomial
function, and half simply supported beam function were used to obtain the eigenvalue solutions.
Kabir and Sherbourne (1998) presented the analytical solution for predicting the lateral buckling
capacity of laminated beams including the influences of load form and lamination architecture. A
detailed parametric study demonstrated that the improved design could be suggested which shows
superior performance for optimal fiber orientation in both flanges and web in comparison with the
traditional unidirected pultrusion process.

Another alternative numerical method to solve the buckling problems of composite beams is to
develop the Ritz method. Machado and Cortinez (2005) developed a geometrically non-linear
theory for thin-walled composite beams made of symmetric balanced laminates. The Ritz method
was applied in order to solve the non-linear differential system. Shield and Morey (1997)
presented a new theory for the stability analysis of composite beams that included the coupling
effects caused by the Poisson effect using the Ritz method. They analyzed the I-section and box
beams and showed that the inclusion of the anticlastic curvature substantially reduces the predicted
buckling loads.

As a very effective approach in solving the stability and vibration problems of composite
beams, the stiffness matrix method based on the solutions of the simultaneous ordinary differential
equations was developed. The critical buckling loads and natural frequencies can be calculated
using this method for any desired set of boundary conditions and assembly of elements.
Abramovich et al. (1996) applied an exact element method to calculate the buckling loads and the
natural frequencies of nonsymmetric laminated composite beams with rectangular cross-section.
The influence of longitudinal and transverse restraints, material, and lay-up sequence on the
buckling loads and natural frequencies of beam was investigated. Kim ef al. (2007) evaluated the
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exact element stiffness matrix in order to perform the spatially coupled stability analysis of
thin-walled composite beams with symmetric and arbitrary lay-ups by using the eigenvelue
problem. The exact displacement functions were constructed by combining eigenvectors and
polynomial solutions corresponding to non-zero and zero eigenvalues. However, Kim et al. (2007)
did not consider the effect of shear deformation. It is well known that for composite beams with
low ratio of shear modulus to longitudinal modulus, the influence of shear strain on the stability of
composite members is higher than that of the isotropic beams and must be accounted for in design.
Piovan et al. (2008) employed a power series methodology to calculate the exact (or with arbitrary
precision) free vibration frequencies of composite thin-walled tapered beams allowing for shear
flexibility due to bending as well as non-uniform torsion warping. They investigated the effects of
taper and the elastic couplings in the free vibration patterns of the beam.

The objective of this study is to present an improved analytical composite beam model and to
calculate the lateral buckling moment exactly for the thin-walled composite beams considering the
shear effects. A significant point of departure of the present numerical approach from other
methods is in the solution of spatially coupled ordinary differential equations that arise in the
solution process. Rather than using a discrete integration scheme or a finite element method based
on energy principles, the present approach applies direct and systematic schemes for the evaluation
of the element stiffness of the composite beams. The important points of this study are
summarized as follows

1. The general linear theory is improved based on the orthogonal Cartesian coordinate system
for the thin-walled laminated composite beams taking into account the transverse shear and
the restrained warping induced shear deformation.

2. The geometrically nonlinear theory is developed for the stability analysis of the laminated
composite beams. The second-order coupling torque (SOCT) which accounts for the change
in the effective torsional stiffness due to the axial stress is rigorously derived.

3. The numerical method to evaluate the element stiffness matrix of shear deformable
laminated composite beams with arbitrary lay-up is presented for lateral stability analysis.

4. For comparison, the finite beam element formulation based on the Lagrangian interpolation
polynomials and the assumed displacement fields is presented to solve the lateral buckling
problem for the laminated composite beams.

5. In order to demonstrate accuracy and superiority of this study, the critical lateral buckling
moments of the bisymmetric and monosymmetric [-beams under the pure bending are
evaluated and compared with the results from available references, the finite beam element,
and shell elements from ABAQUS (2003).

2. General linear theory
2.1 Kinematics

In the present study, two coordinate systems which are mutually interrelated are used. The first
coordinate system is the orthogonal Cartesian coordinate system (x, y, z), as shown in Fig. 1,
where x axis is parallel to the longitudinal axis of the beam, while y and z are the principal axes of
the cross-section having their origin at the shear center. The second coordinate system is the local
coordinate system (x, n, s) for plate segment wherein n axis is normal to the middle surface of the
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Fig. 1 Pictorial definitions of coordinates in thin-walled cross-section

plate, and the s axis is tangent to the middle surface and is directed along the contour line of the
cross-section. The coordinates of an arbitrary point Q in the (x, n, s) coordinate system are (7, q),
where 7 is the n coordinate and ¢ is the s coordinate of Q. The y is the angle between the tangent
to the contour and the y axis. The present structural model is based on the following assumptions.

1. The beam is prismatic and linearly elastic.

2. Each laminate is thin and perfectly bonded.

3. The cross-section is assumed to maintain its shape during deformation, so that there is no
distortion.

4. The transverse shear and warping shear strains are incorporated. It is assumed that they are
uniform over the cross-sections

Assuming that the cross-section is rigid with respect to the in-plane deformation and rotates

about the shear center, the displacements of the arbitrary point on the cross-section can be
expressed as (Kim et al. 1994)

u(x,y,2) = u(x) = @3(x)y + 0,(x)z + f (x)$ (la)
v(x,9,2) = v(x) = (2~ ;) (x) (Ib)
w(x,»,2) = wx)+(y—e)a (x) (Ic)

where u(x), v(x), and w(x) are the rigid body translations of the cross-section along the x, y, and z
axes, respectively; m;(x), w,(x), and w;(x) are the rigid body rotations about the shear center and in
the y and z axes, respectively; f(x) is the parameter defining warping of the cross-section; e, and e;
are coordinates of the pole P in the y and z axes, respectively; ¢ is the sectional property called the
sectorial area or warping function. For the case of monosymmetic I-shaped section, it is defined as

¢ =(z,—ey)y )
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where the superscript a equals 1 and 2 for the top and bottom flanges, respectively; z, is the z
distance of the middle surface of each flange from the shear center.

