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Abstract.    Distortional and local buckling are important factors that influences the bearing capacity of 
steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability 
analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. 
The critical bending moment calculation formula of distortional buckling is established. In addition, 
mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending 
stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different 
stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to 
thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the 
proposed models. 
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1. Introduction 
 

Beam stability is a focus to which engineers pay much attention, because it affects the safety of 
a structure and the ability of a member to attain its full capacity. In comparison with a steel 
structure, a steel-concrete composite beam can achieve increased global stability and local stability 
because of the constraint of concrete slab. However, it is still no necessary to consider the buckling 
problem of a steel-concrete composite beam, particularly with respect to the negative moment 
region. Narayanan (1988) systematically studied the possible local buckling of a steel beam web 
when the continuous composite beam is subjected to dynamic loading. He pointed out that local 
buckling of a steel beam web can lead to great deformation of the flange. Fukumoto and Kubo 
(1997) adopted a linear elastic finite element method to calculate global lateral buckling moment 
of the compressive bottom flange. Because the model which they adopted ignored the constraint 
action of the web steel plate to compressive flange lateral buckling, it is conservative. Fan et al. 
(2004) discussed the elastic buckling analysis of a steel beam web under combined stress loads of 
flexure, axial pressure and shear. The elastic local buckling coefficient for complicated stress 
conditions was calculated. 
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As previously mentioned, most research has concentrated on local buckling of web in the 
positive moment zone. With respect to the negative moment zone, the web not only can sustain 
local buckling but also global buckling. Few researchers have considered this aspect of the 
problem. Also, current codes and standards only provide stability calculation and corresponding 
construction measures for composite beams in positive moment zone. In order to improve the 
current codes, it is essential to study the stability problems of the composite beam in the negative 
moment zone.  

In this paper, on the basis of the stability theory and experiment results of other researchers, a 
calculation model for composite box-beam stability is presented. Distortional buckling is studied 
using energy method. Considering not only the lateral bending and rotation of bottom flange but 
also rotation of top flange, the calculation formula of critical bearing moment of a composite 
box-beam is obtained. For the sake of deducing the formula for corresponding local buckling 
critical stress and limit value of height-to-thickness ratio, a local buckling model under different 
loads is established. Finally, numerical examples are presented to demonstrate the application of 
the proposed models. 

 
 

2. Model and Assumptions 
 

2.1 Distortional buckling of steel-concrete composite box-beam 
 
Steel-concrete composite box-beams are made of welded steel plates and concrete slab with 

stud connection. Because of the large bending and torsional stiffness of the concrete slab, 
composite box-beam in the positive bending zone needs not be checked for global stability. 
However, for large-span composite box-beams with high-narrow steel section, if the steel beam in 
negative bending zone has no lateral support or the space between lateral support is too large, the 
compressive flange and web of the steel box-beam may twist and deviate from the loading plane. 
Thus, load supporting capability may be lost. This phenomenon is called global distortional  
buckling. For the sake of developing a distortional buckling model some assumptions are made: 

(1) Materials are isotropic and elastic without considering initial defects and residual stress. 
(2) The composite box-beam has uniform cross section. The lateral flexural deformation of 

box-beam is small, and the torsional deformation is not taken into account. 
(3) Because of the great in-plane flexural stiffness of composite beam, the influences of 

in-plane flexural deformation on lateral bending can be ignored. 
(4) The top flange of the steel beam cannot generate lateral deformation, but it can twist. 
(5) Ignoring the bending effect of concrete in tension, only the bending effect of the 

reinforcing steel bar in the concrete slab is considered. 
On the basis of above assumptions, when composite beam suffers elastic buckling, the lateral 

deformation of bottom flange is assigned uB, and the torsional angles of two ends of bottom flange 
are assigned as i and j .Since it is assumed that the lateral deformation of steel beam top flange 

is fully constrained by concrete slab, the torsional angles of both top flanges n and m  are 

assigned. System of coordinates is shown in Fig.1. 
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Fig.1 Distortional buckling model of composite box-beam 

 
 

When there are small transversal deformation Bu and torsional deformation i of steel beam 

bottom flange and torsional deformation n of steel beam top flange, the steel webs will yield 

out-plane bending deformation uwi and uwj. The lateral bending deformation of left steel beam web 
uwi can be expressed as cubic polynomial function about Bu 、 i and n  as following  

wi 1 B 2 i 3 n( ) ( ) ( ) ( ) ( ) ( )u f y u z f y z f y z                    (1) 

Because the lateral bending deformation of right steel beam web uwj has the same expression 
about Bu 、 j and m , it is displayed as follows 

)()()()()()( 321 zyfzyfzuyfu mjBwj                  (2) 

)()()()( 54 zxfzxf ji                               (3) 
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Deformation compatibility of right web 
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Deformation compatibility of bottom flange 
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Substituting Eqs. (1)-(3) into deformation compatibility conditions Eqs. (4)-(6), the 
deformation curves of webs and bottom flange are obtained. 

