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Abstract.  The sensitivities of a structural response due to variation of its design parameters are 
prerequisite in the majority of the algorithms used for fundamental problems in engineering as system 
uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic 
sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground 
motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges 
have significant structural response modes. Two different types of suspension bridges, which are Bosporus 
and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges 
random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong 
ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The 
stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity 
finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and 
responses obtained from the two different suspension bridges subjected to these near-fault strong-ground 
motions are compared with each other. It is seen from the results that near-fault ground motions have 
different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity 
information provides a deeper insight into the structural design and it can be used as a basis for 
decision-making. 
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1. Introduction 
 

The sensitivities of a structural response due to variation of its design parameters are 
prerequisite in the majority of the algorithms used for fundamental problems in engineering. In 
structural sensitivity analysis, deterministic procedure is insufficient to provide complete 
information. Design sensitivity analysis takes into account variations of the design parameters and 
develops appropriate procedures for calculating a change of structural behavior that depends 
implicitly on the design variables. The theory of structural sensitivity in deterministic description 
has become an advanced branch of the present-day structural engineering (Chen et al. 1992, Dutta 
et al. 1998, Kolakowski et al. 1998, Salary et al. 1993). Conventional sensitivity analysis is 
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deterministic in nature and neglects the effect of inherent randomness associated with the input 
parameters. But the reality claims of unavoidable inflow of uncertainty in distribution of design 
variables. Thus, deterministic sensitivity analysis is insufficient to provide complete information 
regarding structural response. 

The concept of stochastic sensitivity, aims to find the expectations and the sensitivity response 
for changes in the structural response due to structural parameter variations. The sensitivity 
analysis of any structural system involves computation of the derivatives of the structural response 
quantities like displacements, strains, stresses, eigenvalues, eigenvectors etc. These uncertainties 
can be illustrated geometrical characteristics (cross-sectional area, flexural inertia, length etc.), 
material characteristics (young’modulus, poisson’ratio etc.), initial connection stiffness and 
magnitudes and distributions of loads etc. and affect sensitivity gradient. Stochastic finite element 
method (SFEM) is a holistic approach for computing response sensitivity considering uncertainties 
in structural parameters. The SFEM can be well explored to assess the sensitivity of structural 
systems due to the random variation of design parameters (Kleiber and Hien 1992). In fact, in 
probabilistic structural analysis, such as the mean-based second-moment method and 
reliability-based optimization, stochastic sensitivities provide important information for updating 
the mean values of the random design parameters. Hence, it is of considerable practical importance 
to estimate the effect of uncertainty in structural parameters over response sensitivity. The SFEM 
approach is numerically much more efficient than statistical techniques such as the Monte Carlo 
simulation, since only the first two moments need to be given on input. The formulation was based 
on the transformation of the set of correlated random variables into a set of uncorrelated random 
variables through a standard eigen problem (Vanmarcke et al. 1986, Schueller 1997, Vanmarcke et 
al. 1999, Çavdar et al. 2010). Though the literature on the stochastic sensitivity analysis is limited, 
attempts have been made to exploit the perturbation technique for the sensitivity analysis of 
uncertain structures for static and dynamic problems (Hien et al. 1991, Juhn et al. 1992, Lee et al. 
1997, Song et al. 1995, Chaudhuri et al. 1995, Chao et al. 2011). 

Ground motions in near source region of large crustal earthquakes are significantly affected by 
rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can 
have a significant impact on Engineering Structures. Near-fault (NF) ground motions are ground 
motions that occur near an earthquake fault. NF motions recorded near the epicenter are known as 
near-epicenter records, while those obtained along the fault in the direction of rupture are referred 
to as being in the region of forward directivity. NF motions in the region of forward directivity 
may cause a large peak horizontal elastic response in structures. Comparison of the near-fault 
strong ground motions with far-fault strong ground motions is shown in Fig. 1. These pulses are 
strongly influenced by the orientation of the fault, the direction of slip on the fault and the location 
of the recording station relative to the fault, which is termed as ‘directivity effect’ due to the 
propagation of the rupture toward the recording site (Bray et al. 1995, Megawati et al. 2001, Wang 
et al. 2002, Bayraktar et al. 2009). 