In this formulation, owing to the effects of the flexural shear deformation, w, and w; are not
equal to the derivatives of the corresponding translations. Similarly, fis not equal to the derivative
of w; owing to the inclusion of shear effect in warping. From the work of Kim et al. (1994), these
rotations and warping parameter can be defined as

®, =y, —w (3a)
—wy=y, —V (3b)
f=ri-a (3¢)

where y;, and y. are the transverse shear strains due to flexure; y; is the torsional shear strain
associated with warping. The superscript ‘prime’ indicates the derivative with respect to x.

The buckling analysis of I-beams under bending, the deformation before buckling is ignored.
The displacement components representing the deformation of any generic point in the top and
bottom flanges can be expressed with respect to the middle surface displacements as

a

U (,2) = (0 £ 2 (5.0) (4a)

Ve (xap.2) = v“(x,y>+nag” (x.7) (4b)
4

Wa(x,y,z) = Wa(xay) (40)

where uz°, v, and w * are the displacements of the middle surface of each flange. The displacement
components for the web plate may also be expressed as

U (roz) = i (nz) O (x,2) (50)
ox

Vw(x,y,z) = v"(x,2) (5b)

W (7,2 = W (6,2) - (x,2) (50)
0z

where 7", v ", and # " are the displacements of the middle surface of the web.
The linear strain fields of the beam associated with the displacement fields of Egs. (1), (4), and
(5) can be expressed as

&, = aa—U= 2 (2= neosy K, + (y + Sy, +(@+ gk, (6a)
X

ou ov , .,
yxy:§+a:7/xy —75(z—ey) + K cosy (6b)
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aU aW 1) 0 1
7xz=_+_=7/xz+7/¢(y_e2)+sz7781nl// (60)
oz Ox

where 75, 7%, and 7, are flexural shear strains in the x_y and x_z planes and warping shear strain in
the beam, respectively; ¢, K, K., k, and k are axial strain, biaxial curvatures in the y and z
direction, warping curvature with respect to the shear center, and twisting curvature in the beam,
respectively, defined as

g =u, K, =0, K =-0, k;=f, K,=20 (7)

XS

2.2 Variational formulation

From the basic assumptions for the thin-walled beams (Barbero 1999), the linear strain energy
of the laminated composite beam can be expressed as

1
ITL = EIV (O-xgx + Txy]/xy +T:V e )dV (8)
where oy, 7,,, and 7, are normal and shear stresses, respectively. By substituting Eq. (6) into Eq. (8),
the linear strain energy is expressed as

M, = % [[] loder + c=neoswrm, + e nsingn. + @+ o, | ©)

+7, {y;’y —r5(z—e)+ KN cosy/}+ T, {7;’2 +y,(v—e) K1 sinl//}]dAdx

where 4 and L are the area of cross-section and the length of beam, respectively. The variation of
the linear strain energy in Eq. (9) can be written as

L
dal, = J (Fl(?«?;’+M25Ky+M35KZ+M¢5x¢+my;+55y;x+a57;+M,5K”)dx (10)

where F is the axial force; M, and M; are the bending moments about the y and z axes,
respectively; M, is the bimoment; F, and F3 are the shear forces in the y and z directions,
respectively; 7 and M, are the two contributions to the total twisting moment. These generalized
forces and moments acting over the cross-section are related the stresses in the beam as

F = Lax dydz (11a)
M, = J.on(z—ncosy/)dydz (11b)
M, = —Lax(y+77sin¢//)dydz (11c)

M, = [ o(p+nq)dvdz (11d)
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F, = J.AT’W dydz (11e)
F= [ z.dviz (119
7= [ [relr-e) -1,z - ey (I1g)
M, = L (e mcosy + 7 psiny )dydz (11h)

For the case of laminated composite material, the relationship between the plate stress tensors
and the plate strain ones can be expressed in terms of the stiffness coefficients O of any
constituent lamina of the beam wall. The stress-strain relationships of the kth lamina of the flanges
are written in the Cartesian coordinate system as

k — —

{a{ } _ {Qﬁf o } { &l } 12

0 "oy oty

Xy 16 66 x)
where Q; are the condensed stiffness coefficients of each lamina. The appropriate assumptions for
constitutive relations are essential for a refined composite beam theory since the pile in the
laminated composites behave in a highly two-dimensional manner due to the Poisson’s effect
(Smith and Chopra 1991). In this regard, the stress-strain relationships can be simplified by

adopting the free stress (g,=0) and the free strain (¢,=0) assumptions in contour direction. Thus
for the free stress assumption, the condensed stiffness coefficients are given by

0 =0, - Q§1_§ (13a)
22

*f — Q16 Q15Q26 (13b)
22

Q66/ = O — %6 (13¢)
22

where Q; are the transformed reduced stiffness coefficients (Barbero 1999) including the material
properties of each lamina. For the free strain assumption, these are expressed as

o/ =0, (14a)
0¢ = 0 (14b)
Qs*sf = §66 (14¢)

Similarly, the constitutive equations for web are written as follows
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ol fa ) .
T, lew Q6*6W Ve

Substituting Eqs. (12) and (15) into Eq. (11), the constitutive equations for the laminated
composite I-beams can be expressed as

F E, E, E; E, Es Eg E; Eg u
M, Ey, Ey Ey Eys Ey Ey; Ex @,
- M, Eyy By Eys Ey Ey By - o

M g _ Ey By By Ey Ey A (16)
M, Es Ey Es; Eg 20

F Eqw Eg Eg||V-o

F, Symm. E., Eg||W+o,

T | Eg |0+ ]

where Ej; are the laminate stiffnesses which depend on the cross-section of beam and detailed
expressions are given in Appendix. Finally, substitution of Eq. (16) into Eq. (10) leads to the
following linear strain energy of the shear deformable laminated composite [-beams.