Deformation curve of left web 
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Deformation curve of right web 
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Deformation curve of bottom flange 
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According to the buckling model, the total strain energy of a composite box-beam taking into 
account the rotation of top flange includes: lateral bending strain energy U1, torsinal strain energy 
of steel beam top flanges U2, U3, bending strain energy of bottom flange U4, strain energy of 
concrete spring restraint of top flanges U5, U6and lateral bending strain energy Ui,Uj. 

Lateral bending strain energy of the bottom flange 
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Torsional strain energy of the right top flange 
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Vertical deformation energy of the bottom flange is obtained according to small deflection 
theory of thin plate as follows 
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Strain energy of concrete spring restraint to left steel top flange 
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Strain energy of concrete spring restraint to right steel top flange 
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The term k is the spring constant of rotation spring ,Hu(1996)  
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Where, cm c2
1

E I
k

a


 is the rotation spring constant of concrete slab; 

3
a w

2 2
sa

1

4 1

E t
k

h



is the 

rotation spring constant of steel beam web;α  is span influence coefficient; a is span of concrete 

slab; EcmIc2 is mid-span average bending rigidity per unit of width of concrete slab considering the 
transverse reinforcement effect in concrete slab and ignoring the concrete effect of tensile zone; sh  

is distance between the top flange gravity axis and the bottom flange gravity axis of steel beam; 

aE  is elasticity modulus of steel beam. 

Lateral bending strain energy is found form Eq. (17) 
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Substituting Eq. (7) and Eq. (8) separately into Eq. (17), lateral bending strain energy of left 
web (Ui) and right web (Uj) are obtained. Total strain energy U of the composite box beam 
considering rotation of top flange is the summation of equations form Eq. (10) to Eq. (17). 
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The sum of strain energy and external work is called total potential energy of distortional 
buckling of composite box beam 

WU                               (19) 

In accordance with principle of minimum potential energy (Xia and Pan 1987), the critical 
moment of a composite box beam under equal end moment considering top flange rotation 
buckling can be obtained by imposing the stationarity of the action functional 

0                                 (20) 

Five balance equations are derived from Eq. (20) as follows: 
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Assuming the lateral displacement and rotation angle of steel beam bottom flange as well as 
rotation angle of steel beam top flange are half-sine wave curves, the deformations of distortional 
buckling of composite box beam can be expressed as (Xia and Pan 1987) 
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Wherein, 1C ， 2C ， 3C ， 4C ， 5C  are the amplitudes of the deformations separately. n is the 

number of half-sine waves of deformations within the l length buckling range. Its value is 
determined by trial method on condition that the minimum Mx is obtained. For ease of calculation, 
equivalent coefficient η1 of steel beam bottom flange to y axis moment of inertia and geometric 
properties coefficients of cross section 1 ， 2 ， 3 ， 4 , 5 ， 6 ， 7 as well as 1R ，

2R , 3R , 4R , 5R ， 6R ， 7R  are introduced as following: 
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Simplified the Eq. (21), the matrix equations are obtained as 

                       A(Mx)*C=0                                (26) 
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C is the vector [ 1C , 2C , 3C , 4C , 5C ] and A(Mx) is the matrix about Mx. This is a system of 

homogeneous linear equations. In order to get a nontrivial solution, the determinant of coefficient
︱A(Mx)︱ must equal to zero. Therefore, five solutions of Mx are obtained and the minimum one 
is the critical moment. 
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2.2 Local buckling of steel-concrete composite box-beam 
 
  2.2.1 Buckling model 
When a continuous composite box-beam is subjected to adverse loads, negative moment will 

develop at the intermediate support. In this case, the steel beam web near the intermediate support 
is in compression state. As soon as the critical pressure is reached, it leads to local buckling of the 
web, which reduces the ultimate capacity of the composite box-beam. Local buckling of a 
continuous composite box-beam happens mainly in the local zone of the steel beam web near the 
intermediate support. Therefore, for the purpose of preventing local buckling, the height-thickness 
ratio of steel beam web is controlled in design. To derive local buckling equations, the buckling 
model is shown in Fig.2. 