The effects of NF ground motion on many civil engineering structures such as buildings, 
tunnels, bridges, nuclear station, etc., have been investigated in many recent studies (Malhotra et 
al. 1999, Liao et al. 2001, Liao et al. 2004, Dicleli et al. 2007). It can be clearly seen from these 
studies that the importance of near-fault ground motion effect on the response of the structures 
have been highlighted. Dynamic responses of bridges have been investigated using SFEM by 
many researches (Vanmarcke et al. 1986, Kleiber et al. 1992, Zhu et al. 1992, Zhang et al. 1996, 
Çavdar et al. 2010). The stochastic sensitivity finite element method (SSFEM) for structures has 
been developed by several researchers (Hien et al. 1991, Juhn et al. 1992, Lee et al. 1997, Song et 
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al. 1995, Bhattacharyya et al. 2002). However, most of their work is limited to simple structures. 
There is no sufficient research about the near-fault ground motion effect on the stochastic 
sensitivity analysis of complex suspension bridges. 

The main objective of this paper is to present an algorithm for evaluating the analytical 
stochastic sensitivity of dynamic responses of long span suspension bridges subjected to NF 
earthquake load. The proposed formulation computes the analytical stochastic sensitivity gradient 
with respect to the random structural design parameters. For this purpose, two different types of 
suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the 
near-fault ground motion effects on suspension bridges random response sensitivity analysis. As 
the conventional deterministic sensitivity analysis cannot provide complete information, stochastic 
sensitivity analysis is needed to tackle the uncertainties in structural parameters. The stochastic 
sensitivity behavior of suspension bridges is selected modulus of elasticity as random design 
variable. Strong ground motion records of Kocaeli (1999), Northridge (1994) and Erzincan (1992) 
earthquakes are selected for the analyses. In this study, the term “near-fault ground motion” is 
referred to the ground motion record obtained in the vicinity of a fault with apparent velocity pulse 
(pulse duration larger than 1.0 s), and the peak ground velocity/peak ground acceleration 
(PGV/PGA) value (unit is second) which is larger than 0.1 s. All of the records were obtained from 
sites with epicentral distances of less than 10 km. 
 
 
2. The Stochastic Sensitivity Finite Element Method (SSFEM) 

 
The concept of stochastic sensitivity aims to find the expectations and sensitivity response for 

changes in the structural response due to structural parameter variations. Structural response 
sensitivity of multi-degree-of freedom dynamic systems is considered. Both the time interval and 
time instant response sensitivities are considered here in the context of stochastic behavior. This 
paper deals with random displacement sensitivity when the structure involves the modulus of 
elasticity (E) as a random parameter. 

A deterministic equation of motion can be written as 

 QqKqCqM                          (1) 

where Kαβ, Mαβ, Cαβ denote the stiffness matrix, mass matrix and damping matrix, q̈β, q̇β, qβ denote 

 
(a) Near fault strong ground motion (b) Far fault strong ground motion 

Fig. 1 The time-histories of two different strong ground motion velocities 
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the acceleration, velocity, displacement, respectively. The stochastic perturbation based approach 
consists usually of the up to the second order equations obtained starting from the deterministic 
ones. 

The objective of the stochastic sensitivity analysis is to determine changes in the structural 
response functional with variations in design parameters. 

For a linear elastic system with N degrees of freedom, consider the system response over the 
time interval [0,T] described by the integral functional (Kleiber et al. 1992, Kleiber et al. 1997). 
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where G is a given function of its arguments, hd is a D dimensional design variable vector, bρ is an 
Ñ – dimensional random variable vector and qα is an N-dimensional vector of nodal 
displacement-type variables. 
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Second-order (Є2 terms, one pair of systems of N linear simultaneous ordinary differential 
equations for 
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In Eqs. (3)-(5) the indices run over the following sequence 
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where τ is forward time variable, Ñ is the number of nodal random variables. M0
αβ, C

0
αβ and K0

αβ are 
system mass matrix, damping matrix and system stiffness matrix, respectively. Q 0

α, q
0
β and N are 

load vector, displacement of the nodal random variable and the number of degrees of freedom in 
the system respectively. Sb

ρσ
 is covariance matrix of nodal random variables. (.)0 is zeroth-order 

quantities, taken at means of random variables, (.) ,ρ is first partial derivatives with respect to nodal 
random variables, (.) ,ρσ is second partial derivatives with respect to nodal random variables. 