I, = %Jj [En”'z +Ey wéz + Es; a)éz + E44f'2 + 4E55(01'2 + Egs (V' — @ )2 +Ey (W' + o, )2
+ Egg (0 + [ + 2E ' @) — 2B, u' @y + 2E, i'f " + 4E ' ] + 2E, ' (V' — ;)
+ 2E ' (W + @,)+ 2E,u' (@] + [) = 2E3 @0} + 2E,, 00, f' + 4E, 500} + 2 E 0, (v — ;)
+2E,05(W + 0,)+ 2By} (0] + [ ) = 2Exy 0} f* — 4 Exs00{; — 2 E0} (v — ;) (17)
—2Ey,05(W + @,) = 2E5q}(0f + [ )+ 4Eys0] [+ 2 (V' = 03 )+ 2E 0 f /(W + @)
+ 2B, f"(0] + [ )+ 450 (v — 0, )+ 4Ey00(W + 0, ) + 4y (0 + f )
+ 2E67(v’ - a)3)(w' + w2)+ 2E68(v’ - a)3)(a)1' + f)+ 2E78(w' + a)z)(a)l' + f)] dx

3. Nonlinear strain energy
3.1 Nonlinear strain tensors

The nonlinear terms of the axial and shear strain fields are given by

2 2
e %[@—V] (%) } (183)
X X

Ny OV oV owow
yxy = +
ox 0y Ox 0Oy

(18b)
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w_ovav owaow

= 18¢
Ve Oox 0z Ox Oz (18¢)

Substituting Egs. (1), (4), and (5) into Eq. (18), the nonlinear parts of the strains are written as
follows

v (v awY (w v )
el ==|| —+n + —-n
2\ ox OxOy ox 0x0z

=%[v’2 +w'? +a)1’2 {(y—e2 )2 +(z—e3)2 }+ 772a)1'2 +2{w’a)1'(y—ez)—v’a)1'(z—e3 )} (19a)

+ 277{v'a){ cosy +w' o siny + o] (y—e, )siny — o] (z — e )cosz//}]

73 =w a,(siny + cosy )+ w,a|(y — e, siny + cosy )+ na)la){(sinl// cosy +sin’ 1//) (19b)
7Y =V o, (siny + cosy )+ w0 (z — e, Nsiny + cosy ) - na)laJ{(sim//cosy/ +cos’ (//) (19¢)
3.2 Variational formulation

The nonlinear strain energy of the laminated composite beam becomes
IT, = IV (O'XS;V + rxyyg + rxzyg )dV (20)

Substituting Eq. (19) into Eq. (20) and using the beam forces as given in Eq. (11), the nonlinear
contribution of the strain energy expression can be expressed as

L 10 (/2 12 ' ' !) o "1 o '

IT, = J.O EFlv +W =2e;w o +2eV o) |-"M )V o "MW @
21

o ’ 0 ’ 1 72 ( )
+sza)l—F3va)1+EQa)1 dx

where the superscript ‘o’ indicates the initial force variable and the stress resultant Q denotes the
second-order coupling torque (SOCT) term resulting from the geometric nonlinearity. This
property is caused by the horizontal component of axial stress due to the inclination of the
cross-section as a result of different warping. The twisting moment due to this will weaken the
torsional rigidity if the axial stress is compressive. For the case of beam made of isotropic material,
the above nonlinear strain energy is the same as the one in the study by Kim et al. (1994).

In order to derive the term €, the plate constitutive relations in the local coordinate system are
considered as follows (Lee 2006)

va 4y, 4s By By || &
]ics — A66 Bl6 366 77_xs (22)
M, Dy, Dy || K,
M., symm. Do || K
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where N, N,,, M,, and M,, are plate stress resultants defined by

(JVXJWXFI o (Ln)dn (23a)

n

(V.. M,)= L%( 1,n)dn (23b)

In Eq. (22), 15 and «, are shear strain and axial curvature, respectively, in the middle surface of
plate in local coordinate; 4; B; and D; are the extensional, bending-extension coupling, and
bending stiffnesses, respectively, defined by

(4,.8,.0,)=[ 0 (17,7 Jam (24)

From the study by Lee (2006), the term J- o.’dn in the nonlinear strain energy Eq. (21) can
be written by 7

Joaran = | 0. +77.)+ 07, + 17, lrdn

(25)
= llgx—i_Hlll?x—i_DlG?xs +H16’?xs
where H, : is the higher order stiffness given by
H, = L 0,7 dny (26)
From the plate constitutive relations in Eq. (22), Eq. (25) can be rewritten as
J. Gxnzdﬂ = alﬁx + a2]vxs + aSMx + a4]Wxs (27)
n
where
oy =Dy B+ Digfy + Hy Py + His Py (28a)
o, =Dy Sy + Dy + Hy By + Hi 4 (28b)
a3 =Dy S5+ Doy + Hy fys + Hio Py (28¢)
a4 = Dy\fy + Doy + Hy | Py + H o fus (284d)
In which f; are components of inverse matrix of Eq. (22) which is given by
-1
By P Bs Pua 4, As By By
Bn P Py _ s Big B (29)
B P Dy Dy
symm. LB symm. Dy

By using Eq. (27), the SOCT Q can be expressed as follows
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O .[ {y 62)2 z-¢) +al}]V +a,N, e (30)
s+ 2 V- 62 siny — 2(2 63)COSl// +a3}M +a,M
Substituting Eq. (22) into Eq. (30), Eq. (30) can be rewritten as follows
Q=EJi&e] + ExJyk, + EyJsk, + EyJ iy + EssJsic + EqgJoy s, + Endyyy + EgJyyy,  (31)
where
J, :LJ‘ {All{(y—ez)z+-(z—e3)z+al}+ A, + }ds (322)
E ‘s 311{2(); —e, )sml// - 2(2 — e )cosy/ + a3}+ B,

J, ZE_J.Y[(A“Z—B“cosy/){(y—ez)z +(z—e3)2 +0‘1}+ (A162_316 COSW)
2"

(32b)
+(B,z =D, cosy f2(v —e, Jsiny —2(z — e, )cosy + a; |+ (B,z — Dy cosy ), |ds

J; :E_”J.S [(A”y + By, sinl//){(y _92)2 + (Z - 93)2 +a }+ (A16y + B Sin‘//) (320)
(B,y+ Dy, sinl//){2(y—62 Jsiny —2(z - e; )cosy + a3} (Bisy + Dygsiny ), Jd.