 
 

 
Fig.2 Local buckling model of steel beam web 
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Assuming the web displacement function as follows 
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The first part of the displacement function is a quartic polynomial satisfying non-loading side 

displacement boundary conditions, and the second part is a trigonometric harmonic function 
satisfying loading side displacement boundary conditions. 

Boundary conditions of loading sides: 
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Boundary conditions of non-loading sides 
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Wherein,
3
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


 is the bending rigidity of steel beam web; b ， t is restrained 

rotation rigidity of non-loading side. 
Substituting Eq. (30) into Eq. (32), the buckling displacement function is obtained 
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Dbb   , Dtt   are dimensionless parameters. 
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2.2.2 Local buckling of web under non-uniform compression 
The in-plane load is considered as a linear distribution along the loading side as shown in Fig.2, 

its expression is 

0(1 / )x bN N y h                               (36) 

xN is the pressure per unit length on loading side; bN ， tN  is the maximum and minimum 

pressure separately per unit length on loading side;  b t

b

N N

N



  is the pressure change rate per 

unit length along plate width. 
When the web yields buckling deformation, the bending elastic strain energy in plate is 
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Because of the constraint of rotation along non-loading sides, the strain energy which store in 
equivalent spring is 
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The work of in-plane load V is 
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The total potential energy is the summation of strain energy and external work 
VUU e                              (40) 

According to principle of minimum potential energy, substituting Eqs. (34)-(37) into Eq. (38), 
we obtain 
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The parameters in Eq. (41) are as follows: 
2

3211 bbA                            (42a) 
2

6542 bbA                            (42b) 
2

9873 bbA                            (42c) 

tbA  2
4 )6(                              (42d) 

btA  2
5 )6(                              (42e) 

2
911106 bbA                            (42f) 

)192851116(4 2
1 tt                          (43a) 

2
2 172721140 tt                           (43b) 

2
3 1776 tt                              (43c) 

)624(36 2
4 tt                             (43d) 

)2954(4 2
5 tt                             (43e) 

2
6 836 tt                                (43f) 

)1351(72 2
7 tt                             (43g) 

)570312(3 2
8 tt                             (43h) 

2
9 1572 tt                                (43i) 

2
10 )3376(2)4495(24)2(4464 tt                (43j) 

2
11 )817(2)2(272)5195(24 tt                (43k) 

2
12 )2(2)1834()8615( tt                   (43l) 

Because of the arbitrariness of iC , linear system of equations about displacement function 

coefficients is obtained 
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In order to get nontrivial solution of above equations, determinant of coefficients matrix must 
equal to zero 
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Therefore, critical load of plate buckling is calculated and the computing formula of plate yield 
strength is 
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Assuming the length-width ratio is 
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Then the coefficient k is obtained from 
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In order to get the minimum value of the coefficient, the following equation must be true 
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Simplifying Eq. (49), the critical yield strength coefficient is obtained 
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In accordance with formula of critical stress as follows 
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Finally, limit value of height-thickness ratio in the negative moment zone web under 
non-uniform compression is obtained 

 
 

2
0 t

2
w 12 1 y

h k E

t f







                             (52) 

 
2.2.3 Local buckling of web pure shearing  
Local buckling of steel beam web subjected to pure shearing is an important classical problem. 

The force diagram of web is shown in Fig.3. The web is long and narrow and length l is much 
longer than width h0. The shear force of web middle plane is Nxy. 
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Fig.3 Pure shearing buckling model of steel beam web 

 
 

The work of web middle plane shear force Nxy is 
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The total potential energy is 
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Wherein 
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According to principle of minimum potential energy 0 , critical shear stress is calculated 
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                              (56) 
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Then the yield coefficient of web under pure shearing is 

1 2

8

90
s

P P
k

A
                                (57) 

Shear stress is 

 
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cr 2
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                           (58) 

Finally, the height-thickness ratio of web under pure shearing is                       

 
2

0 s

2
w 12 1 y

h k E

t f







                            (59) 

 

2.2.4 Local buckling of web under combination of non-uniform compression and pure 
shearing 

For a simply supported composite beam, usually the middle span section bears large moment 
and small shear force, and support section bears large shear force and small moment. But when 
using a multi-span continuous beam, the section near middle support is subjected to both large 
moment and large shear force. Since it is a complicated strain condition, considering the influences 
of both moment and shear force on web buckling is necessary. Fig.4 shows the strain condition of 
the web before buckling: eccentric compression stress is linear along direction of web height; 
shearing strength is uniformly distributed. 

