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Abstract.  The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of 
non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the 
minimum total cost which comprises total member plus connection costs by selecting suitable sections. 
Displacement and stress constraints together with the geometry constraints are imposed on the frame in the 
optimum design procedure. In addition, non-linear analyses considering the P-Δ effects of beam-column 
members are performed during the optimization process. Three design examples with various types of 
connections are presented and the results show the efficiency of using semi-rigid connection models in 
comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions 
and lead to more realistic predictions of response and strength of the structure. 
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1. Introduction 
 

Despite existing major preventive factors in performing optimum design of structures such as 
the large number of structural required analyses and large computational costs, designers and 
owners have always desired to have optimal structures (Kaveh and Talatahari 2009a, b, 2010a). 
The optimum design of framed structures is one of the most convenient activities of research in the 
field of structural optimization. As it is involved in an optimization problem, the main purpose of 
frame optimization is to minimize the cost of a structure as an objective function considering the 
design or geometry requirements as constraints. The term cost may refer to the weight of structure 
or other economical characteristics of a structure. 

On the other hand, in the current practice of optimum design of steel-framed building structures, 
the actual behavior of beam-to-column connections is simplified to the two idealized extremes of 
either fully-rigid behavior or ideally-pinned behavior. The first case implies displacement and 
slope continuity between the column and the beam, together with the full transfer of bending 
moments. The latter one, on the other hand, implies that the rotation continuity is nonexistent, and 
consequently, no bending moment may be transmitted to the column by the beam. Although the 
adoption of such idealized joint behavior greatly simplifies the analysis and design processes, the 
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predicted response of the idealized structure may be quite unrealistic compared to that of the actual 
structure. The reason is that most connections used in current practice actually exhibit semi-rigid 
deformation behavior that can contribute substantially to overall structure displacements. 
Numerous experimental investigations on connection behavior have clearly demonstrated that a 
pinned connection possesses a certain amount of rotational stiffness, while a rigid connection 
possesses some degree of flexibility. 

The semi-rigid behavior of beam to column connections has been investigated by current steel 
specifications such as British standard, Eurocode3 and American Institute of Steel Construction 
(AISC). Moreover, AISC-Load and Resistance Factor Design specification describes two types of 
steel construction: fully restrained (FR type) and partially restrained (PR type). PR type 
constructions are considered to be semi-rigid and its behavior is described by numerical and 
experimental studies. 

Analysis and design of steel frames with semi-rigid connections and moment-rotation behavior 
modeling of such connections have been investigated in some studies (Lui and Chen 1986, Frye 
and Morris 1975, Valipour and Bradford, 2013, Gorgun and Yilmaz 2012). Determining optimum 
design of steel frames with semi-rigid connections and using the weight of frames as the objective 
has been implemented by Alsalloum and Almusallam (1995), Almusallam (1995) and Kameshki 
and Saka (2003). However, minimum cost design of semi-rigidly connected steel frames are 
investigated by Simoes (1996) and Li et al. (1997). As meta-heuristic methods, Genetic Algorithm 
(GA) (Hayalioglu and Degertekin 2005) and Harmony Search (HS) method (Degertekin and 
Hayalioglu 2010) are utilized to obtain the optimum designs for steel frames with semi-rigid 
beam-to-column connections and column bases, where the cost function includes the member plus 
connection costs. 

Big Bang-Big Crunch (BB-BC), a relatively new meta-heuristic optimization method (Erol and 
Eksin 2006), relies on one of the theories of the evolution of the universe namely, the Big Bang 
and Big Crunch theory. In the Big Bang phase of this theory, energy dissipation produces disorder 
and randomness is the main feature of this phase; whereas, in the Big Crunch phase, randomly 
distributed particles are drawn into an order. The BB-BC optimization method similarly generates 
random points in the Big Bang phase and shrinks them to a single representative point via a center 
of mass in the Big Crunch phase. After a number of successive Big Bangs and Big Crunches, 
where the distribution of randomness within the search space during the Big Bang becomes 
smaller and smaller about the average point computed during the Big Crunch, the algorithm 
converges to a solution. 

