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Abstract.  The super convergent laminated composite beam element is newly derived for the lateral 
stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the 
first-order shear deformation beam theory. The present laminated beam takes into account the transverse 
shear and the restrained warping induced shear deformation. The second-order coupling torque resulting 
from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, 
the stability equations and force-displacement relationships are derived and the explicit expressions for the 
displacement parameters are presented by applying the power series expansions of displacement 
components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is 
determined using the force-displacement relationships. In order to show accuracy and superiority of the 
beam element developed by this study, the critical lateral buckling moments for bisymmetric and 
monosymmetric I-beams are presented and compared with other results available in the literature, the 
isoparametric beam elements, and shell elements from ABAQUS. 
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1. Introduction 

 
The structural members made of composite materials are increasingly used in the fields of civil, 

mechanical, and aeronautical engineering applications, where high stiffness and strength, and low 
weight are of primary importance. The excellent fatigue characteristics in the direction of the 
fibers, corrosion resistance, and magnetic transparency are the main advantages of composite 
materials. A lot of structural members made of composite materials have the form of thin-walled 
cross-sections. These laminated composite beams might be subjected to the pure bending when 
used in above applications and are very susceptible to the lateral buckling. Therefore, the accurate 
prediction of their lateral stability limit state is of fundamental importance in the design of 
composite beams. 

Up to the present, for the stability analysis of the laminated composite beams, the finite element 
method has been widely used because of its versatility and accordingly a large amount of work 
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was devoted to the improvement of composite finite elements. Lee et al. (2002) performed the 
lateral stability analysis of the laminated composite beams with bisymmetric I-section. The 
displacement-based finite element model with 7 DOFs per node was developed. The generalized 
displacements were expressed over each element as a linear combination of the one-dimensional 
Lagrangian interpolation function and Hermite-cubic interpolation function. Lee (2006) studied the 
lateral buckling problem of the monosymmetric I-beams using the general geometrically nonlinear 
model based on the classical lamination theory. The theoretical model was developed by Cortínez 
and Piovan (2006) for the lateral stability analysis of composite thin-walled beams with general 
cross-sections. The model was presented using a non-linear displacement field, whose rotations 
were based on the rule of semi-tangential transformation, and the finite element with two-node and 
14 DOFs was developed to solve the governing equations. Lin et al. (1996) developed the finite 
element stability analysis for a pultruded open section beam having 7 DOFs at each node by 
extending the study of Gunnlaugsson and Pedersen (1982). However, the main drawback of the 
above finite element analysis techniques is that a considerable number of finite elements are 
required to obtain the satisfactory results due to the use of the approximate shape functions. 

In contrast to the finite element method, considerable research efforts to obtain analytical 
solutions for stability analysis of composite beams have been made by many researchers. Kollár 
and Springer (2003) and Sapkás and Kollár (2002) presented the solutions for the lateral buckling 
moments of the open section composite beams subjected to end moments. Vlasov’s classical 
theory of the thin-walled beams was modified to consider the shear effects. Zhen and Wanji (2008) 
assessed several displacement-based theories by analyzing the buckling and free vibration 
behaviors of laminated beams with arbitrary layouts. Qiao et al. (2003) presented a combined 
analytical and experimental study of the flexural-torsional buckling of FRP composite cantilever 
I-beams. Three different type of buckling mode shapes of transcendental function, polynomial 
function, and half simply supported beam function were used to obtain the eigenvalue solutions. 
Kabir and Sherbourne (1998) presented the analytical solution for predicting the lateral buckling 
capacity of laminated beams including the influences of load form and lamination architecture. A 
detailed parametric study demonstrated that the improved design could be suggested which shows 
superior performance for optimal fiber orientation in both flanges and web in comparison with the 
traditional unidirected pultrusion process. 

Another alternative numerical method to solve the buckling problems of composite beams is to 
develop the Ritz method. Machado and Cortínez (2005) developed a geometrically non-linear 
theory for thin-walled composite beams made of symmetric balanced laminates. The Ritz method 
was applied in order to solve the non-linear differential system. Shield and Morey (1997) 
presented a new theory for the stability analysis of composite beams that included the coupling 
effects caused by the Poisson effect using the Ritz method. They analyzed the I-section and box 
beams and showed that the inclusion of the anticlastic curvature substantially reduces the predicted 
buckling loads. 

As a very effective approach in solving the stability and vibration problems of composite 
beams, the stiffness matrix method based on the solutions of the simultaneous ordinary differential 
equations was developed. The critical buckling loads and natural frequencies can be calculated 
using this method for any desired set of boundary conditions and assembly of elements. 
Abramovich et al. (1996) applied an exact element method to calculate the buckling loads and the 
natural frequencies of nonsymmetric laminated composite beams with rectangular cross-section. 
The influence of longitudinal and transverse restraints, material, and lay-up sequence on the 
buckling loads and natural frequencies of beam was investigated. Kim et al. (2007) evaluated the 
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exact element stiffness matrix in order to perform the spatially coupled stability analysis of 
thin-walled composite beams with symmetric and arbitrary lay-ups by using the eigenvelue 
problem. The exact displacement functions were constructed by combining eigenvectors and 
polynomial solutions corresponding to non-zero and zero eigenvalues. However, Kim et al. (2007) 
did not consider the effect of shear deformation. It is well known that for composite beams with 
low ratio of shear modulus to longitudinal modulus, the influence of shear strain on the stability of 
composite members is higher than that of the isotropic beams and must be accounted for in design. 
Piovan et al. (2008) employed a power series methodology to calculate the exact (or with arbitrary 
precision) free vibration frequencies of composite thin-walled tapered beams allowing for shear 
flexibility due to bending as well as non-uniform torsion warping. They investigated the effects of 
taper and the elastic couplings in the free vibration patterns of the beam. 