 
 

 
Fig.4 Buckling model of steel beam web under combined stresses 
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When axial compressive force and moment as well as shear force are presented, approximate 
calculation formula Eq. (58) for elastic buckling is presented by CHWALAE(Chen 1996). 

2 2

cr cr cr

1 1
2 2

    
  
           

    
                   (60) 

The term σ is the maximum compressive stress on the web edge; is the stress gradient of web; 
σcr、τcr are the buckling stresses separately when the web is under non-uniform compression and 
pure shear force. 

When the web reaches critical state under the action of combined stresses, the elastic buckling 
stress σcs can be expressed as maximum compressive stress σ of web edge from Eq. (58). Then the 
general expression of buckling stress is 

 
22

w
cs 2

012 1

tk E

h




 
  

  
                         (61) 

Wherein, k is the buckling coefficient of web under combined forces 
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                 (62) 

Form the above equations, the limit value of web height-to-thickness ratio under combined forces 
is obtained 
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                           (63) 

 
 

3. Numerical examples and discussions 
 

3.1 Example1 
 
Consider a multi-span continuous composite box-beam. The sectional dimensions are shown in 

Fig.5. Assuming the negative moment span of composite box-beam suffered pure bending, the 
global stability is calculated and the residual stress is ignored. The grade of concrete is C40.The 
span of negative moment is l=4000mm. 
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Fig.5 Section dimension of composite box-beam 

 
 

a. Sectional geometric properties are obtained according to Papp et. al (2001) : h0=410mm，

tbf=10mm，bbf=600mm，tw=8mm，Ab=6000mm2，At=2400mm2，Aw=6400mm2，As=2412.7mm2，

ys=507.3mm，yc= 204.498mm，I= 658894284.8mm4，Iyb= 180000000mm4； 
b.Materialproperties:E=2.06×105N/mm2,μ=0.3;G=0.79×105N/mm2,k=7.00408868×105N•mm 
c. Parameters：η1= 1.000079335， η2= 1.000081035，β1= 0.002268535，β2= 0.007915931，

β3= 6.789101245，β4= 4.788494998. β5= 0.000964487，β6= -0.003000559，β7= -0.861563164，β8= 
0.002269559，β9= 0.004944781，β10= 6.787325523 

(1) Numerical method proposed above 
According to the condition of minimum Mx, when composite box-beam is buckling, using trial 

method the number of deformation half sine waves is 9.  
Coefficients:R1=1853024775,R2=15978382.91,R3=10733035577,R4=950299856.9,R5=1424002

0.82,R6=-441387636.3,R7=25109409187.Therefore, the critical moment of composite box-beam 
distorsional bending and rotation buckling is Mcr=1.009916537×109N•mm. 

 
(2) British steel structure institute method (Lawson and Rackham 1989) 

3 2

2 2 22 4
wz

cr

Et LEI D GJ
M

L D D




                         (64) 

Wherein, D is the height of steel beam section; EIz is the bending rigidity of pressurized flange 
about z axis.Therefore, the critical moment of composite box-beam distorsional bending and 
rotation buckling is Mcr= 1.808878983×109N•mm.   

 
(3) Equivalent I-steel bottom flange distorsional bending buckling method (Li 2006) 

Assuming the left and right web of box-beam concentrate into I-steel beam in the middle, the 
critical moment of distorsional buckling of equivalent I-steel beam is Mcr= 7.3842×108N•mm. 

(4) Finite element method using the ANSYS program. 
In this computational model, the concrete slab is represented by solid65 element. The steel box 

beam is made of shell43 finite elements. Conducting eigenvalue buckling analysis in the ANSYS 
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program, the critical moment of composite box-beam distortional buckling is obtained as Mcr= 
1.0000×109N•mm. And the buckling mode is the same as the assumed model in Fig.1. 

Results obtained by above methods are summarized in Table 1 
 
Table 1 Comparison of calculation results (Unit: N·mm) 

Calculation 
method 

Method proposed 
in this paper 

British Steel Structure 
Institute method 

Equivalent I-steel 
beam method 

ANSYS 
program 

Critical moment 1.0099×109 1.8089×109 7.3842×108 1.0000×109

 
The method of the British Steel Structure Institute assumes the concrete slab as perfectly rigid. 

