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Abstract.  This paper deals with multiobjective optimization of symmetrically laminated composite 
truncated circular conical shells subjected to external uniform pressure load and thermal load. The design 
objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. 
The design variable is the fibre orientations in the layers. The performance index is formulated as the 
weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The 
first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated 
conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and 
boundary conditions on the optimal design is investigated and the results are compared. 
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1. Introduction 
 

The conical shells are often used as transition elements between cylinders of different diameter 
and/or end closures and sometimes as stand-alone components in various engineering applications 
such as tanks and pressure vessels, missiles, spacecraft, submarines, nuclear reactors and jet 
nozzles. Therefore, these shells may be regarded as elementary shell geometry together with 
cylinders and spheres. The potential of using the directional dependence of composite properties in 
designing tailored structures to improve structural performance together with their high specific 
strength/stiffness, damping properties and low coefficient of expansion especially in the fibre 
direction has received increasing attention in the recent years. However, the analysis of such 
structures is a complex task, compared with conventional single layer metallic structures, because 
of the exhibition of coupling among membrane, torsion and bending strains and discontinuity of 
the mechanical characteristics along the thickness of the laminates. 

On the other hand, the structures are often are subjected to in-plane, external loads and thermal 
loads which may cause buckling. In addition, the vibration can be problematic when the excitation 
frequency coincides with the shell’s resonance frequency. Such loadings may occur at different 
times under in-service conditions, necessitating a design approach which is capable of taking in to 
account these various loading conditions. 
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Comprehensive works on the buckling of laminated conical shells structures have been reported 
in the literature. For example, Sofiyev and Kuruoglu (2011) investigated the non-linear buckling 
behavior of cross-ply laminated orthotropic truncated conical shells under axial load. Sofiyev and 
Karaca (2009) studied the free vibration and buckling of laminated homogeneous and 
non-homogeneous orthotropic truncated conical shells under lateral and hydrostatic pressures. 
Shadmehri et al. (2012) proposed a semi-analytical approach to obtain the linear buckling response 
of conical composite shells under axial compression load. Patel et al. (2008) studied the 
postbuckling characteristics of the angle-ply laminated composite conical shells subjected to the 
torsion, the external pressure, the axial compression, and the thermal loading considering uniform 
temperature change using the semi-analytical finite element approach. 

Thermal buckling analysis of laminated conical shells has received limited attention in the 
literautre. For example, Patel et al. (2005) studied thermoelastic postbuckling behavior of 
cross-ply laminated composite conical shells under presumed uniform temperature distribution. 
Singh and Babu (2009) examined the sensitivity of randomness in material parameters on the 
thermal buckling of conical shells embedded with and without piezoelectric layer. 

A comprehensive survey of the early works dealing with free vibration analysis of laminated 
composite conical shells can be found in the literature. For example, Tripathi et al. (2012) 
presented the sensitivity of randomness in material parameters on linear free vibration response of 
conical shells. Civalek (2007) studied a numerical study on the free vibration analysis for 
laminated conical and cylindrical shell. The analysis was carried out using Love's first 
approximation thin shell theory and solved using discrete singular convolution method. Tong 
(1993) obtained directly for the Donnell-type governing equations of the free vibration of 
composite laminated conical shells, with orthotropic stretching-bending coupling using a 
particularly convenient coordinate system, a simple and exact solution. Sivadas and Ganesan 
(1991) studied effects of thickness variation on natural frequencies of laminated conical shells by 
using a semi-analytical finite element method. Dey and Karmakar (2012) investigated the effect of 
rotational speeds on free vibration characteristics of delaminated twisted graphite–epoxy cross-ply 
composite conical shells employing finite element method. 

Research on the subject of structural optimization of laminated composite conical shells has 
been reported by few investigators. Fares et al. (2004) presented minimization problem of the 
dynamic response of composite laminated truncated conical shells with minimum expenditure of 
force using design and control optimization. Hu and Ou (2001) maximized fundamental 
frequencies of laminated composite truncated conical shells using sequential linear programming 
method. Kabir and Shirazi (2008) investigated optimum laminate configuration for minimum 
weight of filament-wound laminated conical shells subject to buckling load constraint. Goldfeld et 
al. (2005) studied optimum laminate configuration for the maximum buckling load of 
filament-wound laminated conical shells. Blom et al. (2008) optimized fibre-reinforced composite 
conical shells with given geometry and material properties for maximum fundamental frequency. 

