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Abstract.    The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of 
circular CFT columns. To consider the confinement effect, proper material models with respect to the 
confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress 
distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of 
the surrounding steel tube, as well as geometric nonlinearity due to the P-Δ effect, are taken into account. 
The validity of the proposed numerical analysis model is established by comparing the analytical predictions 
with the results from previous experimental studies about pure bending and eccentric axial loading. 
Numerical predictions using an unconfined material model were also compared to investigate the 
confinement effects on various loading combinations. The ultimate resisting capacities predicted by the 
proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing 
design recommendation. 
 

Keywords:  circular CFT; confinement effect; ultimate resisting capacity; nonlinear FEM; short 
column 
 
 
1. Introduction 
 

A concrete-filled steel tube (henceforth simply CFT) is a beam-column member with a round or 
rectangular steel pipe in-filled with concrete to avoid local buckling. Due to the beneficial effects 
of the steel tube and the inner concrete, this type of a structure exhibits improved performance in 
terms of its flexibility, strength and energy absorption capacity. As the demand for seismic 
performance and space efficiency has increased in high-rise or mid-rise buildings over the past few 
recent decades, CFT is a good alternative to conventional RC members. The enhanced 
performances levels of CFT are mainly due to the confinement effect of concrete filling the hollow 
tube and restraining the steel tube against local buckling. However, a strength enhancement of 
CFT cannot be expected when the column section is rectangular (Hajjar et al. 1996, and Susantha 
et al. 2001) or the length of the column is long (Lakshmi et al. 2002, Huang et al. 2012). In 
contrast, experimental studies of a circular CFT short column present a noticeable strength 
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increment (Schneider 1998, O'Shea et al. 2000, Sakino et al. 2004). Moreover, numerous 
confinement models for circular CFT have been developed on the basis of calibration from 
analytical results with experimental observations (Susantha et al. 2001, Hu et al. 2003, Sakino et 
al. 2004, Hu et al. 2010). Due to the discrepancies in those models, the author introduced a new 
method to evaluate the confinement effect on an axially loaded circular CFT column (Kwak et al. 
2012). On the other hand, a column is subjected to a combination of axial force and bending 
moment, which may be due to the end restraint arising from the monolithic placement of the floor 
beams and the columns or due to eccentricity from an imperfect alignment. Due to the 
combination of the axial force and the bending moment, the column section must be designed so 
as to ensure that the acting forces in a member exist inside the axial force-moment (P-M) 
interaction diagram representing the resisting capacity of the column. O’Shea et al. (1998) 
conducted the eccentric axial load testing of circular CFT columns. Experimental results were 
illustrated with the interaction curves based on the provisions in Eurocode 4 and a fiber section 
analysis using the actual material properties. It was concluded that circular steel tubes filled with 
medium-strength concrete up to 50MPa can be conservatively designed using the provisions in 
Eurocode 4, while the interaction curve should be determined analytically using the unconfined 
concrete stress-strain curve for eccentricities larger than D/20. Hatzigeorgiou (2008) developed a 
simple fiber model based on a section analysis of circular CFT columns under a combination of 
axial force and bending moment. Empirical expressions of the confinement effects are proposed 
and corresponding uniaxial stress-strain relationships are used to configure the P-M interaction 
curve. It was reported that the strength of the CFT columns is deteriorated by the slenderness 
effect despite the fact that they are short columns with slenderness ratios of less than 30 (Wang et 
al. 2004, Baig et al. 2006). Therefore, a conventional fiber section analysis, which is unable to 
consider the slenderness effect, tends to overestimate the ultimate resisting capacity of CFT 
columns. 

In this study, the behavior and ultimate resisting capacities of circular CFT columns are 
investigated using a one-dimensional fiber beam finite element model. To take into account the 
confinement effect in the CFT, the stress-strain relationships of both the concrete and the steel tube 
are proposed according to previous observations of CFT under axial compression. The geometric 
nonlinearity due to the P    effect is also considered to assess the structural behavior. The 
proposed numerical analysis model is validated through comparisons of the experimental results 
with various load combinations. These load combinations include 1) pure bending, 2) eccentric 
compression, and 3) a combination of axial force and bending moment. The effect of the proposed 
confinement model on both the behavior and the ultimate resisting capacity is also investigated in 
each case. Finally, the current design code for confined composite members is evaluated through 
comparisons with the analysis results. 
 