The objective of this study is to present an improved analytical composite beam model and to 
calculate the lateral buckling moment exactly for the thin-walled composite beams considering the 
shear effects. A significant point of departure of the present numerical approach from other 
methods is in the solution of spatially coupled ordinary differential equations that arise in the 
solution process. Rather than using a discrete integration scheme or a finite element method based 
on energy principles, the present approach applies direct and systematic schemes for the evaluation 
of the element stiffness of the composite beams. The important points of this study are 
summarized as follows 

1. The general linear theory is improved based on the orthogonal Cartesian coordinate system 
for the thin-walled laminated composite beams taking into account the transverse shear and 
the restrained warping induced shear deformation. 

2. The geometrically nonlinear theory is developed for the stability analysis of the laminated 
composite beams. The second-order coupling torque (SOCT) which accounts for the change 
in the effective torsional stiffness due to the axial stress is rigorously derived. 

3. The numerical method to evaluate the element stiffness matrix of shear deformable 
laminated composite beams with arbitrary lay-up is presented for lateral stability analysis. 

4. For comparison, the finite beam element formulation based on the Lagrangian interpolation 
polynomials and the assumed displacement fields is presented to solve the lateral buckling 
problem for the laminated composite beams. 

5. In order to demonstrate accuracy and superiority of this study, the critical lateral buckling 
moments of the bisymmetric and monosymmetric I-beams under the pure bending are 
evaluated and compared with the results from available references, the finite beam element, 
and shell elements from ABAQUS (2003). 

 
 
2. General linear theory 

 
2.1 Kinematics 
 
In the present study, two coordinate systems which are mutually interrelated are used. The first 

coordinate system is the orthogonal Cartesian coordinate system (x, y, z), as shown in Fig. 1, 
where x axis is parallel to the longitudinal axis of the beam, while y and z are the principal axes of 
the cross-section having their origin at the shear center. The second coordinate system is the local 
coordinate system (x, n, s) for plate segment wherein n axis is normal to the middle surface of the 
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Fig. 1 Pictorial definitions of coordinates in thin-walled cross-section 

 
 
plate, and the s axis is tangent to the middle surface and is directed along the contour line of the 
cross-section. The coordinates of an arbitrary point Q in the (x, n, s) coordinate system are (r, q), 
where r is the n coordinate and q is the s coordinate of Q. The ψ is the angle between the tangent 
to the contour and the y axis. The present structural model is based on the following assumptions. 

1. The beam is prismatic and linearly elastic. 
2. Each laminate is thin and perfectly bonded. 
3. The cross-section is assumed to maintain its shape during deformation, so that there is no 

distortion. 
4. The transverse shear and warping shear strains are incorporated. It is assumed that they are 

uniform over the cross-sections 

Assuming that the cross-section is rigid with respect to the in-plane deformation and rotates 
about the shear center, the displacements of the arbitrary point on the cross-section can be 
expressed as (Kim et al. 1994) 

 )()()()(),,( 23 xfzxyxxuzyxu                    (1a) 

)()()(),,( 13 xezxvzyxv                         (1b) 

)()()(),,( 12 xeyxwzyxw                         (1c) 

where u(x), v(x), and w(x) are the rigid body translations of the cross-section along the x, y, and z 
axes, respectively; ω1(x), ω2(x), and ω3(x) are the rigid body rotations about the shear center and in 
the y and z axes, respectively; f(x) is the parameter defining warping of the cross-section; e2 and e3 
are coordinates of the pole P in the y and z axes, respectively; ϕ is the sectional property called the 
sectorial area or warping function. For the case of monosymmetic I-shaped section, it is defined as 

yez )( 3 
                               (2) 

178



 
 
 
 
 
 

Super convergent laminated composite beam element for lateral stability analysis 

where the superscript α equals 1 and 2 for the top and bottom flanges, respectively; zα is the z 
distance of the middle surface of each flange from the shear center. 

In this formulation, owing to the effects of the flexural shear deformation, ω2 and ω3 are not 
equal to the derivatives of the corresponding translations. Similarly, f is not equal to the derivative 
of ω1 owing to the inclusion of shear effect in warping. From the work of Kim et al. (1994), these 
rotations and warping parameter can be defined as 

wo
xz  2                               (3a) 

vo
xy  3                               (3b) 

1  of                                (3c) 

where γo
xy and γo

xz are the transverse shear strains due to flexure; γo
ϕ is the torsional shear strain 

associated with warping. The superscript ‘prime’ indicates the derivative with respect to x. 
The buckling analysis of I-beams under bending, the deformation before buckling is ignored. 