On the other hand, multiobjective optimization of composite laminated truncated conical shells 
has not been investigated by authors until now. In this study, three different problems are 
combined as the weighted sum of individual objectives in order to obtain multiobjective 
optimization solutions to fill this gap. The design objective is the maximization of the weighted 
sum of the critical buckling load and fundamental frequency. The design variable is the fibre 
orientations in the layers. The performance index is formulated as the weighted sum of individual 
objectives in order to obtain optimal solutions of the design problem. The first-order shear 
deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical 
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shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and 
boundary conditions on the optimal design is investigated and the results are compared. 
 
 
2. Basic equations 
 

Consider a laminated circular conical shell as shown in Fig. 1, in which h denotes the thickness 
of the shell. A set of the conical coordinates (meridional (x), circumferential () and normal (z) 
coordinates) is located on the middle surface. R1 and R2 are the radii of the cone at the small and 
large edges, respectively. α is the semi-cone angle of the cone and L is cone length along the 
meridional direction. 

The displacement field of the plate based on the first order shear deformation theory is given by 
the following expressions 
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The stress-strain relations for a single lamina in a conical shell are given by 
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Fig. 1 Geometry of a laminated conical shell and cross sectional view of thickness of the 
laminated composite truncated conical Shell
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where Q̅ij is the transformed reduced stiffnesses, which can be expressed in terms of the orientation 
angle and the engineering constant of the material. αx, αθ, αxθ are the coefficients of thermal 
expansion and ΔT is the uniform constant temperature difference. 

The kinematics relations in terms of the conical coordinates x,  and z can be expressed as 
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where R denotes the radius of the cone at any point along the meridional direction and is given by 
R = R1 + x sin α. 

The stress resultants {N}, stress couples {M} and transverse shear stress resultants {Q} are 
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2.1 Finite element formulation 
 
In this study, nine noded Lagrangian rectangular shell elements having five degrees of freedom 

per node are used for the finite element solution of the laminated conical shells. The interpolation 
function of the displacement field is defined as 
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where di and Φi are the nodal variables and the interpolation function, respectively. Following the 
standard procedure of the finite element formulation, the stability condition is obtained as 

      0 dKKK gsb                             (7) 
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where [Kb], [Ks], and [Kg] are the bending stiffness, shear stiffness and geometric stiffness matrices, 
respectively. These matrices can be expressed as follows 
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Aij and Dij (i, j = 1, 2, 6) denote extensional stiffnesses and bending stiffnesses, respectively. Aij and 
Dij can be calculated as follows 
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The lowest eigenvalue of the homogeneous system (7) yields the critical buckling load. 
Calculating the critical buckling temperature of buckling due to thermal load is two stage 
processes. For a specified rise ΔT in temperature the thermal loads are computed and a linear static 
analysis is carried out to determine the thermal stress resultants. These stress resultants are then 
used to compute the geometric stiffness matrice, which subsequently used in Eq. (7), to determine 
the least eigenvalue, λ, and the associated mode shape. The critical buckling temperature , Tcr, is 
calculated as follows 

TTcr                                   (12) 

The free vibration problem of the shell becomes as follows 

       02  dMKK sb                           (13) 

where [M] is the mass matrice. The mass matrice can be obtained as follows 

     dANmNM
A

t                            (14) 

where m is the intertia matrice. Eq. (13) is a set of homogeneous linear equations in the unknown 
displacements {d}. For non-trivial solution, the determinant is equal to zero and the eigenvalues 
correspond to natural frequencies of the laminated plates. The subspace iteration method is used 
for the frequency analysis. 
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3. Optimization problem 
 

The optimization problem is formulated in order to find the best orientation angles of fibres in 
the laminated truncated conical shells so that to simultaneously maximize the critical external 
pressure buckling load, critical thermal buckling load and fundamental frequency with the 
laminate configurations. The multiobjective design index, MODI, can be describes as follows 

***MODI   TN                          (16) 

where η, ξ and μ are the weighting factors summing the three objective functions with η , ξ , μ ≥ 0, 
η + ξ + μ = 1. As the weighting factors are varied, the emphasis of the optimization problem is 
shifted among various objectives resulting in compromise solutions. The single objective designs 
can be obtained as special cases by setting η = 1 or η = 0. In this study, the optimization problem 
can be expressed as follows 

MODI:maximize
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In the all computations, the following nondimensionalized quantities are used 
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for critical external pressure buckling load, critical thermal buckling load and fundamental 
frequency, respectively. The NO, Tcro and ωO are the external pressure buckling load, thermal 
buckling load and fundamental frequency corresponding to prescribed lamination angles [(0°)4]sym 
for eight layered conical shells, respectively. 
 