 
2. Material model 

 
2.1 Concrete 
 
The response of a CFT structure sharply depends on the stress-strain relationship of the 

constituent materials and on the magnitude of the stress. When concrete is subjected to lateral 
confinement pressure, the strength and ductility, which are represented by the uniaxial 
compressive strength f ’cc and the corresponding strain εcc, are much higher than those of 
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unconfined concrete. On the basis of experimental observations, Richart et al.(1928) revealed that 
the increment of the strength and ductility is proportional to the confinement pressure. This linear 
relationship tends to overestimate the strength of confined concrete when the confinement pressure 
is high. Later, Mander et al.(1988) suggested the following equations to represent the relationships 
for those values between confined and unconfined concrete 
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where σr is the confinement pressure, and f’c and εc0 are the strength and the corresponding strain 
of unconfined concrete. The confinement pressure σr is determined from the force equilibrium 
equation at a CFT section. It is expressed by the relationship of σr = 2tσƟ / (D-2t), where σƟ is the 
hoop stress, t is the thickness and D is the diameter of the steel tube. Due to the simplicity and 
accuracy, this model is widely used in numerical analyses on CFT including this study (Elremaily 
et al. 2002, Fam et al. 2004, Liang et al. 2009). 

The uniaxial stress-strain relationship during compression is described using three regions (see 
Fig. 1 (a)). When the concrete strain εc is less than εcc, the monotonic envelope curve introduced by 
Mander et al. (1988) is adopted in this paper. It maintains an initial modulus regardless of the 
strength enhancement due to confinement and has the following form 
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Here, σc is the stress of concrete corresponding to the strain of concrete εc, γ = Ec / (Ec - f’cc / εcc), 
and x = εc / εcc. Ec is modulus of elasticity of concrete. The softening behavior, when εc is greater 
than εcc, is assumed to be linearly descending. Finally it is assumed that the concrete is unable to 
resist any stress after the ultimate strain εcu. 

The tension region of concrete is assumed to be linear elastic. Beyond the tensile strength, the 
tensile stress decreases linearly (see Fig. 1(b)). The ultimate tensile failure from cracking is 
assumed to occur when the principal tensile strain exceeds the value εut = 2Gf / ft ln(3/b) / (3-b). 

 
 

 
(a) Compression region (b) Tension region 

Fig. 1 Stress-strain relationship of concrete 
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In this equation, b denotes the element length used in the finite element analysis and Gf is the 
fracture energy that is dissipated during the formation of a crack in the unit length per unit 
thickness. This is considered to be a material property. The value of εut is derived from the fracture 
mechanics concept by equating the crack energy release with the fracture toughness of concrete Gf 

(Kwak et al. 1990). 
 
2.2 Steel 
 
The stress-strain relationship for a steel tube is assumed to be linear elastic-perfect plastic with 

an elastic modulus Es of 200GPa. When the stress exceeds the yield stress fy, the steel tube will 
exhibit plastic deformation. Because a steel tube is usually subjected to biaxial stresses in CFT, a 
von Mises yield criterion F is employed to define the elastic limit, which is written as 

2 2 2

2 1 13 ( ) / 2s s yF J f         
                  

(4) 

where J2 denotes the second stress invariant of the stress deviator tensor, σ1s is the longitudinal 
stress and σƟ is the transverse (hoop) stress. Once maximum hoop stress is determined using 
Eq.(12), the longitudinal yield stresses of the steel tube characterized by different yield stresses of 
tension fyt, and the compression fyc are given by 

   2 2 2 20.5 4 3 , 0.5 4 3yt y yc yf f f f           
            

(5) 

 
 