A direct Monte Carlo simulation (MCS) is also performed for comparison of results. The MCS 
method is a quite versatile mathematical tool capable of handling situations where all other 
methods fail to succeed; in structural dynamics, it has attracted intense attention only recently 
following the widespread availability of inexpensive computational systems (Shinozuka et al. 
1972). A sample global stiffness matrix is formed on the basis of stochastic fields generated by 
means of the covariance matrix decomposition algorithm. The response sensitivity of the structure 
is determined by relying on the standard deterministic sensitivity analysis. This procedure is 
repeated several times to procedure an ensemble of the structural response sensitivity. In MCS, the 
random stiffness matrix needs to be inverted for each simulated structure consuming an enormous 
amount of CPU time. 
 
 

3. Near-fault ground motions 
 

The effects of near-fault ground motion on the stochastic sensitivity seismic performance of 
Bosporus and Humber suspension bridges should be investigated because of four significant faults. 
The strong ground motions of the Kocaeli (1999), Erzincan (1992) and Northridge (1994) 
earthquakes recorded near-fault are considered in the analysis. 

The KOCAELI/YPT330 component of Yarimca station recorded during the Kocaeli earthquake 
in 1999, the ERZIKAN/ERZ-NS component of 95 Erzincan station recorded during the Erzincan 
earthquake in 1992, the NORTHR/JEN022 component of 0655 Jensen Filter Plant station recorded 
during the Northridge earthquake in 1994 are used as ground motions. PGA and PGV, surface 
projection distances from the site to the fault and PGV/PGA values are depicted in Table 1. When 
selecting the near-fault ground motions it is considered that the ground motions have similar 
properties such as near peak acceleration value to compare the effects different near-fault ground 
motion on suspension bridges stochastic sensitivity response. The time histories for acceleration 
and velocity of records are presented in Figs. 2 and 3 respectively. The ground motion records are 
obtained from the PEER Strong Motion Database (PEER 2012). 

The Kocaeli, Turkey (1999), earthquake was recorded during the 7.4 magnitude earthquake; 
that magnitude was the highest considered in this study. The distance of the recording site from the 
source ranged from 2.0-6.2 km. A scatter plot of magnitude-distance pairs for the strong ground 
motion records is shown in Fig. 4. All of the records were obtained from sites with epicentral 
distances of less than 10 km. 

 
Table 1 Properties of selected near-fault ground motion records 

No Earthquake Station PGA (m/s2) PGV (cm/sn) PGV/PGA (s) Mw Distance to fault (km)

1 Kocaeli YPT330 0.349g 62.1 0.181 7.4 2.6 

2 Erzincan ERZ-NS 0.515g 83.9 0.166 6.9 2.0 

3 Northridge JEN022 0.424g 106.2 0.255 6.7 6.2 
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4. Numerical examples 

 
To illustrate the effectiveness of stochastic sensitivity analysis using the stochastic sensitivity 

finite element method (SSFEM) and Monte Carlo simulation (MCS) technique presented in the 
earlier sections on the near-fault (NF) ground motion, two example problems are presented. 
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Fig. 4 Magnitude-distance distribution 

Fig. 5 General arrangement of Bosporus Suspension Bridge 
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4.1 Example 1 
 
Bosporus suspension bridge, commissioned in 1973, joins the European and Asian Continents 

through Ortakoy and Beylerbeyi districts of Istanbul. It is a gravity-anchored suspension bridge 
with steel pylons and inclined hangers. The bridge has a main span of 1074 m (World rank 12th) 
and two side spans of 231 m and 255 m on the European and the Asian sides, respectively. The 
bridge has slender steel towers of 165 m high, a steel box-deck and inclined hangers. The 
horizontal distance between the cables is 28 m and the roadway is 21 m wide, accommodating 
three lanes each way. The roadway at the mid-span of the bridge is approximately 64 m above the 
sea level. The side span decks are not connected to the cable and the decks rest on piers taken to 
foundation level. The cost of the bridge amounted to USD 200 million (Adanur, 2003). General 
arrangement of the Bosporus Suspension Bridge is shown in Fig. 5. In addition, material and 
sectional properties such as main cable, back stay cable, hangers, deck etc. of Bosporus 
Suspension Bridge were shown in Table 2. 