BB-BC was utilized to solve different engineering optimization problems. Afshar and Motaei 
(2011) used BB-BC to determine the optimal solution of reservoir operation problems. Parameter 
estimation in structural systems using BB-BC is performed by Tang et al. (2010). Several 
structural optimization examples, including space truss, dome and steel framed structures have 
been solved using this method by Kaveh and Talatahari (2009a, 2010b, c). 

This study presents a BB-BC-based optimization method, for minimum cost design of steel 
frames with semi-rigid beam to column connections, wherein the aim is to minimize the 
constructional cost includes the utilized materials for members as well as connection costs. 
American Institute of Steel Construction (AISC) wide-flange (W) shapes are used as the available 
standard sections list, in the optimal design procedure. Strength constraints of AISC-LRFD (1995) 
specification, displacement constraint and geometry constraints for columns and beams are 
imposed on frames. The optimum design algorithm considers both the geometric non-linearity of 
the frame members and the semi-rigid behavior of the beam to column connections. The behavior 
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of beam to column connections are assumed to be defined by the Frye-Morris polynomial model 
(Frye and Morris 1975) for the calculations of the moment-rotation relationship, whereas, the 
column bases are supposed to be rigid. 
 
 
2. Review on BB-BC method 

 
The BB-BC method as developed by Erol and Eksin (2006) consists of two phases: A Big Bang 

phase, where candidate solutions are randomly distributed over the search space, and a Big Crunch 
phase, where a contraction operation estimates a weighted average of the randomly distributed 
candidate solutions. 

Similar to other evolutionary algorithms, initial solutions are uniformly spread all over the 
search space in the first Big Bang. The algorithm associates the random nature of the Big Bang to 
energy dissipation or the transformation from an ordered state (a convergent solution) to a 
disordered or chaotic state (new set of candidate solutions). 

After the Big Bang phase, a contraction operation is applied during the Big Crunch. This 
operator has several inputs but only one output, which is named as the “center of mass”, since the 
only output has been derived by calculating the center of mass. The term mass refers to the inverse 
of the objective function value, Merj. This representative point is denoted by Ai

c(k) and calculated 
according to 
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where Ai
(k,j) is the ith component of the jth solution generated in the kth iteration; N is the 

population size in Big Bang phase. After the Big Crunch phase, the algorithm creates the new 
solutions to be used as the Big Bang of the next iteration step, by using the center of mass. This 
can be accomplished by spreading new off-springs around the center of mass using a normal 
distribution operation in every direction, where the standard deviation of this normal distribution 
function decreases as the number of iterations of the algorithm increases 
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where rj is a random number from a standard normal distribution which changes for each 
candidate, and α1 is a parameter for limiting the size of the search space. The allowable values for 
the components of the candidate solutions are restricted to the boundaries of Amin and Amax and ng 
denotes the total number of design components. In a structural optimization problem, Amin, Amax 
and ng refer to the minimum and maximum cross-sectional areas and the total number of design 
variables of the structure. 
 
 
3. Optimum design of semi-rigid frames 
 

The total cost of a steel frame with semi-rigid beam to column connections, considering 
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member and connection costs, is defined by Xu and Grierson (1993) as follows 

)( )( 02
111 ijijijj
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where Ai and Wi are the ith member cross-section area and weight coefficient, respectively (Wi = 
material density × member length), Rij and βij are the connection rotational stiffness and cost 
coefficient, and β0

ij is the cost of a pinned connection having zero rotational stiffness. The 
j-subscripts in Eq. (3) correspond to two ends of the semi-rigid beam member and nm and nbm 
denote the total number of members and beams of a frame, respectively. 

