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Abstract.  This paper provides an innovative iteration technique for the large deflection problem of annular 
plate. After some manipulation, the problem is reduced to a couple of ODEs (ordinary differential equation). 
Among them, one is derived from the plane stress problem for plate, and other is derived from the bending 
of plate. Since the large deflection for plate is assumed in the problem, the relevant non-linear terms appear 
in the resulting ODEs. The pseudo-linearization procedure is suggested to solve the problem and the 
nonlinear ODEs can be solved in the way for the solution of linear ODE. To obtain the final solution, it is 
necessary to use the iteration. Several numerical examples are provided. In the study, the assumed value for 
non-dimensional loading is larger than those in the available references. 
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1. Introduction 
 

In an earlier time, the governing equation for large deflection of a bending plate was proposed 
(Way 1934, Kármán 1940, Timoshenko and Woinowsky-Krieger 1959, Volmir 1963, Chia 1980, 
Cao 1996, 1997). Some researchers studied this problem by using analytical methods (Cao 1996, 
1997). Using the variational theorem, the first order approximate solution for the large deflection 
problem of thin circular plate is obtained (He 2003). 

A new theory for the non-axisymmetric elastic large deflection analysis of sector plates 
stiffened by a single eccentric rectangular cross-section radial stiffener was presented (Turvey and 
Salehi 1998). A solution was based on the use of fifth order polynomial radial basis function to 
build an approximation for the solution of two coupled nonlinear differential equations governing 
the finite deflection of thin plates (Naffa and Al-Gahtani 2007). An efficient meshless formulation 
was presented for large deflection of thin plates with immovable edges (Al-Gahtani and Naffa 
2009). Based on the linear theory of thin plates, the incremental load technique was developed for 
solving the bending problem of a thin circular plate with large deflection (Lia et al. 2004). A 
semi-analytical approach was suggested for the geometrically nonlinear analysis of skew and 
trapezoidal plates subjected to out-of-plane loads (Shufrin et al. 2010). The method of linearization 
and construction of perturbation solutions for the Föppl von Kármán equations for the large 
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deflections of thin flat plates were discussed (Van Gorder 2012). A pseudo-linearization procedure 
of the nonlinear ordinary differential equation was suggested to solve the problem, where a simple 
iteration technique was used (Chen and Lee 2003). 

Arefi and Rahimi (2012) studied the nonlinear analysis of functionally graded piezoelectric 
(FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied 
on the plate. The geometric nonlinearity is considered in the strain-displacement equations based 
on Von-Kármán assumption. 

This paper provides an innovative iteration technique for large deflection problem of annular 
plate. In the general formulation for the large deflection problem of plate, the total derivatives in 
the partial differential equation for deflection and the Airy stress function are equal to eight. In the 
present study for the annular plate, after some manipulation, the highest order derivative in the 
ODE for the deflection is equal to four and the derivatives for the radial stress is equal to two. 
Thus, the total derivatives in ODEs are equal to six. The boundary conditions at the starting point 
or the end point are equal to three. Therefore, the total boundary conditions are also equal to six. 
The pseudo-linearization procedure is suggested to solve the problem. In the procedure, for 
example, the non-linear term (dw / dx)2 is rewritten in the form (dw / dx)(j) (dw / dx), where (dw / 

dx)(j) is a known function from the j-th iteration. Therefore, after using the pseudo-linearization 
procedure, the ODE becomes a linear one and the superposition method can be used. In order to 
obtain the final solution for the non-linear ODE, the iteration is necessary. 

In the nonlinear problem, the final solution for the deflection depends on the non-dimensional 
loading “Q”. In the innovative iteration technique, the initial iteration values of some functions for 
the loading Qi+1 are adopted from the previous solution for the loading Qi (Qi < Qi+1). This will 
significantly extend the range of solution for the non-dimensional loading. In the study, the value 
for non-dimensional loading is larger than those in the available references. 

Finally, several numerical examples are provided which have not been obtained by other 
researchers. 
 
 
2. Formulation of the governing equations and the boundary conditions 

 
The governing equations and the boundary conditions for the large deflection problem of 

annular plate are introduced below. In the following analysis, we may repeat some previously 
obtained results (Way 1934, Kármán 1940, Timoshenko and Woinowsky-Krieger 1959, Volmir 
1963, Chia 1980). 