The displacement components representing the deformation of any generic point in the top and 
bottom flanges can be expressed with respect to the middle surface displacements as 

),(),(),,( yx
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
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),(),,( yxwzyxW                             (4c) 

where u̅ α, v̅   α, and w̅  α are the displacements of the middle surface of each flange. The displacement 
components for the web plate may also be expressed as 
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where u̅ w, v̅   w, and w̅  w are the displacements of the middle surface of the web. 
The linear strain fields of the beam associated with the displacement fields of Eqs. (1), (4), and 

(5) can be expressed as 
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where γo
xy, γ

o
xz and γo

ϕ are flexural shear strains in the xˍy and xˍz planes and warping shear strain in 
the beam, respectively; εo

x, κy, κz, κϕ and κxs are axial strain, biaxial curvatures in the y and z 
direction, warping curvature with respect to the shear center, and twisting curvature in the beam, 
respectively, defined as 

132 2,,,,    xszy
o
x fu                 (7) 

 
2.2 Variational formulation 
 
From the basic assumptions for the thin-walled beams (Barbero 1999), the linear strain energy 

of the laminated composite beam can be expressed as 

  
V

xzxzxyxyxxL dV
2

1
                      (8) 

where σx, τxy, and τxz are normal and shear stresses, respectively. By substituting Eq. (6) into Eq. (8), 
the linear strain energy is expressed as 
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where A and L are the area of cross-section and the length of beam, respectively. The variation of 
the linear strain energy in Eq. (9) can be written as 

  
L

o
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o
zx

o
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where F1 is the axial force; M2 and M3 are the bending moments about the y and z axes, 
respectively; Mϕ is the bimoment; F2 and F3 are the shear forces in the y and z directions, 
respectively; T and Mt are the two contributions to the total twisting moment. These generalized 
forces and moments acting over the cross-section are related the stresses in the beam as 


A

x dzdyF 1                             (11a) 

  
A

x dzdyzM  cos2                        (11b) 

  
A

x dzdyyM  sin3                       (11c) 
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180



 
 
 
 
 
 

Super convergent laminated composite beam element for lateral stability analysis 


A

xy dzdyF 2                             (11e) 


A

xz dzdyF 3                              (11f) 

  
A

xyxz dzdyezeyT )()( 32                      (11g) 

  
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xzxyt dzdyM  sincos                     (11h) 

For the case of laminated composite material, the relationship between the plate stress tensors 
and the plate strain ones can be expressed in terms of the stiffness coefficients Qij of any 
constituent lamina of the beam wall. The stress-strain relationships of the kth lamina of the flanges 
are written in the Cartesian coordinate system as 
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where Q̅*
ij are the condensed stiffness coefficients of each lamina. The appropriate assumptions for 

constitutive relations are essential for a refined composite beam theory since the pile in the 
laminated composites behave in a highly two-dimensional manner due to the Poisson’s effect 
(Smith and Chopra 1991). In this regard, the stress-strain relationships can be simplified by 
adopting the free stress (σs = 0) and the free strain (εs = 0) assumptions in contour direction. Thus 
for the free stress assumption, the condensed stiffness coefficients are given by 
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where Q̅ij are the transformed reduced stiffness coefficients (Barbero 1999) including the material 
properties of each lamina. For the free strain assumption, these are expressed as 

11
*

11 QQ f                                (14a) 

16
*

16 QQ f                                (14b) 

66
*

66 QQ f                                (14c) 

Similarly, the constitutive equations for web are written as follows 
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Substituting Eqs. (12) and (15) into Eq. (11), the constitutive equations for the laminated 
composite I-beams can be expressed as 























































































































f

w

v

f

u

E

EESymm

EEE

EEEE

EEEEE

EEEEEE

EEEEEEE

EEEEEEEE

T

F

F

M

M

M

M

F

t

1

2

3

1

3

2

88

7877

686766

58575655

4847464544

383736353433

28272625242322

1817161514131211

3

2

3

2

1

2

.









         (16) 

where Eij are the laminate stiffnesses which depend on the cross-section of beam and detailed 
expressions are given in Appendix. Finally, substitution of Eq. (16) into Eq. (10) leads to the 
following linear strain energy of the shear deformable laminated composite I-beams. 
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3. Nonlinear strain energy 

 
3.1 Nonlinear strain tensors 
 
The nonlinear terms of the axial and shear strain fields are given by 
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Substituting Eqs. (1), (4), and (5) into Eq. (18), the nonlinear parts of the strains are written as 
follows 
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3.2 Variational formulation 
 
The nonlinear strain energy of the laminated composite beam becomes 

  
V

N
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N
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N
xxN dV                       (20) 

Substituting Eq. (19) into Eq. (20) and using the beam forces as given in Eq. (11), the nonlinear 
contribution of the strain energy expression can be expressed as 
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where the superscript ‘o’ indicates the initial force variable and the stress resultant Ω denotes the 
second-order coupling torque (SOCT) term resulting from the geometric nonlinearity. This 
property is caused by the horizontal component of axial stress due to the inclination of the 
cross-section as a result of different warping. The twisting moment due to this will weaken the 
torsional rigidity if the axial stress is compressive. For the case of beam made of isotropic material, 
the above nonlinear strain energy is the same as the one in the study by Kim et al. (1994). 