J, =

ELJ.S [(A11¢ - 31141){()/ —e,f +(z-e,) + }+ (4,69 — Bisq) ez,

(32d)
+ (Bl P - an){2(y ) )sint// - 2(2 —6 )COS'// + a3}~l— ( 160 — D16‘I)a4]d5

Ess¥s

J :LJ'S |:BIG{(y_e2)2+(Z_e3)2+al}+366a2 }ds

32
+D16{2(y—ez)singy—2(z—e3)cosz//+a3}+D 60 (32¢)
Js= LJ. [A16 COS‘//{(J’ —e)f +(z-e) + 0-’1}*’ Ags cosyar,
E¢9s (32f)
+ B cosy/{Z(y —e, )sint// - 2(2 —e )cosy/ + a3}+ B cos y/a4]ds
Jr = LJ. [Alé sinl//{(y —e,f +(z-e)f + }‘*‘ Agesinya,
E.Js (32¢g)
+ B siny{2(y —e, )siny —2(z —e; )cosy + a, |+ By sinl//a4]d
1
Jg = E_ngv [A16r{(y -e, )2 + (z —e )2 +a }+ A, (32h)
+Br{2(y — e, )siny —2(z —e; )cosy +a |+ B66ra4]ds

Now, the SOCT Q can be expressed by using the constitutive equations in Eq. (16) of the
laminated composite beam as
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Q=J\F+J,M, + M5+ I M+ IM, + JF, + ;5 + J T (33)

where

~ o~ T
{Jl Jy, Iy J, Js T J, Jg} =T, Jy Jy I, Js Jg I, Jf" (34)

In Eq. (34), the transformed matrix T is expressed as follows

I E11511 E22512 E33513 E44§l4 E55515 E66§16 E77517 E88518 |
E11§12 E22§22 E33§23 E44524 E55§25 E66526 E77527 E88528
- E11513 - E22523 - E33533 - E44534 - E55535 - E66536 - E77637 - E88538
T = E11514 E22§24 E33534 E44644 E55545 E66546 E77§47 E88648 (35)
El 1515 E22525 E33535 E44645 E55555 E66556 E77657 E88§58
E11§16 E22§26 E33§36 E44546 E55556 E66566 E77567 E88568
E11517 E22527 E33537 E44547 E55557 E66567 E77577 E88578
El 1518 E22528 E33538 E44648 E55558 E66568 E77578 E88588 i

where J;; are the components of the inverse matrix of E; as

I
|

é‘ll é‘12 513 514 é‘15 516 517 518 Ell E12 E13 E14 E15 E16 E17 EIS

522 523 524 525 526 527 528 E22 E23 E24 E25 E26 E27 E28

O3 Oy O35 5 O35 Oy By By Ess Ey By Eyg
544 545 546 547 548 — E44 E45 E46 E47 E48 (36)

555 556 557 558 ESS E56 E57 E58

566 567 568 E66 E67 E68

Symm. 077 O Symm. E. E

L Ogg 1 L Egq |
On the other hand, the variation of the work done by external forces can be written as

oM, =0U,F, (37)

where U, and F, denote the member end displacement and force vector, respectively.
In order to derive the stability equations and the force-displacement relationships of the
laminated composite beam, the extended Hamilton’s principle is used by

53
[ "1, +11, -1, )ar = 0 (38)

Substituting Eqgs. (17), (21), and (37) into Eq. (35) and integrating the derivatives of the varied
quantities by parts, and collecting the coefficients of du, dv, ow, dw,, dw,, dws, and Jf, the stability
equations are obtained as follows
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E u"+ E "+ Eow" +(2E s + Eg ol + Ep, )

+ B0, — B0 — B+ Ey f"+Egf =0 (352)

Eju" + EV" + Eqw' + (2E + Egg )0 + Eyo 0} + E 0, — Ey @0}
— Eg @ + Eyg f" + Egg ['+°F (V" + €;00) ="M,/ ~"F,0{ = 0 (%)
Equ"+ EqV' + Epw' + (2Es, + Erg ) + Eyp 0 + Eyy 0y — Egy ) (390

/ 4 ’ o 4 " o ", o I_
—Eqos+Egf +E78f+Fl(W _eza)l)_ Mo+ Fo; = 0

(2E15 +Egq )”” + (2E56 + Eg )V” + (2E57 + Eog )W” + (4E55 +4Ess + Egg )a)l”+ (2E25 + Ey )wé,
+ (2E57 + Eo )co; - (2E35 + Eyg )wé, - (2E56 + Eg )wé + (2E45 + E48) "+ (2E58 + Egq )f, (39d)

—F (e,w" —eyv" ) ="M V"= M w'—"Fyw + °Fp) + Qo = 0

Eu" = Equ' + EygV" = EgpV' + Eyyw' — Ejpn' + (2E25 +Ey )wlﬂ_ (2E57 +Ey )a)f

4 " / 4 ! (39e)
+Eyw, - By, — Eyyo5 + (E37 —Ey )a)3 +Eq o+ Ey "+ (Ezg - E47) —Exf=0
Eju" — Eygu' + EyV" — EqV' + Eyw” — Egw' + (2E35 + E38)a)1”_ (2E56 + Eg )a)f (39f)
+Ey ) + (E37 —Ey )a)é —Egqw, — By 0) + Egg; + Exy f" + (E38 - E46) "—Egf=0
Eyu" = Egu' + EV" — EggV' + Eggw' — Ejgw' + (2E45 +Ey )a)lﬂ_ (2E58 + Egg )a)ll (39¢)
+Ey 0, + (E47 —Ey )wé —Exgw,— Ey0f + (E38 —Eys )a)g +Egoy +Ey f"—Eg f=0
The seven force-displacement relationships can also be obtained as follows
F, =E,u' +E ' +E. W +(2E + E;y) | + E,; 0, (403)
+E,0) —Ego; - Eyoy+ Eg f + By f'
Fy=El' + (Eéﬁ#'z?1 W+ B, W+ (& + Bt Fie—"M, o (40b)
+Eq @, + Eyg, — Eq; — By, + Egy [+ Eyg f
Fy=Equ'+ EgV' + (E77 +°F )W""O 20 + (2E57 + Ey—"Fe,~"M; )‘01' (40¢)

! U !
+Epw,+ Eyywy —Eqoy,—Ey@+ Ex f+Ey f

M, = (2, + Ey ' + (2Eqs + Egg*Frey—"M, ' + (25, + Eyy—"Fie, ="M, )W
+ (4E55 +4E + Egq + Q) o + (2E57 + E78)a)2 + (2E25 + Ezg)a)g (40d)
- (2E56 + Ees)a% - (2E35 + E38)0)§ + (2E58 + Egg )f + (2E45 +Eq )f'

M, = Equ' + EyV' + Eyw + (2E,s + Eyg ) 0 + E,, 0,

, , , (40e)
+Eyw, — By — Eyys+ Exg f + Eyy f

My = ~Eju = ExgV' = Eyyw' = (2E55 + Eyg) 0 — Ey; 0,

, , , (401)
—Ey0, + Exgoy + Eyy0, — Exg f —Exy f
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My =Eu' +EV +Egw +(2E;s + Eyg) o + Ep 0, “0g)
+Eyywy — By — Ey 0y + Eg [+ Eyy f'

If the cross-section is bisymmetric and the beam is made of the isotropic materials, in which the
coupling effects are neglected, Eq. (39) can be simplified to the following uncoupled differential
equations.