First, we consider the governing equation in the middle plane. In the middle plane, the 
geometry equation takes the form (Way 1934, Kármán 1940, Timoshenko and Woinowsky-Krieger 
1959, Volmir 1963, Chia 1980). 
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where u(r) represents radial displacement and w(r) is the deflection (Fig. 1), εr and εϕ represent two 
strain components. 

From Eq. (1), the compatibility equation for displacement will be 
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(a) 

 
(b) (c) 

Fig. 1 (a) An annular plate with large deflection; (b) Stress components in the middle plane; and 
(c) Moment and shear force components in the bending problem 

 
 

On the other hand, we have the following equilibrium equation (Fig. 1) 

)(or          0)( rr r
dr

d
r

dr

d                         (3) 

where σr and σϕ represent two stress components. 
In addition, the constitute equation is as follows 
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where E is Young’s modulus of elasticity, and v is the Poisson’s ratio. 
In Eq. (2), replacing εr and εϕ by σr and σϕ (using Eq. (4)), and using the equilibrium equation 

for σϕ and σr (using Eq. (3)) yields 
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Secondly, we consider the governing equation for bending (Fig. 1). The equilibrium condition 
for moment takes the form 

Q
r

M

r

M
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where Mr and Mϕ are two moment components, and Q is the shear force component. 
In addition, from the force equilibrium condition in z-direction, we have 
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where “h” is the thickness of plate, and q(r) is loading applied on the circular plate. 
On the other hand, we have the constitute equation for the bending 
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where 
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Substituting Eqs. (7) and (8) into Eq. (6) yields 
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If we perform the following operator   .....
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 to the both sides of Eq. (10), we have 
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In the present study, a constant loading is applied along the plate face, or q(r) = qo. Thus, Eq. 
(11) can be rewritten as 
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For convenience in derivation, the subscript “r = c”, for example in w|r = c represents the 
deflection “w” at the place r = c. For the bending problem, we can propose the following three 
types of boundary condition, from condition (b1), (b2) to (b3). 

(b1) The clamped edge condition is as follows 

0
cr

w                                (13a) 

0
crdr

dw
                              (13b) 

(b2) From Eq. (8), the simply-supported edge condition is as follows 

0
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(b3) From Eqs. (6) and (8), the traction free edge condition is as follows 
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In the following analysis, the large deflection problem for an annular plate is considered (Fig. 
2). In this case, the notation r = c may be understood as r = b (at the inner boundary of annular 
plate), or r = a (at the exterior boundary of annular plate). 

For the plane stress problem in the middle plane, we can propose the following two types of 
boundary condition, from the condition (m1) to (m2). 

(m1) The movable edge condition is as follows 

0
crr                                 (16) 

(m2) From Eqs. (1), (3) and (4), the immovable edge condition is as follows 
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The real boundary conditions are composed of one of (b1), (b2), (b3) and one of (m1), (m2), 
for example, (b1) and (m2). Therefore, the boundary conditions for one edge, for example at r = b, 
is three. The total boundary conditions for two edges at r = b and r = a, are equal to six (= 2*3). On 
the other hand, from the Eqs. (5) and (12), we see that, the total order of derivatives for d jσr / dr j 
and d kw / dr k is also equal to six. 

Finally, we can make the following substitutions 
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From Eq. (18) we see that, s, W(s), T(s) and Po represent some non-dimensional value. 
After using those substitutions, from Eq. (5) and (12), we have 
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3. Innovative iteration technique for solving non-linear ordinary differential equations 
 

For some particular boundary conditions, a detailed description based on an innovative iteration 
technique for large deflection problem of annular plate is introduced below (Fig. 2). 
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In the formulation, at edge r = b (or s = α = b/a), the edge is assumed in the clamped condition 
for bending and immovable for plane stress. From Eqs. (13a, b) and (17), we have the following 
boundary conditions 
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In addition, at edge r = a (or s = 1), the edge is assumed in the simply supported condition for 
bending and movable for plane stress. From Eqs. (14a, b) and (16), we have 
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Some types of pseudo-linearization for the solution of nonlinear ODE were suggested 
previously (Chen and Lee 2003). One type of them is introduced below. In the formulation, it is 
assumed that the solution for functions W(s) and T(s) after j-th iteration is denoted by W(j)(s) and 
T(j)(s). In addition, the ODEs shown by Eqs. (19) and (20) can be rewritten as 
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Since the functions T(j)(s), dT(j) / ds and  dW(j) / ds are known beforehand, the ODEs shown by 
Eqs. (23) and (24) belong to the linear one. 