In order to derive the term Ω, the plate constitutive relations in the local coordinate system are 
considered as follows (Lee 2006) 
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where N̅x, N̅xs, M̅x, and M̅xs are plate stress resultants defined by 
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dMN xxx  ,1,                          (23a) 

    
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dMN xsxsxs  ,1,                         (23b) 

In Eq. (22), γ̅ xs and κ̅ x are shear strain and axial curvature, respectively, in the middle surface of 
plate in local coordinate; Aij, Bij and Dij are the extensional, bending-extension coupling, and 
bending stiffnesses, respectively, defined by 
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From the study by Lee (2006), the term   dx
2  in the nonlinear strain energy Eq. (21) can 

be written by 
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where H*
ij is the higher order stiffness given by 
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From the plate constitutive relations in Eq. (22), Eq. (25) can be rewritten as 
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In which βij are components of inverse matrix of Eq. (22) which is given by 
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By using Eq. (27), the SOCT Ω can be expressed as follows 
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Substituting Eq. (22) into Eq. (30), Eq. (30) can be rewritten as follows 
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Now, the SOCT Ω can be expressed by using the constitutive equations in Eq. (16) of the 
laminated composite beam as 
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In Eq. (34), the transformed matrix T is expressed as follows 
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where δij are the components of the inverse matrix of Eij as 
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On the other hand, the variation of the work done by external forces can be written as 

e
T
e FU ext                              (37) 

where Ue and Fe denote the member end displacement and force vector, respectively. 
In order to derive the stability equations and the force-displacement relationships of the 

laminated composite beam, the extended Hamilton’s principle is used by 

  
2

1

0
t

t
extNL dt                         (38) 

Substituting Eqs. (17), (21), and (37) into Eq. (35) and integrating the derivatives of the varied 
quantities by parts, and collecting the coefficients of δu, δv, δw, δω1, δω2, δω3, and δf, the stability 
equations are obtained as follows 
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The seven force-displacement relationships can also be obtained as follows 
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 
fEfEEEE

EEEwEvEuEM





4448334346224

24714845474614 2


               (40g) 

If the cross-section is bisymmetric and the beam is made of the isotropic materials, in which the 
coupling effects are neglected, Eq. (39) can be simplified to the following uncoupled differential 
equations. 

0uEA                                (41a) 

    0131213132   FMevFvGA ooo                (41b) 

    0121312123   FMewFwGA ooo                (41c) 

    01323232111   p
ooooo

r MvFwFwMvMveweFfGAGJ   (41d) 

  02322   wGAEI                          (41e) 

  03233   vGAEI                          (41f) 

  01  fGAfEI r                           (41g) 

where E and G are the Young’s modulus and the shear modulus, respectively; J is the St. Venant 
torsional constant and Mp is the stress resultant known as the Wagner effect and its detailed 
calculation procedure is given in the study of Kim et al. (1994); I2, I3, and Iϕ are the second 
moments of inertia with respect to the y and z axes and the warping moment of inertia, 
respectively; A2, A3, and Ar are the effective shear areas defined according to the following 
expressions 
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where 

 
s

r
ss

tdsZytdsZztdsZ    ,   , 32                      (43) 

 
 
4. Stiffness matrix of laminated composite beam 
 

4.1 Evaluation of displacement function 
 
In order to derive the member stiffness matrix of the laminated composite beam, the 

displacement functions are rigorously evaluated based on the seven stability equations derived in 
Chapter 3. For this purpose, the seven displacement parameters are taken as the following infinite 
power series. 
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Substituting Eq. (44) into Eq. (39) and shifting the index of power of 
nx , the stability 

equations can be compactly expressed in a matrix form as follows 

 
 Tnnnnnnnnnnnnnn

T
nnnnnnn

ggffeeddccbbaa

gfedcba

1111111

2222222

  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,

  ,  ,  ,  ,  ,  ,





 nZ
      (45) 

where Zn is the 7  14 matrix function. The terms for an+2, bn+2, cn+2, dn+2, en+2, fn+2 and gn+2 
converge to zero as n → ∞. We also define the initial integration constant vector a as 

 Tooooooo ggffeeddccbbaa 1111111   ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,a         (46) 

The displacement state vector consisting of 14 displacement parameters is as follows 

T
ffwwvvuu  ,,,,,,,,,,,,, 332211 d            (47) 

The displacement state vector d can be expressed with respect to a by using Eqs. (44) and (45) 
as follows 

aXd n                                (48) 

where Xn denotes the 14 × 14 matrix function with the coefficients of u, v, w, ω1, ω2, ω3, and f. In 
each of these 14 solution sets, the calculation of the coefficients by the recursive relations in Eq. 
(45) is continued until the contribution of the next coefficient is less than an arbitrarily chosen 
small number. Above symbolic calculations are performed with the help of the technical computer 
software Mathematica (2009). 

Next, let Ue be the generalized nodal displacement vector having 14 DOFs at two ends of the 
beam element as shown in Fig. 2(a). 

T
LfLLLLwLvLu

fwvu

)(,)(,)(,)(),(,)(,)(

)0(,)0(,)0(,)0(),0(,)0(,)0(

321

321



eU
             (49) 

Substituting coordinates of the two ends of member (x = 0, L) into Eq. (48), the nodal 
displacement vector Ue is expressed in terms of a as follows 

aHUe                                 (50) 

From Eqs. (48) and (50), the displacement state vector d at an arbitrary point of element can be 
expressed with respect to the nodal displacement vector Ue. 

en UHXd 1                              (51) 

It is noted that XnH-1 in Eq. (51) is the exact shape function matrix since the displacement state 
vector d satisfies the homogenous form of the coupled equilibrium equations in Eq. (39) exactly. 