On the basis of the energy equations, the critical buckling moment Mcr is calculated considering 
Saint-Venant rotation of the whole cross-section. However, the method in this paper uses lateral 
deformation and rotation of the bottom flange as well as rotation of the top flange to define web 
deformation. It also assumes non-deformation of concrete slab. It can be seen form the results the 
British Steel Structure Institute design method result is greater than the proposed method. This 
means British Steel Structure Institute method will lead to the possibility that composite box-beam 
will yield advanced distortional buckling. The result computed by method in this paper is much 
greater than by literature (Li 2006) method. It can be concluded that the proposed model of 
composite box-beam has provides greater bearing capacity compared with the method of literature 
(Li 2006). Known from the Table1, the results using proposed method in this paper agree well with 
that using ANSYS program. Therefore, the result is reasonable and the proposed method is 
verified. 

 
3.2 Example 2 
 
In this example, a two equal span continuous composite box-beam is investigated to evaluate 

the local stability of a steel beam web in negative moment region. The length of span is l = 12m. 
Construction diagram and sectional dimension are shown in Fig.6.Concrete slab is C30 
cast-in-place concrete and steel beam is Q235 steel. The connector is the stud whose diameter is 
16mm.The composite box-beam is subjected to a uniform distributed load q＝15KN/m. 

 
 

 

(a) (b) 
Fig.6 Construction diagram a) and Section dimension b) of composite box-beam 
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From the shear force and moment distribution diagram of continuous composite box-beam, the 
least favorable section is near the middle support.  

(1) Numerical method proposed in above section 
For convenience, assuming ,b t     . In accordance with literature (Li 2006), the 

flange-to-web constraint coefficient   under non-uniform compression is 1.51; the 

flange-to-web constraint coefficient   under pure shearing action is 1.51. Using Eq. (60), the 
buckling coefficient is obtained as k=21.6524. According to Eq. (61), the limit value of web 
height-to-thickness ratio in negative bending region is 

 
2

0

2
w

97 130.96
12 1 y

h k E

t f




 


＝                     (65) 

It is not necessary to provide a stiffening rib. 
 
(2) Code for design of steel structures method (GB50017-2003 2003) 
For the purpose of verifying the local stability of steel beam web, method in code for design of 

steel structure is adopted. Height-to-thickness ratio of web is 

80 < 0

w

h

t
 = 97 < 170                          (66) 

It is necessary to provide a stiffening rib. 
 
(3) Method of literature (Fan et al. 2004) 
In literature (Fan et al. 2004), elastic buckling coefficient of web when there is no stiffening rib 

is 

2 2

0.133
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  


 
                      (67) 

Therefore, elastic height-to-thickness ratio is 
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 ee
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                   (68) 

Critical buckling coefficients tk , sk are unrelated to the number of buckling half-sine waves, but 

depend on constraint coefficients ,b t  .Compared with code for design of steel structures, the 

proposed method is more reasonable when calculating web height-to-thickness ratio. The proposed 
method is to the benefit of reducing steel quantity and more close to practical situation. Although 
the results of proposed method and literature (Fan et al. 2004) method are close to each other, 
there are still some differences between these two methods. In literature (Fan et al. 2004), 
calculation formula of elastic buckling coefficient ke is very complicated and it demands the elastic 
buckling stress of web should be greater than maximum compressive stress. However, the 
proposed method requires elastic buckling stress of web should greater than yield strength. 
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Compared with literature method, it is simpler and safer. Ignoring the actual stress state of 
composite box-beam web and providing stiffening rib only according to construction requirements, 
could produce difficulties in design and construction execution and become uneconomical. It is 
considered to be more reasonable to determine the critical height-to-thickness ratio of web 
according to the actual stress state of the composite beam. The elastic critical height-to-thickness 
ratio of continuous composite box-beam web is mainly influenced by bending stress and secondly 
by shear stress. 

 
 

4. Conclusions  
 

Through the theoretical analysis of steel-concrete composite box-beam, the main conclusions 
that can be drawn from this investigation are: 

(1) According to global buckling forms of steel-concrete composite box beams, distortional 
buckling model considering rotation of steel beam top flange is established. Critical moment 
calculation formula is deduced using energy method. Numerical example demonstrates that the 
proposed model has better reliability and is more economical compared with existing methods. 

(2) The local buckling model of composite box-beam web under non-uniform compression、
pure shear stress and combined stresses is proposed. Critical buckling stress formula under 
different stress conditions is presented. Elastic buckling factor k of steel beam web under 
complicated stress conditions is obtained. Height-to-thickness ratio of composite box-beam web in 
elastic stage which has no stiffening rib is also calculated. Numerical results show that calculation 
method of existing codes and specifications can relax the restriction of height-to-thickness ratio. 
The proposed model of local buckling provided significant reference value to reasonable 
optimized design of composite box-beam in negative bending region. 
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