For solving the ODEs shown by Eqs. (23) and (24) under conditions (21a,b,c) and (22a,b,c), the 
following technique is suggested. 

First of all, we propose a particular solution for Eqs. (23) and (24) under the following 
conditions 
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The obtained solutions are denoted by Wp(s), Tp(s). 
Secondly, we propose three particular solutions for homogenous equations of Eqs. (23) and 

(24), or letting Po = 0 in right hand side of Eq. (23), under the following three sets of initial 
boundary conditions 
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The relevant solutions under the conditions Eqs. (26), (27) and (28) are denoted by W1(s), T1(s), 
W2(s), T2(s) and W3(s), T3(s), respectively. 

Thus, the investigated solutions can be assumed in the forms 
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                   (29) 

Furthermore, the three undetermined coefficients c1, c2 and c3 can be determined by the conditions 
Eqs. (22a, b, c). 

Note that the initial boundary conditions Eqs. (21a, b, c) for the functions W(s) and T(s) are 
involved in the assumed boundary conditions shown by Eqs. (25) to (28). Thus, the solution 
satisfying the boundary conditions Eqs. (21a, b, c) and (22a, b, c) is obtainable, which is denoted 
by W(j+1)(s) and T(j+1)(s). 

The relevant initial boundary value problem can easily be solved numerically by using the 
Runge-Kutta method (Hildebland 1974). Assume that the iteration is convergent. In this case, 
when the maximum deviation for the function W(s) and T(s) after N-th iteration satisfies the 
following conditions 

2)1()(1)1()( )()(max   , )()(max    sTsTsWsW NNNN             (30) 

The approximate solution is obtained. Otherwise, we make the next round iteration. In Eq. (30), 
ε1 and ε2 are two small values. 
 
 
4. Numerical examples 

 
Numerical examples for large deflection of an annular plate are presented below (Fig. 2). In the 

examples, M = 100 divisions are used in the solution of the ODEs Eqs. (23) and (24). In addition, 
ε1 = ε2 = 10-6 is used for the error tolerance. Two examples are introduced below. 
 

Example 4.1 
In the first example, the boundary conditions were shown by Eqs. (21a, b, c) and (22a, b, c).  

At the edge r = b (or s = α = b / a), the edge is assumed in the clamped condition for bending and 
immovable for plane stress problem, and they are as follows (Fig. 2(a)). 
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In addition, at the edge r = a (or s = 1), the edge is assumed in the simply supported condition 
for bending and movable for plane stress, and they are as follows (Fig. 2(a)) 
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(a) 

 
(b) 

Fig. 2 Two boundary conditions: (a) at r = b, clamped condition for bending and immovable for 
plane stress, and at r = a, simply supported condition for bending and movable for plane 
stress, used for Example 4.1; (b) at r = b, clamped condition for bending and immovable 
for plane stress, and at r = a, traction free condition for bending and movable for plane 
stress, used for Example 4.2 
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For the cases (a) α = 0.2 and 0.5 (α = b / a), (b) Po = 20, 40, 60, 80, 100, the calculated results for 
the non-dimensional deflection W(s) and the stress T(s) are expressed by 

),,()( sPfsW o                              (31) 

),,()( sPgsT o                              (32) 

In the computation, an innovative iteration technique is used. In the technique, for example, in 
the case of Po = 40, the first approximation solution for W(s) and T(s), or the terms W1(s) and T1(s) 
for the first iteration in Eqs. (23) and (24) are adopted from the final relevant solution for the case 
of Po = 20. A real computation proves that the iteration is convergent in general. 

In the meantime, the results based on small deflection assumption are expressed as 

),,()( sPfsW oo                               (33) 

The computed results for f (α, Po, s), g (α, Po, s) and fo (α, Po, s) are plotted in Figs. 3 to 6, 
respectively. Simply deleting some terms in Eq. (23), the deflection under small deflection or 
Kirchoff assumption is obtainable. 
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From plotted results we see that the ratio α has a significant influence to the final results. For 
example, in the case of α = 0.2, Po = 20 and s = 0.6, we have f / fo = 0.9416. That is to say the result 
based on the small defection assumption provides an accurate result in this case. However, in the 
case of α = 0.2, Po = 100 and s = 0.6, we have f / fo = 0.6125. That is to say the result based on the 
small defection assumption has a larger deviation to the result based on the large deflection 
assumption in this case. 