 
4.2 Calculation of stiffness matrix 
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By using the displacement state vector d derived in previous section, the stiffness matrix of the 
laminated composite beam is rigorously calculated. The nodal force vector Fe at two ends p and q 
of the element as shown in Fig. 2(b) is considered as follows 

Tqp FFFe ,                              (52) 

where 

qpMMMMFFF
T

,,,,,,,, 321321  


F               (53) 

The force-displacement relationships in Eq. (40) can be written as a matrix form 

dSf(x)                                 (54) 

where S is the 7  14 matrix. Substitution of Eq. (51) into Eq. (54) leads to 

e
1

n UHXSf(x)                             (55) 

Now, the nodal forces at two ends of element are evaluated as 

e
1

n UH)(XS)f(F  00p                      (56a) 

e
1

n UH)(XS)f(F  LLq                      (56b) 

Finally, for the lateral stability analysis of the laminated composite beams, the element stiffness 
matrix is obtained based on the linear relation between member forces and nodal displacement 
parameters as follows 

 
 

(a) Nodal displacements 

(b) Nodal forces 

Fig. 2 Nodal displacements and forces of the laminated composite beam elements 
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ee UKF                                (57) 
where 


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


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
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





1
n

1
n

H)(XS

H(0)XS
K

l
                         (58) 

The critical buckling moments of the beam are the values that cause the stiffness matrix to 
become singular as Eq. (59). A search procedure is employed to find these values up to the desired 
accuracy. In this study, the Regular-Falsi method (Wendroff 1966) is applied to ensure that none 
of the buckling loads is missed. 

0K                                 (59) 

It is noteworthy that the stiffness matrix in Eq. (58) is formed by the shape functions which are 
exact solutions of the governing equations. Therefore, the thin-walled laminated composite beam 
using the stiffness matrix developed by this study eliminates discretization errors and is free from 
the shear and membrane locking. 

For comparison, the finite beam element model with 7 DOFs per node is presented based on the 
Lagrangian interpolation polynomials. The present finite beam element uses the same shape 
functions for all translational, rotational, and warping displacements. The displacements can be 
expressed as follows 
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               (60) 

where Nα is the Lagrangian interpolation function corresponding to node α, whose detailed 
expression is presented in Bathe (1996). 

The nodal point displacement vector Ufα and the element displacement vector Ufe can be 
defined as follows 

 T
f fwvu ,,,,,, 321  U                    (61a) 

 T
fe 21, UUU                            (61b) 

Similarly, the nodal force vector Ffα and the element force vector Ffe can also be defined as 
follows 

 T
f MMMMFFF  ,,,,,, 321321F                  (62a) 

 T
fe 21, FFF                             (62b) 

Substituting the shape functions of Eq. (60) into the extended Hamilton’s principle of Eq. (38), 
the element elastic stiffness matrix ke and the element geometric stiffness matrix kg can be 
obtained. The two stiffness matrices are evaluated using a reduced Gauss numerical integration 
scheme to alleviate shear locking. 
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Once each ke and kg of the element are assembled into KE and KG of the structures, the 
linearized buckling problem can be written as 

  0UKK  GE                              (63) 

where λ is the buckling moment parameter under the assumption of proportional loading. The 
critical buckling moment is now obtained by solving Eq. (63) for the unknown eigenvalue λ using 
a shifted inverse iteration algorithm. The buckling moment is then found by multiplying the 
smallest eigenvalue λ by the applied moment. 
 
 
5. Numerical examples 

 
In order to demonstrate accuracy and superiority of the present laminated composite beam 

theory and the numerical method developed by this study, the coupled lateral buckling analysis has 
been performed for the bisymmetric and monosymmetric I-beams subjected to two equal and 
opposite end moments about strong axis. The results obtained from this study are compared with 
those from other researchers and the finite element solutions using the finite beam elements and 
the shell elements by ABAQUS. 

 
5.1 Bisymmetric I-beams 
 
The simply supported (SS) and orthotropic I-beams with bisymmetric cross-section are 

considered. The geometric properties of the cross-section, as shown in Fig. 3, are as follows: L = 
10.0 m, b1 = b2 = 102 mm, h = 241 mm, t1 = t2 = 16 mm, and t3 = 9 mm. The critical lateral buckling 
moments by this study using only one element are presented in Table 1 for various E1 / G12 ratios 
(E1 = 17.225 GPa) where subscripts ‘1’ and ‘2’ correspond to directions parallel and perpendicular 
to fibers, respectively. Here, for an isotropic material with the Poisson’s ratio equal to 0.3, the E1 / 
G12 ratio is 2.6. For the purpose of comparison, the finite element solutions from Lee et al. (2002) 

 
 

Fig. 3 Shape of cross-section under consideration 
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Table 1 Lateral buckling moments of the orthotropic SS beams with bisymmetric cross-section (kNm) 

E1 / G12 
This study 

Lee et al. (2002) Lin et al. (1996) 
σs = 0 εs = 0 

2.6 13.36 14.09 13.30 13.50 

5.2 9.99 10.59 9.94 10.15 

10 7.88 8.40 7.90 8.06 

20 6.45 6.92 6.38 6.66 

40 5.58 6.03 5.50 5.83 

 
 
and Lin et al. (1996) are presented. 