The values of βij for two ends of a semi-rigid member are assumed to be equal and calculated as 

i
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where Si is rotational stiffness of a connection which is a estimated value depending on the 
stiffness of the connection, equal for the both ends of a beam and lies in the range 2.26 × 105 
kN.mm/rad to 5.65 × 108 kN.mm/rad as suggested by Xu and Grierson (1993) and the equal value 
for both β0

i1 and β0
i2 is accepted to be 

iii AW 125.00                                 (5) 

The optimum design problem of a steel frame with semi-rigid connections has the following 
constraints. 

The strength constraints of AISC-LRFD (1995) considering the interaction of bending moment 
and axial force can be formulated in the normalized form as 
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where Pu and Pn are required and nominal strength of a member (tensile or compressive), 
respectively and ϕ resistance reduction factor, which is equal to 0.9 for the member in tension and 
0.85 for compressive ones. Moreover, Mux and Mnx are notations for required and nominal flexural 
strength of the member about its major axis, respectively and reduction factor that corresponds to 
bending is denoted by ϕb (equal to 0.9). nm is the total number of members in the frame. The 
nominal strength of a compressive member is calculated based on AISC-LRFD (1995) as follows 

crn FAP .                                  (7) 
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E
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where A is cross-sectional area; Fy is yield stress; and E is modulus of elasticity of steel member. L 
and r are the member length and radius of gyration, respectively. The effective length factor, 
which is denoted by K in Eq. (9), is needed in stability evaluation of the columns in the frame. 
K-factor of columns in an unbraced semi-rigid frame is calculated using the relations proposed by 
Kishi et al. (1997). 

The displacement normalized constraints including the constraints of inter-storey drift and top 
storey sway can be formulated in general form of 
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where δj is the displacement of the jth restricted displacements among the total number of m, and 
δj

u is its allowable upper bound limit determined by the code of practice. 
The other group of constraints imposed on the optimization problem in this study arises from 

the size adaptations of beams and columns relative to each other. This group consists of two 
constructional considerations: one consideration implies that flange width of a beam must be 
smaller than the same value for column in all joints, whereas, the other one considers the fact that 
the column of each storey must be larger in depth compared to its above storey column. These 
constraints can be formulated as (Hasançebi et al. 2010). 
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where bf
bp and bf

cp are the value of flange width for beam and column in node number p among the 
total number of nj nodes, respectively (nj is the total number of nodes of frame except the 
supports). The dc

uq and dc
lq are notations for depths of column sections of upper and lower floor in 

a node, respectively. nc is the total number of columns in the frame excluding ones for first storey. 
The optimum design problem, considered in the present work, is a constrained problem; we can 

transform it into an unconstrained one using a penalty function. Here, we use the penalty function 
suggested by Rajeev and Krishnamoorthy (1992), so the objective function of the problem can be 
computed as 
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where Z(x) is calculated by Eq. (3); C is a penalty constant and in this paper it is equal to 1.0; vi
IER, 

vj
d, vp and vq are the violations of normalized interaction equation ratio, displacement, geometry 

considerations for beams and columns, respectively and are computed as 
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4. Nonlinear analysis of steel frames with semi-rigid connections 

 
It is obvious that the actual complex behavior of a structure must be simplified for analysis by 

feasible modeling of it. Among the numerous experimental and numerical studies on the modeling 
of semi-rigid beam-to-column connections, the model proposed by Frye and Morris (1975) is 
adopted to use in this work, due to its easy-to-implement characteristic. This odd-power 
polynomial model is reasonably good for simulation of the nonlinear M – θ behavior of 
connections and has been presented as 

5
3

3
21 )()()( McMcMc                          (18) 

where θ is connection rotation and M is the moment acting on the connection. Parameter κ is the 
standardization factor determined by the connection type and geometry. c1, c2 and c3 are 
curve-fitting constants obtained by using the method of least squares. 