 
4. Numerical results and discussion 
 

In this study, simply supported symmetrically laminated (Φ/ – Φ / Φ / –Φ)s truncated conical 
shells are investigated for optimization problems. Each of the lamina is assumed to be same 
thickness. Numerical results are given for a typical T300/5208 graphite/epoxy material and the 
material properties are as below 
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In this study, effect of different weighting factors on the optimal designs is investigated for 
simply supported eight layered (Φ/ – Φ / Φ / –Φ)s truncated conical shells (h / R1 = 0.2 L / R1 = 1, α 
= 45°). In Table 1, fifteen different combinations of weighting factors is illustrated. It is obvious 
that the maximum multiobjective design index, (MODI)max, occurs at a specific value of the fibre 
orientation and this value can be several times higher than the other MODI at other fibre 
orientations. In Fig. 2, performance index vs. fibre orientation for different fifteen combinations of 
weighting factors can be seen. As seen, the maximum (MODI)max is obtained 10.18 and the 
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optimum fibre orientation is obtained Φopt = 45° for C4 combination. This means that, the effect of 
thermal buckling load is more dominant than external pressure load and fundamental frequency on 
the multiobjective design. On the other hand, the minimum (MODI)max occurs for C3 combination. 
That is, external pressure load causes minimum multiobjective design index. In Table 2, the 
(MODI)max and the optimum fibre orientations are given for different fifteen combinations of 
weighting factors. As seen, the optimum fibre orientations are mostly Φopt = 45° for different 
weighting factors. 
 
 

  

  

   
Fig. 2 Performance index vs. fibre orientation for different fifteen combinations of weighting 

factors 
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Table 1 Fifteen different combinations of weighting factors 

Weighting factors Combinations 
η = 0.25 , ξ = 0.25 , ξ = 0.75 , μ = 0 C1 

η = 0.50 , ξ = 0.50 , μ = 0 C2 
η = 1.00 , ξ = 0 , μ = 0 C3 
η = 0 , ξ = 1.00 , μ = 0 C4 
η = 0.75 , ξ = 0.25 , μ = 0 C5 
η = 0 , ξ = 0.75 , μ = 0.25 C6 
η = 0 , ξ = 0.50 , μ = 0.50 C7 
η = 0 , ξ = 0.25 , μ = 0.75 C8 
η = 0 , ξ = 0 , μ = 1.00 C9 
η = 0.75 , ξ = 0 , μ = 0.25 C10 
η = 0 , ξ = 0.50 , μ = 0.50 C11 
η = 0.25 , ξ = 0 , μ = 0.75 C12 
η = 0.25 , ξ = 0.50 , μ = 0.25 C13 
η = 0.25 , ξ = 0.25 , μ = 0.50 C14 
η = 0.50 , ξ = 0.25 , μ = 0.25 C15 

 
Table 2 The (MODI)max and the optimum fibre orientations for different fifteen combinations of weighting 
factors 

 Combinations (MODI)max Φopt (°)
 

 

 C1 8.07 45  
 C2 5.96 45  
 C3 2.53 85  
 C4 10.18 45  
 C5 3.85 45  
 C6 8.08 45  
 C7 5.98 45  
 C8 3.88 45  
 C9 1.78 40  
 C10 2.15 80  
 C11 1.85 65  
 C12 1.77 50  
 C13 5.97 45  
 C14 3.87 45  
 C15 3.86 45  

 
 

In this study, effect of length-to radius ratio (L / R1) on the optimal designs is investigated for 
simply supported eight layered (Φ/ – Φ / Φ / –Φ)s truncated conical shells (h / R1 = 0.2, η = 0.25, ξ = 
0.25, μ = 0.50, α = 45°). In Fig. 3, performance index vs. fibre orientation for different L / R1 ratios 
is given. As seen, the maximum (MODI)max is obtained 9.60 for L / R1 = 4. On the other hand, the 
optimum fibre orientation is obtained Φopt (50°). In Table 3, the (MODI)max and the optimum fibre 
orientations are given for different L / R1 ratios. 
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Fig. 3 Performance index vs. fibre orientation for different L / R1 ratios 

 
Table 3 The (MODI)max and the optimum fibre orientations for different L / R1 ratios 

 L/R (MODI)max Φopt (°)
 