It can be found from Table 1 that the present solutions applying σs = 0 assumption are in good 
agreement with results in Lee et al. (2002) and Lin et al. (1996) for all ranges of E1 / G12. When 
the E1 / G12 ratio increases from 2.6 to 40, the buckling moment decreases by about 58.2%. This 
reduction indicates that the shear strain plays a significant role on the lateral buckling capacity of 
the orthotropic I-beams. 

The next example is the bisymmetric I-beams made with graphite-epoxy (AS4/3501) material 
with following material constants: E1 = 144 GPa, E2 = E3 = 9.65 GPa, G12 = G13 = 4.14 GPa, G23 = 

3.45 GPa, v12 = v13 = 0.3, and v23 = 0.5. The total 16 layers with equal thickness are symmetrically 
laminated with respect to the middle plane of flanges and web, and the sectional properties are as 
follows: b1 = b2 = 25 mm, h = 50 mm, t1 = t2 = 2.08 mm, and t3 = 3.20 mm. 

The critical lateral buckling moments of the clamped-free (CF) and simply supported (SS) 
beams with L/h = 40 from this study are presented and compared with results from various 
numbers of the finite beam elements, and those from ABAQUS for several stacking sequences. 
For ABAQUS calculation, a total of 480 nine node shell elements (S9R5) (80 along the beam span 
and 6 through the cross-section) are used. It is found from Tables 2 and 3 that the solutions from 
this study based on σs = 0 assumption are in good agreement with results from ABAQUS for all 
lay-ups considered. The analysis based on εs = 0 assumption overestimates the buckling moments 
by maximum 74.6% and 78.9% for CF and SS beams, respectively, at ψ = 45°. For results from 
the finite beam elements, as a number of beam element increases, its solutions converge to 

 
 
Table 2 Lateral buckling moments of CF beams with bisymmetric cross-section (Nm) 

Lay-ups 
Number of finite beam elements, σs = 0 This study 

ABAQUS
5 10 20 40 60 σs = 0 εs = 0 

[0] 16 152.38 151.06 150.73 150.65 150.63 150.62 151.26 149.68 

[15/-15]4S 197.15 195.75 195.40 195.31 195.30 195.28 206.82 192.03 

[30/-30]4S 174.71 173.61 173.33 173.26 173.25 173.24 243.70 167.58 

[45/-45]4S 112.37 111.67 111.50 111.46 111.45 111.44 194.56 107.24 

[60/-60]4S 80.12 79.62 79.49 79.46 79.46 79.45 111.13 77.07 

[75/-75]4S 52.02 51.69 51.62 51.60 51.60 51.59 54.74 50.85 

[90/-90]4S 31.05 30.85 30.80 30.79 30.79 30.79 30.89 30.62 
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Table 3 Lateral buckling moments of SS beams with bisymmetric cross-section (Nm) 

Lay-ups 
Number of finite beam elements, σs = 0 This study 

ABAQUS
5 10 20 40 60 σs = 0 εs = 0 

[0] 16 469.86 449.93 445.20 444.03 443.82 443.64 445.93 439.03 

[15/-15]4S 497.05 479.36 475.15 474.11 473.92 473.75 508.32 465.01 

[30/-30]4S 376.90 366.37 363.85 363.23 363.11 363.01 528.66 349.00 

[45/-45]4S 233.89 227.83 226.38 226.02 225.95 225.90 404.04 215.91 

[60/-60]4S 166.22 161.94 160.91 160.65 160.60 160.57 227.20 155.17 

[75/-75]4S 109.34 106.43 105.73 105.56 105.53 105.50 112.27 103.87 

[90/-90]4S  68.09  66.11  65.64  65.53  65.50  65.48  65.71  65.11 
 

Fig. 4 Effect of shear for bisymmetric I-beams with respect to the fiber angle change, (L/h = 20) 

 
 
those from the present method since the solutions obtained from the Lagrangian interpolation 
polynomial which satisfies only displacement continuity at nodal point of beam element are 
approximate. Resultantly, it reveals that at least 40 and 60 finite beam elements are required to 
achieve the satisfactory results for CF and SS beams, respectively. Whereas, it is possible to obtain 
the exact results though only a minimum number of beam elements in this study are used. 

In order to investigate the effect of shear deformation on the lateral buckling moment, the 
variation of the effect of shear is plotted in Fig. 4 for beams with L/h = 20. The boundary 
conditions under consideration are CF, SS, CS (clamped-simply), and CC (clamped-clamped) 
boundary conditions. It can be observed from Fig. 4 that the shear effects are the largest at ψ = 0° 
and the smallest at ψ = 50° regardless of the boundary conditions. As expected, the shear effect 
becomes increasing as the end condition of beam is restrained. Fig. 5 shows the shear effects on 
lateral buckling moment with respect to the various values of the modulus ratio E1 / E2 for a CC 
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beam. It is interesting to observe that the maximum shear effect occurs at ψ = 45° for beam with 
isotropic material (E1 / E2 =1), while it takes place at ψ = 0° for anisotropic beams. It is noteworthy 
that for anisotropic beams, the shear effect increases as E1 / E2 increases in the range of ψ ≤ 18°. 
Whereas, it decreases with increase of E1 / E2 in ψ > 18° and appears to be minimum at ψ = 52°. In 
Fig. 6, for beams which have the [0]16 lay-up and E1 / E2 of 50, the shear effects are presented with 
respect to the span-to-height ratio L/h. It appears that the laminated composite beam theory 
considering shear effect is very effective in the region where L/h is less than 80. 