3. Determination of confinement effect 
 

Knowledge of confinement pressure is essential because it strongly affects the behavior and 
strength not only of the steel tube but also of concrete core (see Eqs. (1) and (5)). To obtain the 
maximum confinement pressure of CFT subjected to axial compression, the relationships between 
the stress and strain components of the constitutive materials are induced. A combination of axial 
compression and confinement pressure causes tri-axial stress in concrete. The increments in the 
stress and strains of concrete in the longitudinal direction are denoted as Δσ1c and Δε1c (see Fig. 
2(a)). Those values in the transverse direction are Δσrc and Δεrc. Thus, the stress-strain relationships 
according to the Hooke’s law become 

1
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The stresses of a compressed steel tube in CFT consist of longitudinal compression and hoop 
tension. The longitudinal stress and strain increment are denoted as Δσ1s and Δε1s, and hoop stress 
and strain are denoted as ΔσƟs and ΔεƟs (see Fig. 2(b)). The stress and strain relationships in a 
biaxially stressed steel tube are 
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(a) core concrete (b) steel tube (c) free body diagram 

Fig. 2 Stress and strain components of constitutive material 
 
 
The confinement pressure on concrete is compressive and the hoop stress of the steel is tensile 

because the surrounding steel resists the expansion of the core concrete. The relationship between 
the confinement pressure and the hoop stress can be determined from the equilibrium of the forces 
acting on the free body diagram (Fig. 2(c)), as follows 

2 ( 2 ) 0s rct D t     
                          (10) 

Both the longitudinal and transverse strains of concrete and the steel tube are equal to each 
other under the assumption of a perfect bond between the two materials. This compatibility 
condition leads to Δε1c = Δε1s and Δεrc = ΔεƟ. Simultaneously solving the stress-strain relationship, 
the force equilibrium equation and compatibility condition gives the following relationship 
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The above equation contains nonlinear properties of the concrete, in this case the Poisson’s 
ratio and the stress-strain relationship; thus, an incremental iterative numerical procedure is 
required to solve it. In addition, the maximum confinement stress can be obtained using the von-
Mises yield criteria, as the yielded steel tube fails to provide additional confinement to the inner 
concrete. According to numerical research on the stress components in CFT subjected to axial 
loading conducted by Kwak et al. (2012), the maximum hoop stress can be simply estimated in 
terms of the yield strength of a steel tube fy as σƟ,max = α fy, where the coefficient α is defined as 
follows 

6 2 30 8.77 10 2.47 10 0.13 0.206y yf f        
              

(12) 

Once α is determined, the maximum hoop stress (σƟ,max = α fy), maximum confinement stress 
(σrc in Eq.(10)), the strength of the confined concrete (f ’cc in Eq.(1)) and the longitudinal yield 
strength of the steel tube (fyt and fyc in Eq.(5)) can be calculated sequentially. To evaluate the 
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confinement effect on the structural behavior of a circular CFT, the modified material properties 
from the above equations are used in the following finite element procedure. 
 
 
4. Solution algorithm 
 

To analyze the CFT columns, a layered section approach based on the Euler beam theory was 
employed in this study. This approach and the beam theory are both well established and widely 
used in analyses of beams. Additional details pertaining to the formulation of the beam elements 
can be found in the literature (Kwak et al. 2010). In a typical Euler beam, it is common to assume 
that plane sections remain planar to represent the linearity in the strain distribution of any section 
at any loading history. As the global stiffness matrix of the structure depends on the displacement 
increments, the solution of the equilibrium equations is typically accomplished by an iterative 
method through a convergence check. The nonlinear solution scheme selected in this study uses an 
arc-length method to observe the post-peak behavior; that is, an incremental-iterative method is 
used. All of the remaining algorithms, from the construction of an element stiffness matrix to the 
iteration at each load step, are shown in Fig. 3. 

 
 

Fig. 3 Nonlinear finite element procedure 
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5. Verification 
 

The experimental results are used to verify the numerical analysis model proposed in this paper. 
Load combinations of each experimental set up in this section are carefully selected to verify the 
accuracy of the proposed model. A total of three distinct cases of load combinations are selected. 
These are 1) pure bending, 2) eccentric compression, and 3) fixed axial loading with a gradual 
increase in the bending moment. The behaviors of each CFT column are investigated through the 
moment-curvature relationships or by the ultimate axial loads. In addition, the ultimate resisting 
capacities of a series of test specimens with equal geometric and material properties with various 
eccentricities facilitate the determination of the axial load and the bending moment interaction 
diagram. 