EAu" =0 (41a)
GA,(v" - 0})+°F, (V" + e;0) "M 00— Fy0, = 0 (41b)
GA, (W' + @} ) +°F (W' — e, )-"M y0{+°F, 0 = 0 (41c)

GJa)+GA, (o + ') =°F (e;w" — ") ="M V" ="M sw"="F,w' + °Fyv' =M ,0f = 0 (41d)

EL @} —GA; (W' + @,)=0 (41e)
ELoY+GA,(V' — ;)= 0 (41f)
EL,f"-GA, (o + [)=0 (41g)

where £ and G are the Young’s modulus and the shear modulus, respectively; J is the St. Venant
torsional constant and M, is the stress resultant known as the Wagner effect and its detailed
calculation procedure is given in the study of Kim et al. (1994); L,, 15, and I are the second
moments of inertia with respect to the y and z axes and the warping moment of inertia,
respectively; A,, As, and 4, are the effective shear areas defined according to the following
expressions

1 2ds 1 ,ds 1 1 5 ds
—e (S L[ 2E [ 8 42
AI2 3tA]2 Y104 IjL t (42)
where
Z, = | ztds, Z3=jytds, Z = j dtds (43)

4. Stiffness matrix of laminated composite beam
4.1 Evaluation of displacement function

In order to derive the member stiffness matrix of the laminated composite beam, the
displacement functions are rigorously evaluated based on the seven stability equations derived in
Chapter 3. For this purpose, the seven displacement parameters are taken as the following infinite
power series.

) =0 n=0 (44)

, =Zdnx”, , =Zenx", z , f= Zgn
n=0

n=0 n=0 n=0
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Substituting Eq. (44) into Eq. (39) and shifting the index of power of X" the stability
equations can be compactly expressed in a matrix form as follows

T
{an+2’ Dysas Covas doias €445 frias gn+2}

. (45)
= Zn {an’ an+1’ bn’ bn+1’ cn’ cn+1’ dn’ dn+l’ en’ en+l’ fn’ .fn+1’ gn’ gn+l}

where Z, is the 7 x 14 matrix function. The terms for a,+«, b, Cis2, duss, €ni2, frrz and guin
converge to zero as n — . We also define the initial integration constant vector a as

a= {a()’ al’ bo’ bl’ co’ Cl’ do’ dl’ eo’ el’ f;)’ fi’ go’ gl}T (46)

The displacement state vector consisting of 14 displacement parameters is as follows
T
d = <u, u, v, vV, w, w, o, o, o, o, o, o, f, f'> (47)

The displacement state vector d can be expressed with respect to a by using Egs. (44) and (45)

as follows
d = X,a (48)

where X, denotes the 14 x 14 matrix function with the coefficients of u, v, w, w1, w,, w3, and f. In
each of these 14 solution sets, the calculation of the coefficients by the recursive relations in Eq.
(45) is continued until the contribution of the next coefficient is less than an arbitrarily chosen
small number. Above symbolic calculations are performed with the help of the technical computer
software Mathematica (2009).

Next, let Ue be the generalized nodal displacement vector having 14 DOFs at two ends of the
beam element as shown in Fig. 2(a).

U, =(u(0), v(0), w(0), @(0), ®,(0), @3(0), f(0)

. 49)
u(L), v(L), w(L), oy(L), (L), a5(L), f(L))

Substituting coordinates of the two ends of member (x = 0, L) into Eq. (48), the nodal
displacement vector U, is expressed in terms of a as follows

U, =Ha (50)

From Egs. (48) and (50), the displacement state vector d at an arbitrary point of element can be
expressed with respect to the nodal displacement vector Us.

d=X,H'U, (51)

It is noted that X,H™ in Eq. (51) is the exact shape function matrix since the displacement state
vector d satisfies the homogenous form of the coupled equilibrium equations in Eq. (39) exactly.

4.2 Calculation of stiffness matrix
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By using the displacement state vector d derived in previous section, the stiffness matrix of the
laminated composite beam is rigorously calculated. The nodal force vector F, at two ends p and ¢
of the element as shown in Fig. 2(b) is considered as follows

Fo= (FrLFe) (52)
where
Fo= (REFEFSMEME MEMS) . £=p.g (53)

The force-displacement relationships in Eq. (40) can be written as a matrix form

f(x) = Sd (54)
where S is the 7 x 14 matrix. Substitution of Eq. (51) into Eq. (54) leads to
fx) = SX,H™"U, (55)
Now, the nodal forces at two ends of element are evaluated as

F# = —f(0) = =S X, (0)H" U, (562)
F' = f(L)= SX,(L)H™U, (56b)
Finally, for the lateral stability analysis of the laminated composite beams, the element stiffness

matrix is obtained based on the linear relation between member forces and nodal displacement
parameters as follows

o g
f' P * i) *wﬁ /'q
tor vzl Ui
b A U o
U, Uq X 7
B 7
(a) Nodal displacements
M *M%‘
M ) M
g L} JF |
* T /g 1 i 4
P P
¢ Mo M3
L 7
(b) Nodal forces

Fig. 2 Nodal displacements and forces of the laminated composite beam elements
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FF = KU, (57)
where
| =SX,(0H™ (58)
| SX (I)HT

The critical buckling moments of the beam are the values that cause the stiffness matrix to
become singular as Eq. (59). A search procedure is employed to find these values up to the desired
accuracy. In this study, the Regular-Falsi method (Wendroff 1966) is applied to ensure that none
of the buckling loads is missed.