 
 

(a) Effect of shear (b) Region of interest 

Fig. 5 Effect of shear of the CC bisymmetric I-beams with various modulus ratios, (L/h =20) 
 

Fig. 6 Effect of shear for beams with [0]16 lay-up with respect to the span-to-height ratio, (E1 / E2 =50) 
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5.2 Monosymmetric I-beams 
 
In this example, the lateral buckling problems of the monosymmetric I-beams with symmetric 

and arbitrary lay-ups are concerned. The material used is the same as the previous example. First, 
for the symmetrically laminated beams with L/h of 40 and b1 of 15 mm, the lateral buckling 
moments evaluated by this study are shown in Tables 4 and 5 for CF and SS beams, respectively, 
together with results from the various values of finite beam elements and those from ABAQUS. It 
can be found from Tables 4 and 5 that the correlation of the present results based on σs = 0 
assumption and the solutions from ABAQUS is seen to be excellent for all lay-ups considered. It 
can also be observed that considerable numbers of the finite beam elements (at least 40 elements) 
are needed to obtain the highly accurate results. 

In order to investigate the effect of SOCT on the lateral buckling moment for the laminated 
composite beams with monosymmetic I-shaped cross-section, the relative difference of buckling 
moment due to SOCT is presented in Fig. 7 for four boundary conditions. In Fig. 7, M

n
c
s
r
t
 means the 

critical buckling moment neglecting SOCT in Eq. (21). It is seen that the effect of SOCT is more 
pronounced for beams with orthotropic lay-up (ψ = 0°) and has a minimum value around ψ = 53° 
for all boundary conditions. It is also seen that as the end boundary condition is restrained, the 
SOCT effect increases and its value is as much as 45% for a CC beam. Fig. 8 shows the effect of 
SOCT for SS beams with various values of b2 / b1. In this case, the value of b2 keeps 2.5 mm, while  

 
 
Table 4 Lateral buckling moments of CF beams with monosymmetric cross-section (Nm) 

Lay-ups 
Number of finite beam elements, σs = 0 This study 

ABAQUS
5 10 20 40 60 σs = 0 εs = 0 

[0] 16 67.51 67.13 67.03 67.01 67.00 67.00 67.19 69.83 

[15/-15]4S 114.12 113.51 113.35 113.32 113.31 113.30 118.33 114.34 

[30/-30]4S 119.42 118.73 118.56 118.52 118.51 118.51 160.43 115.55 

[45/-45]4S 80.64 80.16 80.05 80.02 80.01 80.00 135.47 77.15 

[60/-60]4S 57.59 57.24 57.16 57.14 57.13 57.13 79.09 55.57 

[75/-75]4S 36.46 36.24 36.19 36.18 36.18 36.17 38.38 35.92 

[90/-90]4S 20.54 20.46 20.43 20.42 20.42 20.42 20.47 20.61 

 
Table 5 Lateral buckling moments of SS beams with monosymmetric cross-section (Nm) 

Lay-ups 
Number of finite beam elements, σs = 0 This study 

ABAQUS
5 10 20 40 60 σs = 0 εs = 0 

[0] 16 145.15 140.59 139.51 139.24 139.19 139.15 139.68 147.67 

[15/-15]4S 213.66 208.67 207.47 207.17 207.12 207.08 216.94 211.80 

[30/-30]4S 226.19 221.23 220.04 219.74 219.68 219.64 292.77 214.19 

[45/-45]4S 157.85 154.21 153.33 153.11 153.07 153.04 252.38 147.18 

[60/-60]4S 113.25 110.63 109.99 109.84 109.81 109.79 149.57 106.86 

[75/-75]4S 70.53 68.95 68.57 68.47 68.45 68.44 72.37 68.42 

[90/-90]4S 37.78 37.94 37.74 37.69 37.68 37.67 37.77 38.55 
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Fig.7 Effect of SOCT for monosymmetric beams with [ψ / – ψ]4S lay-ups, (L/h =40) 
 

Fig. 8 Effect of SOCT for SS monosymmetric beams with [ψ / –ψ]4S lay-ups and with various 
values of b2 / b1, (L/h =40) 

 
 
that of b1 is changed. It is observed that as b2 / b1 increases, the SOCT effect increases and does 
notincrease no longer after b2 / b1 = 5. To study the influence of span-to-height ratio of beam on the 
effect of SOCT, the effect of SOCT for beams with [56/-56]4S lay-up is presented in Fig. 9 with 
respect to the span-to-height ratio. It is seen that the SOCT effect decreases with increase of 
span-to-height ratio for all boundary conditions. 