For several types of beam-to-column connections, which are shown in Fig. 1, the values of the 

 
 
Table 1 The Curve fitting constants and standardization parameters for Frye-Morris polynomial model 

Connection 
type 

Curve fitting constants 
Standardization parameter 

c1 c2 c3 

1 4.28 × 10-3 1.45 × 10-9 1.51 × 10-16 κ = da
-2.4ta

-1.81g0.15 

2 3.66 × 10-4 1.15 × 10-6 1.57 × 10-8 κ = da
-2.4ta

-1.81g0.15 

3 2.23 × 10-5 1.85 × 10-8 3.19 × 10-12 κ = d-1.287t-1.128tc
-0.415la

-0.694g1.35 

4 8.46 × 10-4 1.01 × 10-4 1.24 × 10-8 κ = d-1.5t-0.5la
-0.7db

-1.5 

5 1.83 × 10-3 1.04 × 10-4 6.37 × 10-6 κ = dg
-2.4tp

-0.4db
-1.5 

6 1.79 × 10-3 1.76 × 10-4 2.04 × 10-4 κ = dg
-2.4tp

-0.6 

7 2.10 × 10-4 6.20 × 10-6 -7.60 × 10-9 κ = d-1.5t-0.5lt
-0.7db

-1.1 

8 5.10 × 10-5 6.20 × 10-10 2.40 × 10-13 κ = dp
-2.3tp

-1.6tw
-0.5g-1.6 
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constants c1, c2 and c3 and the parameter κ for each type are illustrated in Table 1 (Faella et al. 
2000). The schematic M – θ curves for these eight types of connections are drawn in Fig. 2 
according to Chen et al. (1996). 

In the analysis procedure of the steel frames with semi-rigid beam-to-column connections, we 
consider the nonlinear M – θ behavior of semi-rigid connections, and the geometrical nonlinearity 
of beam-column members. In this study, the displacement method is used to analyze the structure, 
wherein, the stiffness matrix of the structure is constructed through assembling of the stiffness 
matrices of members in the global coordinates. The secant stiffness approach is applied to consider 

 
 

 
Fig. 1 Eight types of semi-rigid connections and their size parameters 
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Fig. 2 The M – θ curves for semi-rigid connections 

 

Fig. 3 Connection secant stiffness of load increments 

 
 
the semi-rigid connection stiffness nonlinearity of beam members. The connection secant stiffness 
corresponding to all load increments is shown in Fig. 3. In each set of iterations, convergence 
criterion is controlled by comparing of the difference between end forces of members with applied 
incremental loads so that to be smaller than a specified tolerance. A convergent solution of a load 
increment forms an initial estimate for the next iteration, and the iterative process continues until 
all load increments are considered. The solutions for all load increments are accumulated to obtain 
the total nonlinear responses. 
 
 
5. Design examples 

 
Fig. 4 depicts the flowchart of optimal design process based on the BB-BC algorithm. In this 

study a computer code has been developed for the optimum design procedure in MATLAB™ 7 
(MathWorks, Natick, MA, USA), and then three steel frames with semi-rigid beam-to-column 
connections are solved. For these examples, the A36 steel grade is used for all of the members and 
the sections for these members are selected among a total number of 273 standard sections of 
American Institute of Steel Construction wide flange W shapes. The size of examples contrary to 
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Fig. 4 Flow chart for the optimum design algorithm based on BB-BC method 

 
Table 2 The fixed connection size parameters and rotational stiffness values 

Connection type Fixed connection size parameters (cm) Si values in Eq.(4) (kNmm/rad) 

1 ta = 2.54 g = 11.43  85 × 106 

2 ta = 2.858 g = 25.4  113 × 106 

3 t = 2.54 g = 2.54 g = 11.43 282 × 106 

4 t = 2.54 g = 2.858  226 × 106 

5 tp = 2.54 g = 2.858  339 × 106 

6 tp = 2.54   395 × 106 

7 t = 3.81 g = 2.858  452 × 106 

8 tp = 2.54 g = 25.4  141 × 106 

439



 
 
 
 
 
 

A. Rafiee, S. Talatahari and A. Hadidi 

 