The computed results are quite different in the case α = 0.5. For example, in the case of α = 0.5, 
Po = 20 and s = 0.75, we have f / fo = 0.9987. In addition, in the case of α = 0.5, Po = 100 and s = 
0.75, we have f / fo = 0.9859. That is to say the result based on the small defection assumption 
provides a sufficient accurate result in the case of α = 0.5. 

 
 

Fig. 3 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = fo (α, Po, s) (from small deflection assumption, with the dash 
curves), for α = 0.2 and Po = 20, 40, 60, 80, 100 (see Fig. 2(a) and Eqs. (31) and (33)) 

 

Fig. 4 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for α = 
0.2 and Po = 20, 40, 60, 80, 100 (see Fig. 2(a) and Eq. (32)) 
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Fig. 5 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = fo (α, Po, s) (from small deflection assumption, with the dash 
curves), for α = 0.5 and Po = 20, 40, 60, 80, 100 (see Fig. 2(a) and Eqs. (31) and (33)) 

 

Fig. 6 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for α = 
0.5 and Po = 20, 40, 60, 80, 100 (see Fig. 2(a) and Eq. (32)) 

 
 

In addition, in the case of α = 0.2, Po = 100 and s = 0.2, we have Tmax = 8.7575. However, in the 
case of α = 0.5, Po = 100 and s = 0.5, we have Tmax = 0.2848. That is to say a large span of the 
annular plate will cause a significant radial stress T. 

 
Example 4.2 
In the second example, at edge r = b (or s = α = b / a), the edge is assumed in the clamped 

condition for bending and immovable for plane stress condition. From Eqs. (13a, b) and (17), we 
have the following boundary conditions (Fig. 2(b)) 
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In addition, at the edge r = a (or s = 1), the edge is assumed in the traction free condition for 
bending and movable for plane stress. From Eqs. (15a, b) and (16), we have (Fig. 2(b)) 
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The same technique mentioned in section 3 and Example 4.1 is used in the present example. 
Since the condition at the edge r = a (or s = 1) is quite different to that in Example 4.1, the 
computed results must be different to those obtained in the Example 4.1. 

For the cases (a) α = 0.2 and 0.5, (b) two sets Po = 1, 2, 3, 4, 5, and Po = 20, 40, 60, 80, 100, the 
calculated results for the non-dimensional deflection W(s) and the stress T(s) are expressed by 

),,()( sPfsW o                              (31) 

),,()( sPgsT o                              (32) 

In the computation, an innovative iteration technique is used. 
In the meantime, the results based on small deflection assumption are expressed as 

),,()( sPfsW oo                               (33) 

For the cases (a) α = 0.2 and 0.5, and Po = 1, 2, 3, 4, 5, the computed results for f (α, Po, s), g (α, 
Po, s), and f (α, Po, s), are plotted in Figs. 7 to 10, respectively. 

 
 

Fig. 7 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = f (α, Po, s) (from small deflection assumption, with the dash 
curves), for α = 0.2 and Po = 1, 2, 3, 4, 5 (see Fig. 2 (b) and Eqs. (31) and (33)) 
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Fig. 8 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for α = 
0.2 and Po = 1, 2, 3, 4, 5 (see Fig. 2(b) and Eq. (32)) 

 

Fig. 9 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = f (α, Po, s) (from small deflection assumption, with the dash 
curves), for α = 0.5 and Po = 1, 2, 3, 4, 5 (see Fig. 2(b) and Eqs. (31) and (33)) 

 
 

From plotted results we see that the ratio α has a significant influence to the final results. For 
example, in the case of α = 0.2, Po = 1 and s = 1, we have f / fo = 0.9245. That is to say the result 
based on the small defection assumption provide an accurate result in this case. However, in the 
case of α = 0.2, Po = 5 and s=1, we have f / fo = 0.5655. That is to say the result based on the small 
defection assumption has a larger deviation to the result based on the large deflection assumption 
in this case. 