 
 
Table 2 Structural material and sectional properties of Bosporus Suspension Bridge (Adanur 2003) 

 
Fig. 6 View of Bosporus Suspension Bridge 

Members 
Elastic modulus 

(kN/m2) 
Cables sectional

area (m2) 
Moments of
inertia (m4)

Poisson’s ratio 
Mass density

(ton/m3) 

Deck 2.05 × 108 0.861 1.238 0.3 14.97 

Hanger 1.62 × 108 0.0021 3.068 × 10-7 0.3 8.004 

Main cable 1.93 × 108 0.205 3.344 × 10-3 0.3 8.629 

Backstay cable 1.93 × 108 0.219 3.817 × 10-3 0.3 8.334 

Tower 2.05 × 108 0.68 4.9 0.3 7.85 
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To investigate the stochastic sensitivity response of the Bosporus Suspension Bridge under to 
near fault ground motion, two-dimensional mathematical model are used for calculations. 
Dumanoglu and Severn (1990) verified that 2D analysis provide natural frequencies and mode 
shapes which are in close agreement with those obtained by 3D analysis in the vertical direction 
for suspension bridges. The finite element model of Bosporus Suspension Bridge is shown in Fig. 
7. As the deck, towers and cables are represented by beam elements, the hangers are represented 
by truss elements in the model. Because the side span decks are not connected to the cable, they 
are not considered in the finite element models. Finite element model of the Bosporus Suspension 
Bridge with inclined hangers has 161 nodal points, 159 beam elements and 118 truss elements and 
the model is represented by 469 degrees of freedom. This model has three degrees of freedom at 
each nodal point, namely, two translational degrees of freedom in vertical and longitudinal axes 
and one rotational degree of freedom in lateral axis. 

The suspension bridge is modeled by 277 stochastic finite elements of different length. The 
respective expectation and correlation function for the elastic modulus Ep are assumed as follows 

When the time-instant sensitivity response of the structural system of Fig. 7. The structural 
response functional is defined as 

 
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where qβ(τ) is vertical displacement at the apex A and q
β
(A) is an admissible displacement value.  

The elastic module is assumed to be random design variables. 
Elastic module from material properties is chosen as random variable for steel frame system. 

The other variables are considered as deterministic. This random variable is assumed to follow a 
normal distribution with the coefficient of variation 0.10. The respective expectation and 
correlation function and coefficient of variation for the elastic modulus Ep are assumed as follows 
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where xp, l and λ are ordinates of the element midpoints (n random variable, ρ, σ = 1, 2, ... , n), 

Fig. 7 Two-dimensional finite element model of Bosporus Suspension Bridge 
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structural member length and decay factor, respectively. The Bosporus suspension bridge is 
modeled by 277 stochastic finite elements with different lengths. MCS method is simulated for 
10000 simulations. 

Structural response sensitivity of multi-degree-of-freedom suspension bridges is considered for 
near-fault ground motion in this paper. The stochastic sensitivity of maximum displacements and 
internal forces of the suspension bridges are calculated according to Stochastic Sensitivity Finite 
Element Method (SSFEM) for near-fault ground motions. The efficiency and accuracy of the 
proposed algorithm are validated by comparison with results of Monte Carlo Simulation (MCS) 
method. 
In the first part of this study, Bosporus Bridge sensitive responses with respect to random elastic 
modulus according to SSFEM and MCS methods are determined compared with each other. The 
absolute maximum vertical displacement responses of the bridge deck and horizontal 
displacements along the Bosporus European tower obtained from SSFEM and MCS methods for 
near-fault ground motion are presented in Fig. 8. Two sensitive analyses give very close results 
each other at the 1/3 length distance from end of deck and at the top point of tower where 
maximum displacements occurred. The maximum stochastic sensitivity vertical displacements at 
deck point for Kocaeli, Erzincan and Northridge near-fault (NF) ground motions occurred as 
175.20 cm, 54.55 cm and 105.13 cm, respectively. The maximum horizontal displacements at 
tower for Kocaeli, Erzincan and Northridge NF ground motions occurred as 11.68 cm, 4.79 cm  
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Fig. 8 Continued 
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and 9.27 cm, respectively. It is clearly seen that stochastic sensitive values of vertical and 
horizontal displacements obtained from Kocaeli earthquake ground motion are the highest. 

By comparing SSFEM and MCS methods gives closer results to each other. The average 
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(b) 

Fig. 8 Maximum sensitivity vertical displacements at the deck of Bosporus Bridge (a) and maximum
horizontal displacements along Bosporus European tower (b) for random elastic modulus 
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Fig. 9 Continued 
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absolute differences between these two methods for sensitive vertical displacement values are 
about 3.65%, 2.24% and 3.30%, for Kocaeli, Erzincan and Northridge NF ground motions 
respectively. 