Fig. 5 Nine-storey, single-bay frame 

 
Table 3 Optimum results of nine-storey, single-bay frame for AISC-LRFD 

Group no. 
Semi-rigid connection types Rigid 

connection1 2 3 4 5 6 7 8 

1 40 × 593 36 × 487 40 × 149 40 × 183 40 × 593 36 × 210 40 × 297 40 × 362 27 × 94

2 36 × 487 30 × 116 21 × 93 40 × 149 21 × 48 33 × 354 21 × 57 36 × 529 21 × 48

3 16 × 36 27 × 281 21 × 50 27 × 281 12 × 190 27 × 368 14 × 550 14 × 426 10 × 39

4 18 × 46 14 × 53 21 × 44 18 × 46 18 × 46 18 × 46 21 × 48 21 × 44 21 × 62

5 21 × 44 18 × 46 24 × 55 21 × 48 21 × 48 21 × 44 18 × 46 18 × 46 21 × 48

6 21 × 50 14 × 53 21 × 50 18 × 46 12 × 58 14 × 53 14 × 426 18 × 46 18 × 40

7 18 × 40 12 × 58 18 × 40 18 × 40 16 × 45 18 × 46 21 × 50 18 × 40 16 × 36

Weight 
(kg) 

38,718 32,617 14,809 23,956 30,804 33,481 43,450 44,527 11,683 

Total cost 
(kg) 

40,520 36,235 16,881 25,786 33,488 35,799 53,601 46,146 19,861 

Top storey 
sway (mm) 

56 55 66 76 54 65 44 71 73 
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previous studies contain a small size frame, a nine-storey single-bay frame, a median one (ten 
stories with four bays) and a larger one (a twenty four stories and three bays). 

For each example, the eight types of connections as shown in Fig. 1 are used as semi-rigid 
beam-to-column connections. In order to simplification of the problem, some of the connection 
size parameter values required in Frye-Morris polynomial model of M – θ curve is considered to be 
fixed during the optimum design procedure. These fixed values are selected according to Table 2, 
whereas, the values of angle length, beam height, the vertical distance between bolt groups, and 
web thickness of beam are calculated based on dimensions of W-shape section assigned to the 
beam member throughout the Big Bang phase. The last column of Table 2, gives the values of 
estimated rotational stiffness, Si , for each type of semi-rigid connections. These are the case for all 
of the design examples considered herein. This study involves a sensitivity analysis regarding the 
effect of the parameter Si on the optimum results obtained by use of the optimum design algorithm 
presented herein. 
 

5.1 Nine-storey, single-bay frame 
 
The geometry, member grouping and the service loading conditions for the nine-storey, 

one-bay frame are illustrated in Fig. 5. The applied loads W, W1 and W2 are equal to 17.8 kN, 
27.14 kN/m and 24.51 kN/m, respectively. In order to impose the fabrication conditions on the 
construction of the frame, the 27 members of this frame are separated to seven groups of members. 
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Fig. 6 Optimum results of nine-storey, single-bay frame for AISC-LRFD 
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Fig. 7 Convergence history for the optimum design of nine-storey, single-bay frame 

 
Table 4 Optimum results of nine-storey, single-bay frame for AISC-LRFD with doubled Si values 

Group no. 
Semi-rigid connection types 

1 2 3 4 5 6 7 8 

1 44 × 290 30 × 116 36 × 135 40 × 149 33 × 118 36 × 487 33 × 118 40 × 264

2 36 × 135 14 × 605 30 × 99 27 × 114 27 × 94 21 × 48 30 × 99 36 × 135

3 14 × 426 14 × 426 14 × 426 14 × 550 14 × 426 14 × 550 14 × 550 27 × 539

4 21 × 44 21 × 44 24 × 55 21 × 48 21 × 44 21 × 44 18 × 46 21 × 48

5 21 × 44 21 × 50 21 × 48 24 × 55 21 × 50 21 × 48 21 × 48 21 × 48

6 27 × 114 21 × 44 21 × 44 18 × 46 21 × 44 21 × 44 14 × 550 21 × 48

7 18 × 40 16 × 45 12 × 58 18 × 40 24 × 62 18 × 40 18 × 40 33 × 130

Weight 
(kg) 