K| =0 (39)

It is noteworthy that the stiffness matrix in Eq. (58) is formed by the shape functions which are
exact solutions of the governing equations. Therefore, the thin-walled laminated composite beam
using the stiffness matrix developed by this study eliminates discretization errors and is free from
the shear and membrane locking.

For comparison, the finite beam element model with 7 DOFs per node is presented based on the
Lagrangian interpolation polynomials. The present finite beam element uses the same shape
functions for all translational, rotational, and warping displacements. The displacements can be

expressed as follows
2 2
u =ZNaua, V=ZNava, w =

a=1 a=1 a

N w

a’a’

M-

Il
—_

(60)

M

2
a)i = Z Naa)ia (l = 1) 27 3)’ f Nafa
a=1

1

N
I

where N, is the Lagrangian interpolation function corresponding to node a, whose detailed
expression is presented in Bathe (1996).

The nodal point displacement vector Uy and the element displacement vector Uy can be
defined as follows

Ufa = [“’ Vv, W, @, 0, 0, f]T (61a)
U, = [U, U] (61b)

Similarly, the nodal force vector Fj, and the element force vector Fy can also be defined as
follows

Fo = [Fla F,, F,, M\, M,, M;, M¢]T (62a)

Fy

e = [F. R (62b)

Substituting the shape functions of Eq. (60) into the extended Hamilton’s principle of Eq. (38),
the element elastic stiffness matrix k° and the element geometric stiffness matrix k® can be
obtained. The two stiffness matrices are evaluated using a reduced Gauss numerical integration
scheme to alleviate shear locking.
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Once each k° and k& of the element are assembled into KX and K¢ of the structures, the
linearized buckling problem can be written as

(K*+4K%)u =0 (63)

where A is the buckling moment parameter under the assumption of proportional loading. The
critical buckling moment is now obtained by solving Eq. (63) for the unknown eigenvalue 4 using
a shifted inverse iteration algorithm. The buckling moment is then found by multiplying the
smallest eigenvalue 4 by the applied moment.

5. Numerical examples

In order to demonstrate accuracy and superiority of the present laminated composite beam
theory and the numerical method developed by this study, the coupled lateral buckling analysis has
been performed for the bisymmetric and monosymmetric I-beams subjected to two equal and
opposite end moments about strong axis. The results obtained from this study are compared with
those from other researchers and the finite element solutions using the finite beam elements and
the shell elements by ABAQUS.

5.1 Bisymmetric I-beams

The simply supported (SS) and orthotropic I-beams with bisymmetric cross-section are
considered. The geometric properties of the cross-section, as shown in Fig. 3, are as follows: L =
10.0 m, b;=b,=102mm, h=241 mm, t,=t,=16mm, and ;=9 mm. The critical lateral buckling
moments by this study using only one element are presented in Table 1 for various £, / Gy, ratios
(E1=17.225 GPa) where subscripts ‘1’ and ‘2’ correspond to directions parallel and perpendicular
to fibers, respectively. Here, for an isotropic material with the Poisson’s ratio equal to 0.3, the £, /
G, ratio is 2.6. For the purpose of comparison, the finite element solutions from Lee et al. (2002)

VA
2b
I —y
e | ITh
h _
Yy
- |1y
e lilz
le | T
= 2bs |

Fig. 3 Shape of cross-section under consideration
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Table 1 Lateral buckling moments of the orthotropic SS beams with bisymmetric cross-section (kNm)

This study )
E /G, P P Lee et al. (2002) Lin et al. (1996)
2.6 13.36 14.09 13.30 13.50
5.2 9.99 10.59 9.94 10.15
10 7.88 8.40 7.90 8.06
20 6.45 6.92 6.38 6.66
40 5.58 6.03 5.50 5.83

and Lin et al. (1996) are presented.

It can be found from Table 1 that the present solutions applying o, = 0 assumption are in good
agreement with results in Lee et al. (2002) and Lin ef al. (1996) for all ranges of £, / G1,. When
the E; / Gy, ratio increases from 2.6 to 40, the buckling moment decreases by about 58.2%. This
reduction indicates that the shear strain plays a significant role on the lateral buckling capacity of
the orthotropic I-beams.

The next example is the bisymmetric I-beams made with graphite-epoxy (AS4/3501) material
with following material constants: £, =144 GPa, E,=E3=9.65GPa, G;,= G;3=4.14 GPa, Gz =
3.45GPa, vi; = vi3 = 0.3, and v,3 = 0.5. The total 16 layers with equal thickness are symmetrically
laminated with respect to the middle plane of flanges and web, and the sectional properties are as
follows: b1=5b,=25 mm, /=50 mm, ¢, =, = 2.08 mm, and #; = 3.20 mm.

The critical lateral buckling moments of the clamped-free (CF) and simply supported (SS)
beams with L/h = 40 from this study are presented and compared with results from various
numbers of the finite beam elements, and those from ABAQUS for several stacking sequences.
For ABAQUS calculation, a total of 480 nine node shell elements (S9R5) (80 along the beam span
and 6 through the cross-section) are used. It is found from Tables 2 and 3 that the solutions from
this study based on ¢, = 0 assumption are in good agreement with results from ABAQUS for all
lay-ups considered. The analysis based on ¢, = 0 assumption overestimates the buckling moments
by maximum 74.6% and 78.9% for CF and SS beams, respectively, at y = 45°. For results from
the finite beam elements, as a number of beam element increases, its solutions converge to

Table 2 Lateral buckling moments of CF beams with bisymmetric cross-section (Nm)

Number of finite beam elements, o,= 0 This study

5 10 20 40 60 0,=0 &=0

[0] 16 152.38 151.06 150.73 150.65 150.63 150.62 151.26 149.68
[15/-15]4s  197.15 195.75 195.40 195.31 195.30 195.28 206.82 192.03
[30/-30]4s 174.71 173.61 173.33 173.26 173.25 173.24 243.70 167.58
[45/-45]4s  112.37 111.67 111.50 111.46 111.45 111.44 194.56 107.24
[60/-60]ss  80.12 79.62 79.49 79.46 79.46 79.45 111.13 77.07
[75/-75)ss  52.02 51.69 51.62 51.60 51.60 51.59 54.74 50.85
[90/-90],s  31.05 30.85 30.80 30.79 30.79 30.79 30.89 30.62