By comparing SSFEM and MCS methods gives closer results to each other. Therefore, other 
stochastic sensitivity internal forces (axial forces, shear forces and bending moments) are given for 
only SSFEM. The maximum axial forces, shear forces and bending moments at the deck of the 
Bosporus Bridge obtained from sensitive analysis subjected to each ground motion are presented 
Figs. 9(a)-(c). The properties of the ground motions are given in Table 1. The time histories for 
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Fig. 9 Maximum sensitivity (a) axial forces; (b) shear forces and (c) bending moment for deck of Bosporus
Bridge for random elastic module (E) 
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acceleration and velocity of records are presented in Fig. 2. The maximum axial forces and 
bending moment obtained from Kocaeli earthquake ground motion are the highest but the 
maximum shear forces obtained from Northridge earthquake. 

Fig. 10 presents sensitivity axial forces, shear forces and bending moments along tower height 
for Bosporus European according to SSFEM for NF Ground Motions. The maximum sensitivity 
axial forces and bending moment obtained from Kocaeli earthquake ground motion are the 
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highest but the maximum shear forces obtained from Northridge earthquake. It can easily be 
comprehended by the figures that maximum sensitivity internal forces, which are obtained from 
Bosporus European tower, are the highest for Northridge 1994 earthquake ground motion and 
these values subjected to Kocaeli 1999 earthquake ground motion are higher than the ones 
subjected to Erzincan 1992 earthquake ground motion. 

 
4.2 Example 2 
 
The Humber Bridge, which was completed in 1981, held the record for the longest span in the 

world. The Humber Bridge, near Kingston upon Hull, England, is a 2220 m single-span 
suspension bridge, the fifth-largest of its type in the world. It spans the Humber (the estuary 
formed by the rivers Trent and Ouse) between Barton-upon-Humber on the south bank and Hessle 
on the north bank, connecting the East Riding of Yorkshire and North Lincolnshire. Distances 
between towns in the new county would be reduced by as much as 50 miles and, with its approach 
roads, the Humber Bridge would form part of an integrated road system on both banks of the river 
connecting East Yorkshire and North Lincolnshire to the national motorway network. The bridge 
has a main span of 1410 m and two side spans of 280 m and 530 m on the Hessle and Barton sides, 
respectively (Brownjohn et al. 1987). The horizontal distance between the cables is 28 m and the 
roadway at the mid-span of the bridge is approximately 30 m above the Severn River. General 
view and arrangement of the Humber Suspension Bridge are shown in Figs. 11-12. In addition, 
material and sectional properties such as main cable, back stay cable, hangers, deck etc. of Humber 
Suspension Bridge were shown in Table 3. 

0.0 10000.0 20000.0 30000.0 40000.0 50000.0
Bending Moment (kNm)

0.0

50.0

100.0

150.0

200.0

T
ow

er
 H

ei
gh

t (
m

)
SSFEM (Erzincan)

SSFEM (Northridge)

SSFEM (Kocaeli)

(c) 

Fig. 10 (a) Maximum axial forces; (b) shear forces and (c) bending moment Bosporus European for tower
for random elastic module 
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Table 3 Structural material and sectional properties of Humber Suspension Bridge 

 
 

 
Fig. 11 View of Humber Suspension Bridge 

Members 
Elastic modulus 

(kN/m2) 
Cables sectional
area (m2) 

Moments of
inertia (m4)

Poisson’s ratio 
Mass density

(ton/m3) 

Deck 2.0 × 108 0.73 1.94 0.3 13.0747 

Hanger 1.40 × 108 4.2 × 10-3 2.068 × 10-8 0.3 7.8129 

Main cable 1.93 × 108 0.58 0.0134 0.3 8.5972 

Backstay cable 1.93 × 108 0.62 0.0153 0.3 9.5228 

Tower 2.0 × 108 40.75 132.046 0.3 2.400 

 
Fig. 12 Continued 
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To investigate the stochastic sensitivity response of the Humber Suspension Bridge under to 
near fault ground motion, two-dimensional mathematical model are used for calculations. The 
finite element model of Humber Suspension Bridge is shown in Fig. 13. As the deck, towers and 
cables are represented by beam elements, the hangers are represented by truss elements in the 
model. Because the side span decks are not connected to the cable, they are not considered in the 
finite element models. Finite element model of the Humber Suspension Bridge with inclined 
hangers has 291 nodal points, 287 beam elements and 236 truss elements and the model is 
represented by 855 degrees of freedom. This model has three degrees of freedom at each nodal 
point, namely, two translational degrees of freedom in vertical and longitudinal axes and one 
rotational degree of freedom in lateral axis. The suspension bridge is modeled by 523 stochastic 
finite elements of different length. 