32,704 39,715 25,932 30,240 24,956 37,769 42,760 34,982 

Total cost 
(kg) 

34,956 43,003 27,798 21,040 27,341 39,747 51,836 37,075 

Top storey 
sway (mm) 

71 73 70 74 67 50 56 74 

 
 

Table 3 presents the optimum designs developed by the BB-BC algorithm for the 9-storey 
frame when the AISC-LRFD (1995) is selected as the code of practice. The global sway 
corresponding to the roof level is limited to a maximum value of 154 mm. 

According to Xu and Grierson (1993), the cost of a steel member with W-section is increased 
by approximately 70% if its end connections are rigid jointed, so the total cost of the 
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rigidly-connected frame is obtained multiplying the weight value by 1.70. These optimum results 
are also illuminated by a bar chart in Fig. 6 to provide a good comparison of costs and weights of 
the frame with different types of beam-to-column connections. Fig. 7 shows the convergence 
histories for the optimum designs of this frame. The results presented in Table 3 and Fig. 6 show 
that among the semi-rigid connection types 1 through 8, the results of type 3 is the minimum cost 
frame compared to other types, whereas, the results of types 1, 2, 8 and 7 in cost values are greater 
than it for the rigidly connected frame. 

To investigate the effect of the rotational stiffness values on the optimum design of frames, the 
nine-storey, single-bay frame is designed with doubled Si values and the results are presented in 
Table 4 according to the AISC-LRFD (1995) specification. The results demonstrate that for 
doubled Si, the total cost values is increased when connection types are 2, 3, 4 and 6 while it 
decreases when types 1, 5, 7 and 8 are used as shown in Tables 3 and 4. Although, increasing Si 

 
 

Fig. 8 Ten-storey, four-bay frame 

443



 
 
 
 
 
 

A. Rafiee, S. Talatahari and A. Hadidi 

causes in decreasing the cost of connections, this does not guaranty to improve the total cost of 
frame. 
 

5.2 Ten-storey, four-bay frame 
 
The second design example is a 10-storey, 4-bay frame with 90 members. Fig. 8 shows the 

twelve groups of members, acting loads and dimensions for this frame. The values of loads are: W 
= 44.49 kN, W1 = 47.46 kN/m, W2 = 42.91 kN/m. The values of top storey sway for this frame is 
restricted to 158 mm based on the AISC-LRFD (1995) specification. 

The optimum design procedure for this frame results in the W-sections, which are listed in 
Table 5. The last three rows of this table show the values of weights, total member plus connection 
costs and the top storey sways for the optimum frames with semi-rigid and rigid connections. The 
optimum results obtained for this example are also shown by the bar chart of Fig. 9. The 
convergence histories for the optimum designs of this frame are shown in Fig. 10. 

Optimum solutions obtained for this frame show that the connection types 3 through 6 
(connections with a medium degree of flexibility), results in frames with less total cost compared 
to frames with other types. Among these types, type numbers 2 (a more flexible type) and 7 (a less 
flexible type) leads to frames more expensive than a rigidly connected one. Meanwhile, the results 
show that the connection type 4 provides better interaction between different constraints imposed 
on the frame and results in better result. 
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Fig. 9 Optimum results of ten-storey, four-bay frame for AISC-LRFD 
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Fig. 10 Convergence history for the optimum design of ten-storey, four-bay frame 

 
Table 6 Optimum results of ten-storey, four-bay frame for AISC-LRFD 

Group no. 
Semi-rigid connection types Rigid 

connection1 2 3 4 5 6 7 8 

1 44 × 290 24 × 55 30 × 90 33 × 118 24 × 55 24 × 55 16 × 16 40 × 264 21 × 50

2 12 × 14 12 × 14 36 × 182 18 × 234 12 × 50 6 × 20 14 × 426 12 × 72 8 × 18 

3 44 × 290 33 × 118 36 × 135 36 × 135 30 × 124 33 × 118 36 × 135 36 × 135 27 × 84