Lay-ups

ABAQUS
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Table 3 Lateral buckling moments of SS beams with bisymmetric cross-section (Nm)

Number of finite beam elements, o,= 0 This study
Lay-ups ABAQUS
5 10 20 40 60 0,=0 =0
[0] 16 469.86 449.93 445.20 444.03 443.82 443.64 44593 439.03
[15/-15]4s  497.05 479.36 475.15 474.11 473.92 473.75 508.32 465.01
[30/-30]4s  376.90 366.37 363.85 363.23 363.11 363.01 528.66 349.00
[45/-45]4s  233.89 227.83 226.38 226.02 225.95 225.90 404.04 21591
[60/-60]4s  166.22 161.94 160.91 160.65 160.60 160.57 227.20 155.17
[75/-75]4s  109.34 106.43 105.73 105.56 105.53 105.50 112.27 103.87
[90/-90]4s 68.09 66.11 65.64 65.53 65.50 65.48 65.71 65.11
30
n
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Fig. 4 Effect of shear for bisymmetric I-beams with respect to the fiber angle change, (L/h = 20)

those from the present method since the solutions obtained from the Lagrangian interpolation
polynomial which satisfies only displacement continuity at nodal point of beam element are
approximate. Resultantly, it reveals that at least 40 and 60 finite beam elements are required to
achieve the satisfactory results for CF and SS beams, respectively. Whereas, it is possible to obtain
the exact results though only a minimum number of beam elements in this study are used.

In order to investigate the effect of shear deformation on the lateral buckling moment, the
variation of the effect of shear is plotted in Fig. 4 for beams with L/hA = 20. The boundary
conditions under consideration are CF, SS, CS (clamped-simply), and CC (clamped-clamped)
boundary conditions. It can be observed from Fig. 4 that the shear effects are the largest at w = 0°
and the smallest at yr = 50° regardless of the boundary conditions. As expected, the shear effect
becomes increasing as the end condition of beam is restrained. Fig. 5 shows the shear effects on
lateral buckling moment with respect to the various values of the modulus ratio E; / E, for a CC



Super convergent laminated composite beam element for lateral stability analysis 195

beam. It is interesting to observe that the maximum shear effect occurs at y = 45° for beam with
isotropic material (£;/E,=1), while it takes place at y = 0° for anisotropic beams. It is noteworthy
that for anisotropic beams, the shear effect increases as £/ E, increases in the range of w < 18°.
Whereas, it decreases with increase of £,/ E; in y > 18° and appears to be minimum at y = 52°. In
Fig. 6, for beams which have the [0];¢ lay-up and £,/ E, of 50, the shear effects are presented with
respect to the span-to-height ratio L/h. It appears that the laminated composite beam theory
considering shear effect is very effective in the region where L/A is less than §0.
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90 - 9
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o sl e = iy E1/E2=10
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(a) Effect of shear (b) Region of interest
Fig. 5 Effect of shear of the CC bisymmetric I-beams with various modulus ratios, (L/h =20)
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Fig. 6 Effect of shear for beams with [0];¢ lay-up with respect to the span-to-height ratio, (£, / E,=50)
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5.2 Monosymmetric I-beams

In this example, the lateral buckling problems of the monosymmetric I-beams with symmetric
and arbitrary lay-ups are concerned. The material used is the same as the previous example. First,
for the symmetrically laminated beams with L/A of 40 and b, of 15 mm, the lateral buckling
moments evaluated by this study are shown in Tables 4 and 5 for CF and SS beams, respectively,
together with results from the various values of finite beam elements and those from ABAQUS. It
can be found from Tables 4 and 5 that the correlation of the present results based on g,= 0
assumption and the solutions from ABAQUS is seen to be excellent for all lay-ups considered. It
can also be observed that considerable numbers of the finite beam elements (at least 40 elements)
are needed to obtain the highly accurate results.

In order to investigate the effect of SOCT on the lateral buckling moment for the laminated
composite beams with monosymmetic I-shaped cross-section, the relative difference of buckling
moment due to SOCT is presented in Fig. 7 for four boundary conditions. In Fig. 7, M ’Zﬁtmeans the
critical buckling moment neglecting SOCT in Eq. (21). It is seen that the effect of SOCT is more
pronounced for beams with orthotropic lay-up (7 = 0°) and has a minimum value around y = 53°
for all boundary conditions. It is also seen that as the end boundary condition is restrained, the
SOCT effect increases and its value is as much as 45% for a CC beam. Fig. 8 shows the effect of
SOCT for SS beams with various values of b,/ b,. In this case, the value of b, keeps 2.5 mm, while

Table 4 Lateral buckling moments of CF beams with monosymmetric cross-section (Nm)

Number of finite beam elements, o,= 0 This study

5 10 20 40 60 0,=0 &=0

[0 16 67.51 67.13 67.03 67.01 67.00 67.00 67.19 69.83
[15/-15]4s  114.12 113.51 113.35 113.32 113.31 113.30 118.33 114.34
[30/-30]4s  119.42 118.73 118.56 118.52 118.51 118.51 160.43 115.55
[45/-45],s  80.64 80.16 80.05 80.02 80.01 80.00 135.47 77.15
[60/-60]ss  57.59 57.24 57.16 57.14 57.13 57.13 79.09 55.57
[75/-75)ss  36.46 36.24 36.19 36.18 36.18 36.17 38.38 35.92
[90/-90],s  20.54 20.46 20.43 20.42 20.42 20.42 20.47 20.61

Lay-ups ABAQUS

Table 5 Lateral buckling moments of SS beams with monosymmetric cross-section (Nm)

Number of finite beam elements, o,= 0 This study

5 10 20 40 60 0,=0 &=0

[0 16 145.15 140.59 139.51 139.24 139.19 139.15 139.68 147.67
[15/-15]4s  213.66  208.67 207.47 207.17 207.12 207.08 216.94 211.80
[30/-30]4s  226.19  221.23 220.04 219.74 219.68 219.64 292.77 214.19
[45/-45]4s  157.85 154.21 153.33 153.11 153.07 153.04 252.38 147.18
[60/-60]4s  113.25 110.63 109.99 109.84 109.81 109.79 149.57 106.86
[75/-75]ss  70.53 68.95 68.57 68.47 68.45 68.44 72.37 68.42
[90/-90]4s  37.78 37.94 37.74 37.69 37.68 37.67 37.77 38.55

Lay-ups ABAQUS
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that of b, is changed. It is observed that as b,/ b; increases, the SOCT effect increases and does
notincrease no longer after b,/b; = 5. To study the influence of span-to-height ratio of beam on the
effect of SOCT, the effect of SOCT for beams with [56/-56],5 lay-up is presented in Fig. 9 with
respect to the span-to-height ratio. It is seen that the SOCT effect decreases with increase of
span-to-height ratio for all boundary conditions.