When the time-instant sensitivity response of the structural system of Fig. 12. The structural 
response functional is defined as 
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where qβ(τ) is vertical displacement at the apex A and qβ
(A) is an admissible displacement value.  

The elastic module is assumed to be random design variables. 
Elastic module from material properties is chosen as random variable for steel frame system. 

Fig. 12 General Arrangement of Humber Suspension Bridge 

 
Fig. 13 Two-dimensional finite element model of Humber Suspension Bridge 
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The other variables are considered as deterministic. This random variable is assumed to follow a 
normal distribution with the coefficient of variation 0.10. The respective expectation and 
correlation function and coefficient of variation  for the elastic modulus Eρ are assumed as 
follows 
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where xρ, l and λ are ordinates of the element midpoints (n random variable, ρ, σ = 1, 2, ... , n), 
structural member length and decay factor, respectively. The Humber suspension bridge is 
modeled by 523 stochastic finite elements with different lengths. MCS method is simulated for 
10000 simulations. 

In the second part of this study, Humber Bridge stochastic sensitivity responses with respect to 
random elastic modulus according to SSFEM and MCS methods are determined compared with 
each other. The maximum stochastic sensitivity vertical displacement responses of the bridge deck 
and horizontal displacements along the Humber Hessle tower obtained from SSFEM and MCS 
methods for near-fault ground motion are presented in Figs. 14(a)-(b). Two analyses give very 
close results. The maximum stochastic sensitivity vertical displacements at deck point for Kocaeli, 
Erzincan and Northridge near-fault (NF) ground motions occurred as 277.65 cm, 81.62 cm and 
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Fig. 14 Continued 
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129.36 cm, respectively. The maximum stochastic sensitivity horizontal displacements at tower for 
Kocaeli, Erzincan and Northridge NF ground motions occurred as 11.35 cm, 2.39 cm and 6.74 cm, 
respectively. It is clearly seen that stochastic sensitivity values of vertical and horizontal 
displacements obtained from Kocaeli earthquake ground motion are the highest. Because Kocaeli 
ground motion has the peak acceleration value, maximum values of sensitivity internal forces are 
obtained from Kocaeli earthquake ground motion. In addition, the maximum stochastic sensitivity 
vertical and horizontal displacements attained from Erzincan 1992 earthquake ground motion are 
the lowest. By comparing SSFEM and MCS methods gives closer results to each other. The 
average absolute differences between these two methods for stochastic sensitivity vertical 
displacement values are about 2.67%, 1.56% and 2.43%, for Kocaeli, Erzincan and Northridge NF 
ground motions respectively. 

It can be seen from these figures that, the maximum values of stochastic sensitivity dynamic 
responses for random elastic module are very similar to the result from the MCS method. For 
accurate dynamic responses, it is necessary that the analysis technique incorporate the effect of 
structural parameter randomness. This is of special importance for accurate sensitive stochastic 
dynamic analysis of complex systems, which exhibit wide dispersion in structural parameters. 

By comparing SSFEM and MCS methods gives closer results to each other. Therefore, other 
sensitivity internal forces (axial forces, shear forces and bending moments) are given for only 
SSFEM. The maximum axial forces, shear forces and bending moments at the deck of the Humber 
Bridge obtained from sensitive analysis subjected to each ground motion are presented Figs. 
15(a)-(c). The maximum stochastic sensitivity axial forces, shear forces and bending moment 
obtained from Kocaeli earthquake ground motion are the highest at the deck of the Humber Bridge. 
However, the maximum stochastic sensitivity axial forces, shear forces and bending moment 
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Fig. 14 Maximum sensitivity vertical displacements at the deck of Humber Bridge (a) and maximum
horizontal displacements along Humber Hessle tower (b) for random elastic modulus 
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obtained from Northridge earthquake ground motion are the more high for Humber Hessle tower. 
It can easily be comprehended by the figures below that maximum sensitive displacement and 
internal forces, which are obtained from Humber suspension bridge, are the highest for Kocaeli 
1999 earthquake ground motion and these values subjected to Northridge 1994 earthquake ground 
motion are higher than the ones subjected to Erzincan 1992 earthquake ground motion. The 
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Fig. 16 Continued 
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maximum stochastic sensitivity dynamic responses for Humber Hessle tower are given in Figs. 
16(a)-(c) subjected to each ground motion. It is inferred from the below figures that while 
maximum sensitivity internal forces, which are obtained from Humber Hessle tower, in Northridge 
earthquake ground motion, minimum sensitivity internal forces are revealed in Erzincan 
earthquake ground motion. 