4 12 × 58 14 × 43 12 × 252 16 × 77 24 × 103 18 × 158 33 × 201 27 × 129 16 × 36

5 14 × 455 14 × 283 14 × 455 14 × 342 14 × 342 14 × 426 14 × 730 14 × 398 14 × 311

6 14 × 455 14 × 283 14 × 370 14 × 342 14 × 257 14 × 283 14 × 605 14 × 398 14 × 283

7 14 × 426 14 × 257 14 × 311 14 × 342 14 × 193 14 × 233 14 × 605 14 × 342 14 × 233

8 14 × 311 14 × 193 14 × 311 14 × 233 14 × 176 14 × 145 14 × 605 14 × 342 14 × 746

9 14 × 311 14 × 82 14 × 311 14 × 193 14 × 120 14 × 132 14 × 605 14 × 342 14 × 176

10 14 × 211 14 × 43 14 × 211 14 × 176 14 × 74 14 × 109 14 × 605 14 × 257 14 × 176

11 14 × 211 14 × 43 14 × 145 14 × 120 14 × 90 14 × 90 14 × 605 14 × 90 14 × 43

12 14 × 211 14 × 43 14 × 90 14 × 109 14 × 90 14 × 90 14 × 426 14 × 90 14 × 43

13 14 × 730 14 × 370 14 × 550 14 × 311 14 × 342 14 × 342 14 × 730 14 × 370 14 × 342

14 14 × 500 14 × 283 14 × 500 14 × 311 14 × 311 14×311 14 × 730 14 × 370 14 × 311

15 14 × 550 14 × 283 14 × 500 14 × 311 14 × 257 14×257 14 × 665 14 × 342 14 × 283

16 14 × 398 14 × 233 14 × 398 14 × 257 14 × 233 14×257 14 × 665 14 × 283 14 × 233

17 14 × 370 14 × 211 14 × 398 14 × 257 14 × 176 14×233 14 × 605 14 × 257 14 × 193

18 14 × 370 14 × 159 14 × 257 14 × 257 14 × 90 14×159 14 × 605 14 × 233 14 × 176

19 14 × 370 14 × 90 14 × 233 14 × 211 14 × 90 14×109 14 × 550 14 × 193 14 × 61

20 14 × 211 14 × 90 14 × 132 14 × 193 14 × 90 14×90 14 × 426 14 × 176 14 × 61
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Table 6 Continued         

Weight 
(kg) 

371,754 139,161 236,249 211,149 140,536 150,362 359,372 297,834 137,312

Total cost 
(kg) 

502,197 202,737 267,414 249,806 171,868 176,864 385,074 383,738 233,430

Top storey 
sway (mm) 

204 245 170 184 237 231 240 190 238 

 
 
Table 7 Performance comparing of present work with the genetic algorithm and particle swarm optimization 
algorithms 

 PSO GA Present work 

First example (Type 3)    

Best Result 16,881 17,698 18,056 

Mean Result 17,966 18,988 20,021 

Worst Result 20,125 22,656 22,365 

Std 940.8 1,355.3 1,568.6 

Second example (Type 4)    

Best Result 93,255 98,112 110,125 

Mean Result 96,601 105,655 120,442 

Worst Result 110,098 115,898 130,335 

Std 3,555 5,689 8,956 

Third example (Type 5)    

Best Result 171,868 185,255 200,121 

Mean Result 180,655 205,265 218,356 

Worst Result 210,365 240,366 242,666 

Std 8,468 15,366 21,565 

 
 

5.3 Twenty four-storey, three-bay frame 
 
The topology, service loading conditions, four beam groups and sixteen column groups of 

24-storey, 3-bay frame consisting of a total number of 168 members are shown in Fig. 11. Applied 
loads including point (W) and uniformly distributed (W1 through W4) loads have the values of W = 
25.628 kN, W1 = 4.378 kN/m, W2 = 6.362 kN/m, W3 = 6.917 kN/m and W4 = 5.954 kN/m. This 
frame is originally designed by Davison and Adams (1974). 