The computed results are quite different in the case α = 0.5. For example, in the case of α = 0.5, 
Po = 1 and s = 1, we have f / fo =1. In addition, in the case of α = 0.5, Po = 5 and s = 1, we have f / fo 
= 0.9695. That is to say the result based on the small defection assumption provide a sufficient 
accurate result in the case of α = 0.5. 
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Fig. 10 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for 
α = 0.5 and Po = 1, 2, 3, 4, 5 (see Fig. 2(b) and Eq. (32)) 

 

Fig. 11 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = f (α, Po, s) (from small deflection assumption, with the 
dash curves), α = 0.2 and Po = 20, 40, 60, 80, 100 (see Fig. 2(b) and Eqs. (31) and (33)) 

 
 

In addition, in the case of α = 0.2, Po = 5 and s = 0.2, we have Tmax = 1.5794. However, in the 
case of α = 0.5, Po = 5 and s = 0.5, we have Tmax = 0.0787. That is to say a large span of the annular 
plate will cause a significant radial stress T. 

For the cases (a) α = 0.2 and 0.5, and Po = 0, 40, 60, 80, 100, the computed results for f (α, Po, s), 
g (α, Po, s), and f (α, Po, s), are plotted in Figs. 11 to 14, respectively. 

From plotted results we see that the ratio α and the non-dimensional loading Po have a 
significant influence to the final results. For example, in the case of α = 0.2, Po = 20 and s = 1, we 
have f / fo = 0.2670. In addition, in the case of α = 0.2, Po = 100 and s = 1, we have f / fo =0.0982. 
That is to say the result based on the small defection assumption has a larger deviation to the result 
based on the large deflection assumption in the case of Po ≥ 20. 
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Fig. 12 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for 
α = 0.2 and Po = 20, 40, 60, 80, 100 (see Fig. 2(b) and Eq. (32)) 

 
 
 

The computed results are quite different in the case α = 0.5. For example, in the case of α = 0.5, 
Po = 20 and s = 1, we have f / fo =0.7614. In addition, in the case of α = 0.5, Po = 100 and s = 1, we 
have f / fo = 0.3602. That is to say the small deflection assumption cannot provide accurate results 
in the case of Po ≥ 20 and α = 0.5. 

In addition, in the case of α = 0.2, Po = 100 and s = 0.2, we have Tmax = 22.1322. However, in 
the case of α = 0.5, Po = 100 and s = 0.5, we have Tmax = 4.6249. That is to say a large span of the 
annular plate will cause a significant radial stress, or T. 
 
 
 

Fig. 13 Non-dimensional deflections W(s) = f (α, Po, s) (from large deflection assumption, with 
the solid curves) and W(s) = f (α, Po, s) (from small deflection assumption, with the dash 
curves), for α = 0.5 and Po = 20, 40, 60, 80, 100 (see Fig. 2(b) and Eqs. (31) and (33)) 
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Innovative iteration technique for large deflection problem of annular plate 

Fig. 14 Non-dimensional radial stress T(s) = g (α, Po, s) under large deflection assumption, for 
α = 0.5 and Po = 20, 40, 60, 80, 100 (see Fig. 2(b) and Eq. (32)) 

 
 
5. Conclusions 

 
From above mentioned analysis, we see that the pseudo-linearization procedure in conjunction 

with the innovative iteration technique provides an effective way to solve the large deflection 
problem of a bending circular plate. 

In the suggested method, the non-dimensional loading Po is used for a rather high value. For 
example, we have used Po = 100 in the numerical example. However, in an earlier publication 
(Timoshenko and Woinowsky-Krieger 1959), only Po = 12 was used for a large deflection problem 
of plate. 

It is seen from above-mentioned examples that the solution for the large deflection problem is 
rather complicated. The final solution may depend on the following factors: (a) the geometry of 
annular plate, (b) the applied non-dimensional loading Po and (c) the boundary conditions. Clearly, 
if Po → 0, the solution from large deflection assumption will approach the solution based on the 
small deflection assumption. This result has been proved in the numerical example. 

As claimed in the Example 4.2 (Fig. 2(b)), the ratio α and the non-dimensional loading Po have 
a significant influence to the final results. For example, in the case of α = 0.2, Po = 20 and s = 1, we 
have f / fo = 0.2670. In addition, in the case of α = 0.2, Po = 100 and s = 1, we have f / fo = 0.0982. 
That is to say the result based on the small defection assumption has a larger deviation to the result 
based on the large deflection assumption in the case of Po ≥ 20 in Example 4.2. 
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