In this study, at the decks of Bosporus and Humber suspension bridges, maximum stochastic 
sensitivity displacements and internal forces obtained from Kocaeli earthquake ground motion are 
generally the highest. However, at the towers of Bosporus and Humber suspension bridges, 
maximum stochastic sensitivity internal forces obtained from Northridge earthquake ground 
motion are generally the more high. 

If it is mentioned the other results obtained from these examples; for the analysis of Bosporus 
Suspension Bridge system whose numerical properties are presented (Fig. 4), it needs about 5 min 
for sensitivity stochastic dynamic analysis subjected to NF ground motion, however, it needs about 
8 h for MCS analysis with the PC which have Intel Pentium (R) 2.40 GHz CPU and 768 MB RAM. 
The sensitivity analysis of Humber Suspension Bridge system whose numerical properties are 
given (Fig. 8), it needs about 8 min for SSFEM, however, it needs about 12 h for MCS analysis for 
10000 simulations. 

The stochastic sensitivity responses obtained show that selected correlation function suitable 
for this example for chosen coefficient of variation (COV) value (α = 0.10). 

The examples clearly demonstrate the efficiency, robustness and desirability application 
potential of the proposed SSFEM-based algorithm. The algorithm can be used routinely for the 
stochastic sensitive analysis and design of the complex suspension bridges as an alternative to the 
currently available methods. 
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Fig. 16 Maximum axial forces (a), shear forces (b) and bending moment (c) Humber Hessle for tower for
random elastic module 
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5. Conclusions 
 
The effects of the near-fault strong ground motions on the stochastic sensitivity behaviors of 

suspension bridges by using Stochastic Sensitivity Finite Element method (SSFEM) and Monte 
Carlo simulation (MCS) were studied in this paper. Stochastic sensitivity analyses were performed 
on Bosporus and Humber suspension bridges. For each bridge model, Kocaeli (1999), Northridge 
(1994), and Erzincan (1992) near-fault strong ground motion records that have close amplitudes 
were taken into account separately. The stochastic sensitivity displacements and internal forces are 
calculated and compared with each other. 

This study confirms the importance of the ground motion selection for the accurate evaluation 
of the sensitive seismic performance of suspension bridges. It should be clarified that the 
near-fault ground motion effects appear for the duration of the earthquake. It is also seen that 
maximum stochastic sensitivity displacements and dynamic responses have not occurred at 
anytime when near-fault earthquake has peak acceleration value. 

The presented numerical technique is well suited for computer-aided analysis for structural 
systems. The SSFEM is very effective as it provides sufficient accuracy for a small range of 
chosen coefficient of variation (COV). The suspended bridges modeled in this study, SSFEM 
gives close results to MCS method for sensitivity displacements. The numerical applications in 
this study are shown that the SSFEM is able to provide at an attractive computational cost, a good 
estimation of the sensitivity response variability. 

In this study, Bosporus and Humber suspension bridges, maximum stochastic sensitivity 
displacements and internal forces obtained from SSFEM are generally the high. 

According to this study, the earthquake record of the near-fault ground motion, forming of the 
combination of numerous waves, has remarkable effect on the stochastic sensitive earthquake 
response of the suspension bridges. It is seen from the conclusions of this study that different 
near-fault strong ground motion records should be considered in the stochastic sensitivity dynamic 
analysis of complex suspension bridges. 

Finally, the stochastic sensitivity analysis can identify the degree of robustness of the final 
design with respect to randomness of selected system parameters. This information can be used to 
determine whether system parameters uncertainty should be considered explicitly in the structural 
design process. The stochastic sensitivity information provides a deeper insight into the structural 
design and it can be used as a basis for decision-making. 
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