Finally, to validate the current approach for the lateral buckling analysis of the laminated 
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Fig. 9 Effect of SOCT for monosymmetric beams with [56/-56]4S lay-up with respect to the 
span-to-height ratio 

 
 
Table 6 Lateral buckling moments of SS beams with monosymmetric cross-section (Nm) 

Lay-ups 
Number of finite beam elements, σs = 0 This study 

ABAQUS
5 10 20 40 60 σs = 0 εs = 0 

[0/30/60/90] 60.20 59.87 59.79 59.77 59.77 59.77 64.09 58.83 

 
 

Fig. 10 Effect of SOCT for monosymmetric beams with [0 / ψ / –ψ / 90] lay-ups, (L/h =40) 
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composite beams with arbitrary lay-up, the monosymmetric I-beam with nonsymmetric lay-up is 
considered. Four layers of [0/30/60/90] with equal ply thicknesses are used for both flanges and 
web and the half width of top flange b1 is chosen by 15 mm. For beams with this lay-up, the 
extension-shear (A16 and A26), bending-twisting (D16 and D26), and extension-twisting and 
bending-shearing (B16 and B26) couplings have non-zero values since the lay-up is nonsymmetric 
with respect to the middle plane of the plate wall. For CF beam with L/h = 40, the present critical 
buckling moment is compared with ABAQUS solution in Table 6. The excellent agreement 
between results from this study based on σs = 0 assumption and ABAQUS analysis is achieved. 
Fig. 10 shows the variation of effect of SOCT for monosymmetric beams with [0 / ψ / –ψ / 90] 
lay-ups with respect to the fiber angle change. The maximum and minimum effects of SOCT are 
seen to take place at ψ = 0° and 53°, respectively. On the other hand, the difference of SOCT 
effect with respect to the fiber angle is smaller than that of beams with symmetric lay-ups as 
shown in Fig. 7. 
 
 
6. Conclusions 

 
The improved thin-walled laminated composite beam theory considering shear effects due to 

the shear forces and the restrained warping torsion has been developed for the lateral stability 
analysis. By using the extended Hamilton’s principle, the stability equations and 
force-displacement relationships are derived and the member stiffness matrix is rigorously 
evaluated based on the power series expansions of displacement components. In addition, the 
finite element model, for comparison, using the Lagrangian interpolation polynomial is presented. 

Through the numerical examples, the present study is validated comparing the coupled 
buckling responses with results from other researchers and the finite element solutions using the 
isoparametric beam elements and the shell elements of ABAQUS. Good correlation is achieved for 
various beams with bisymmetric and monosymmetric cross-sections, lamination schemes, 
boundary conditions considered in this study. Based on numerical results, the following 
conclusions are made 

1)  The present numerical method using a minimum number of element was capable of 
predicting the lateral buckling moment for bisymmetric and monosymmetric I-beams with 
arbitrary lay-ups. 

2)  For isotropic beams, the maximum shear effect occurs at ψ = 45°, whereas it takes place ψ = 
0° for anisotropic beams. Moreover, the shear effect increases as E1 / E2 increases in the 
lower range of fiber angle. On the other hand, it decreases with increase of E1 / E2 in the 
higher ranger of one. 

3)  The effect of the second-order coupling torque is largest for orthotropic beams, while it has 
a smallest value around ψ = 53° for monosymmetric beams with both symmetric and 
nonsymmetric lay-ups. Additionally, the second-order coupling torque has a significant role 
in shorter beams. 

It is judged that the present numerical procedure provides a refined method for not only the 
evaluation of the stiffness matrix of shear deformable laminated composite beams but also general 
solutions of simultaneous ordinary differential equations of the higher order. This composite beam 
element also eliminates discretization errors and is free from the shear locking since the 
displacement state vector satisfies the homogenous form of the simultaneous ordinary differential 
equations. 
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Appendix: Detailed expressions of the laminate stiffnesses Eij 
 


A

dydzQE *
1111  

  
A

dydzzQE  cos*
1112  

  
A

dydzyQE  sin*
1113  

  
A

dydzqQE *
1114  


A

dydzQE *
1615  


A

f dydzQE *
1616  


A

w dydzQE *
1617  

     
A

fw dydzezQeyQE 3
*

162
*

1618  

  
A

dydzzzQE  222*
1122 coscos2  

  
A

dydzzyyzQE  cossinsincos 2*
1123  

  
A

dydzqqzzQE  coscos 2*
1124  

  
A

dydzzQE  cos2*
1625  

  
A

f dydzzQE  cos*
1626  

  
A

w dydzzQE  cos*
1627  

      
A

fw dydzzezQeyQE  cos3
*

162
*

1628  

  
A

dydzyyQE  222*
1133 sinsin2  

  
A

dydzqqyyQE  sinsin 2*
1134  

  
A

dydzyQE  sin2*
1635  

  
A

f dydzyQE  sin*
1636  
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  
A

w dydzyQE  sin*
1637

 

      
A

fw dydzyezQeyQE  sin3
*

162
*

1638  

  
A

dydzqqQE 222*
1144 2   
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A

dydzqQE 2*
1645   
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A

f dydzqQE *
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  
A
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1647  
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A
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*
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*

1648  

  
A

wf dydzQQE  sincos 2*
66

2*
6655  


A

f dydzQE  cos*
6656  


A

w dydzQE  sin*
6657  

     
A
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*
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*

6658  


A

f dydzQE *
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A

f dydzezQE 3
*

6668  


A

w dydzQE *
6677  

  
A

w dydzeyQE 2
*
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     
A
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2

*
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2
3

*
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