 

 1 5.97 45  

 2 5.99 45  

 4 9.60 50  

 6 8.83 50  

 8 8.36 50  

 

 
Fig. 4 Performance index vs. fibre orientation for different semi-cone angles 

 
 

In this study, effect of different semi-cone angles (α) on the optimal designs is investigated for 
simply supported eight layered (Φ/ – Φ / Φ / –Φ)s truncated conical shells (h / R1 = 0.2, L / R1 = 1, η 
= 0.25, ξ = 0.25, μ = 0.50). In Fig. 4, performance index vs. fibre orientation for different 
semi-cone angles can be seen. As seen, the maximum (MODI)max is obtained 5.97 for α = 45°. The 
optimum fibre orientations are obtained Φopt = 45°. In Table 4, the (MODI)max and the optimum 
fibre orientations are given for different semi-cone angles. As seen, the optimum fibre orientation 
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is mostly Φopt = 45° regardless of semi-cone angle. One can mention that semi-cone angle has not 
important effect on the optimum fibre orientations. 

In this study, different combinations of free (F), simply supported (S) and clamped (C) 
boundary conditions are considered, viz. clamped/clamped (CC), clamped/simply supported (CS), 
simply supported/free (SF) and clamped/free (CF). The boundary conditions are defined as below 

1.  (SS) boundary condition 
at x = 0 and x = L, uO = wO = ψθ = 0 

2.  (CC) boundary condition 
at x = 0 and x = L, uO = vO = wO = ψx = ψθ = 0 

3.  (CS) boundary condition 
at x = 0, uO = vO = wO = ψx = ψθ = 0 
at x = L, uO = wO = ψθ = 0 

4.  (SF) boundary condition 
at x = 0, uO = wO = ψθ = 0 

5.  (CF) boundary condition 
at x = 0, uO = vO = wO = ψx = ψθ = 0 

The effect of the boundary conditions on the optimum design is investigated for eight layered 
(Φ/ – Φ / Φ / –Φ)s truncated conical shells (h / R1 = 0.2, L / R1 = 1, η = 0.25, ξ = 0.25, μ = 0.50). In 
Fig. 5, performance index vs. fibre orientation for different boundary conditions is given. As seen, 
the maximum (MODI)max is obtained 5.97 for simply supported (SS) boundary condition. The 

 
 
Table 4 The (MODI)max and the optimum fibre orientations for different semi-cone angles 

 α (MODI)max Φopt (°)
 

 

 0 2.69 45  

 15 2.56 45  

 30 2.58 50  

 45 5.97 45  

 60 5.33 45  

 

 
Fig. 5 Performance index vs. fibre orientation for different boundary conditions 
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Table 5 The (MODI)max and the optimum fibre orientations for different boundary conditions 

 Boundary conditions (MODI)max Φopt (°)
 

 

 (SS) 5.97 45  
 (CC) 3.09 45  
 (CS) 4.27 45  
 (SF) 2.98 40  
 (CF) 2.51 45  

 
 
optimum fibre orientations are obtained Φopt = 45°. On the other hand, the minimum (MODI)max is 
obtained for (CF) boundary condition. In Table 5, the (MODI)max and the optimum fibre 
orientations are given for different boundary conditions. As seen, the optimum fibre orientation is 
mostly Φopt = 45° for different boundary conditions. 
 
 
5. Conclusions 
 

In this study, a multiobjective optimization is carried out for symmetrically laminated 
composite truncated conical shells subjected to external uniform pressure load and thermal load. 
The design objective is the maximization of the weighted sum of the critical buckling load and 
fundamental frequency. The design variable is the fibre orientations in the layers. Results are 
presented for different weighting factors, length-to-radius ratio, semi-cone angle and boundary 
conditions. As seen from the results that, thermal buckling load has a key role on the 
multiobjective buckling load design of laminated conical shells. The optimum fibre orientations 
are mostly Φopt = 45° for different weighting factors. The maximum performance index is obtained 
for L / R1 = 4. The maximum (MODI)max occurs at semi-cone angle α = 45°. The optimum fibre 
orientation is mostly Φopt = 45° regardless of semi-cone angle. The maximum performance index is 
obtained for simply supported boundary condition. The optimum fibre orientation is mostly Φopt = 
45° for different boundary conditions. Finally, it can be said from the results that, the 
multiobjective optimization can change the behavior of the laminated conical shell substantially. 
Therefore, all effects must be considered at the optimization stage of the laminates. 
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