Finally, to validate the current approach for the lateral buckling analysis of the laminated
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Table 6 Lateral buckling moments of SS beams with monosymmetric cross-section (Nm)

Number of finite beam elements, o,= 0 This study
Lay-ups ABAQUS
10 20 40 60 0,=0 &=
[0/30/60/90] 60.20 59.87 59.79 59.77 59.77 59.77 64.09 58.83
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Fig. 10 Effect of SOCT for monosymmetric beams with [0/ v/ —y / 90] lay-ups, (L/h =40)
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composite beams with arbitrary lay-up, the monosymmetric I-beam with nonsymmetric lay-up is
considered. Four layers of [0/30/60/90] with equal ply thicknesses are used for both flanges and
web and the half width of top flange b, is chosen by 15 mm. For beams with this lay-up, the
extension-shear (4;¢ and As), bending-twisting (Djs and D,s), and extension-twisting and
bending-shearing (B;s and B,s) couplings have non-zero values since the lay-up is nonsymmetric
with respect to the middle plane of the plate wall. For CF beam with L/h = 40, the present critical
buckling moment is compared with ABAQUS solution in Table 6. The excellent agreement
between results from this study based on g, = 0 assumption and ABAQUS analysis is achieved.
Fig. 10 shows the variation of effect of SOCT for monosymmetric beams with [0/ y/—y/90]
lay-ups with respect to the fiber angle change. The maximum and minimum effects of SOCT are
seen to take place at y = 0° and 53°, respectively. On the other hand, the difference of SOCT
effect with respect to the fiber angle is smaller than that of beams with symmetric lay-ups as
shown in Fig. 7.

6. Conclusions

The improved thin-walled laminated composite beam theory considering shear effects due to
the shear forces and the restrained warping torsion has been developed for the lateral stability
analysis. By wusing the extended Hamilton’s principle, the stability equations and
force-displacement relationships are derived and the member stiffness matrix is rigorously
evaluated based on the power series expansions of displacement components. In addition, the
finite element model, for comparison, using the Lagrangian interpolation polynomial is presented.

Through the numerical examples, the present study is validated comparing the coupled
buckling responses with results from other researchers and the finite element solutions using the
isoparametric beam elements and the shell elements of ABAQUS. Good correlation is achieved for
various beams with bisymmetric and monosymmetric cross-sections, lamination schemes,
boundary conditions considered in this study. Based on numerical results, the following
conclusions are made

1) The present numerical method using a minimum number of element was capable of
predicting the lateral buckling moment for bisymmetric and monosymmetric [-beams with
arbitrary lay-ups.

2) For isotropic beams, the maximum shear effect occurs at y = 45°, whereas it takes place y =
0° for anisotropic beams. Moreover, the shear effect increases as £,/ E, increases in the
lower range of fiber angle. On the other hand, it decreases with increase of £,/ E, in the
higher ranger of one.

3) The effect of the second-order coupling torque is largest for orthotropic beams, while it has
a smallest value around y = 53° for monosymmetric beams with both symmetric and
nonsymmetric lay-ups. Additionally, the second-order coupling torque has a significant role
in shorter beams.

It is judged that the present numerical procedure provides a refined method for not only the
evaluation of the stiffness matrix of shear deformable laminated composite beams but also general
solutions of simultaneous ordinary differential equations of the higher order. This composite beam
element also eliminates discretization errors and is free from the shear locking since the
displacement state vector satisfies the homogenous form of the simultaneous ordinary differential
equations.
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Appendix: Detailed expressions of the laminate stiffnesses E;

E, = LQ? dydz

= [ 0\ (z=ncosy )dvdz
= [ 07 (y+nsiny )dvdz
= |,00(¢+ na)dya:

= | Oindydz

= j 0./ dydz

j 0. dydz

- [ o (r-e)- 0 (- ez

J. 0/ 22 —2zncosy +1°cos W)dydz
J.Ql*1 VZ — yncosy + znsiny —n sml//cosg//)dydz
IQI Pz —grncosy +zng—1n qcosw)dydz

IQIG zn-n COSV/)dde

= | 0 (z=ncosy )dvdz

IQI z —17CoSY dydz

= [ [0 -e)- 0 (- &)z~ neosy Javaz
= [ 012 +2pmsing + 7 sin’y Jdyaz

- o (p + gnsing + yng + n’qsiny )dvdz

= [ Ol + 0 siny Jayaz

= [0 (v +nsiny )dydz
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Ey = [ 0% (v+nsiny )dvdz

Ey = [ 00 (6-e)- 0 (- &)y + nsiny Jav:
Ey = [ 03¢ +2qn9 + 4*n Jdva:

Eys = [ Oy lpn+an? vz

Ey = [ O (¢+an)dyiz

Ey = [ 0% (p+qn)dva:

Ey = [ 00 (-e)-0d (- e)p+ anlavez
Eg =] (00 n* cosy + O siny )dvdz

Ey = L 0. neosy dydz

E,, = L 0. nsiny dydz

Ey = [ [0 (v—e.nsing — 0y (= - e, pcosy Jdaz
Eg = | O dviz

Eg =—[ 0 (z-e))dva:

Ey, = [ O dydz

Ery =] O’ (v - )dvaz

Eg = L [Q)*éf(z_% )2 +§620(y—62)2 ]dydz (A1)