In the present work, together with the AISC-LRFD (1995) strength and displacement 
constraints, relative member size adaptation constraints are imposed on the frame during the 
optimum design procedure, using Eqs. (11) and (12). In this example, each of the four beam 
element groups may choose from all 273 W-shapes, while the 16 column element groups are 
limited to W14 sections. The top storey sway of this frame is limited to a maximum value of 456 
mm. Table 6 and Fig. 12 show the optimum results obtained using the BB-BC algorithm and the 
convergence histories for this frame are shown in Fig. 13. 
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Fig. 11 Twenty four-storey, three-bay frame 
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Fig. 12 Optimum results of twenty four-storey, three-bay frame for AISC-LRFD 
 

Fig. 13 Convergence history for the optimum design of twenty four-storey, three-bay frame 
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Results presented in Table 6 and Fig. 12 show that for 24 storey frame, connection types 1, 8 
and 7 increase the total cost of the frame, whereas, the types 5 and 6 results in economic frames 
with 26.4% and 24.2% saves in total cost compared to a frame with rigid beam-to-column 
connections, respectively. In addition, comparison between optimum result of present algorithm 
with the results presented by Kaveh and Talatahari (2010b), shows that considering the geometry 
constraints for members increases the weight and as a corollary the cost of the structure; however 
structural point of view, the geometry constraints are necessary for practical buildings. 

In order to examine the performance of the present work, the best connection of each example 
is selected to be solved some other well-known meta-heuristic algorithms such as the genetic 
algorithm (GA) and particle swarm optimization (PSO). The statistical results of 20 runs with 
different seeds for these methods as well as the BB-BC algorithm are presented in Table 7. It can 
be plainly that the present method is more accurate and reliable compared to GA and PSO. The 
best result of BB-BC for the first example is 5% less than the results of the GA and PSO. For the 
second example, the worst result of the BB-BC is better that the best result of the PSO and than the 
mean result of the GA. The standard deviation for the third example obtained by the present work 
is almost 50% less than those obtained by the GA and PSO 

 
 
6. Conclusions 

 
The Big Bang-Big Crunch (BB-BC) optimization algorithm is a recently proposed optimization 

method that relies on the Big Bang and Big Crunch theory of evolution of the universe. In this 
paper, a discrete Big Bang-Big crunch algorithm is presented for optimal design of non-linear steel 
frames with semi-rigid beam-to-column connections. The aim is to find the minimum total cost 
comprising utilized section as well as connection construction costs by selecting suitable sections 
from a standard set of steel sections such as American Institute of Steel Construction (AISC) 
wide-flange (W) shapes. Displacement and stress constraints of AISC-Load and Resistance Factor 
Design (LRFD) specification are considered as the design constraints. Also, in order to find more 
practical design, geometry constraints for beams and columns adaptation are imposed on the frame 
in the optimum design procedure. The non-linear analyses considering the P-Δ effects of 
beam-column members are performed during the optimization process. The nonlinear 
moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. 

Three design examples with various types of connections are considered. Among the various 
types of semi-rigid connection types utilized in the design examples, connection types 3 through 6 
results in more economic designs compared to other ones. Perhaps, this can be interpreted as a 
good interaction between stress and displacement constraints for frames with connection types 3, 4, 
5 and 6 compared to other types. In other words, use of more flexible connections increases the 
displacements of the frame and consequently members with greater cross-section areas are 
required to terminate violations of displacement constraints. On the other hand, more rigid 
connections make algorithm assign large sections for members due to stress considerations. 

To sum up, the variations in optimal results for frames with different types of connections 
imply that connection modeling has important effect on the optimum design of frame structures. 
One can conclude that the connections with a medium degree of flexibility can provide better 
interaction between different constraints imposed on the frame and can results in more economic 
frames. 
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