 
5.1 Pure bending 
 
Direct application of the proposed confinement model for concrete may be inappropriate for a 

pure bending problem because the distribution of the confinement pressure is nonlinear along the 
section depth (see Fig. 4). Therefore, the uniaxial strength of each layer in a concrete section is 
different and the stress-strain relationship of each layer should also be uniquely defined. However, 
more than half of the concrete layer is in the tension region, and the slope of the softening branch 
of the confined compressive concrete is moderate. Thus, it can be expected that the proposed FE 
model, a relatively simplified 1D beam analysis, can successfully evaluate the macro behavior of a 
CFT column. 

 
 

  
(a) Y direction (b) Z direction 

Fig. 4 Typical transverse stress distribution of confined concrete under a pure bending condition 
 
 
Elchalakani et al. (2001) used a unique pure bending rig to obtain the behavior of a circular 

CFT under pure bending moment. The advantage of this rig is its ability to apply a pure bending 
moment condition over the middle span of a test specimen without inducing significant axial or 
shear forces. The moment-curvature relationships between four typical specimens are illustrated in 
Fig. 5. Additionally, numerical results using unconfined material properties were conducted to 
investigate the confinement effects on the pure bending behavior of a circular CFT. Detailed 
properties of the test specimens and the measured ultimate moments from the experimental and 
numerical investigations are given in Table 1. The depth-to-thickness ratios of the test specimens 
generally range from 12.8 to 40.2, as achieved by reducing the diameter from 101.83mm to 
33.78mm. The yield strengths of the steel tubes range from 365MPa to 460MPa, while the 
unconfined compressive strength of concrete is consistent at 23.4MPa. 
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(a) CBC1 (b) CBC4 

(c) CBC6 (d) CBC9 

Fig. 5 Moment curvature relationships of pure bending specimens 

 
Table 1 Properties of pure bending specimens 

specimen 
D 

(mm) 
t 

(mm) 
D/t 

fy 
(MPa)

f'c 
(MPa)

Es 
(GPa)

Mu,exp 

(kN-m)
Mu,conf 

(kN-m) 
Mu,unconf 

(kN-m) 

CBC1 101.83 2.53 40.2 365 23.4 200 11.03 11.35 11.02 

CBC2 88.64 2.79 31.8 432 23.4 210 10.96 11.02 10.89 

CBC3 76.32 2.45 31.2 415 23.4 218 6.82 6.84 6.72 

CBC4 89.26 3.35 26.6 412 23.4 211 11.23 11.42 11.27 

CBC5 60.65 2.44 24.9 433 23.4 211 3.97 4.02 3.96 

CBC6 76.19 3.24 23.5 456 23.4 205 9.90 9.74 9.55 

CBC7 60.67 3.01 20.2 408 23.4 204 4.99 4.80 4.72 

CBC8 33.66 1.98 17 442 23.4 207 0.92 0.93 0.93 

CBC9 33.78 2.63 12.8 460 23.4 209 1.20 1.19 1.22 
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It can be observed in Fig. 5 that both the confined and the unconfined material models 
successfully estimate the ultimate bending moment of CFT under pure bending. Therefore, the 
ultimate moment is not affected by the confinement effect. That is, the strength enhancement of 
CFT cannot normally be expected in a pure bending condition. The design guideline in the 
Eurocode 4 (2004) suggests that the resistance of the cross-section may be calculated while 
assuming rectangular stress blocks. Moreover, the reduction factor can be ignored, especially for 
concrete-filled sections. An analytical investigation of Fig. 5 supports this guideline. On the other 
hand, it is also observed that the results of the confined model exhibit much more flexible behavior 
compared to that of the unconfined model. Hence, to avoid an overestimation of the stiffness, a 
rigorous analysis considering the confinement effect may be inevitable to design CFT as a beam 
member. 

 
 
5.2 Eccentric axial loading 
 
Eccentric compression combines compression and bending. 16 columns under eccentric axial 

loading are examined from O’shea and Bridge (1998), for which Table 2presents the dimensions 
and the material properties. This table also presents the combined compression and bending 
capacity values for these columns as predicted numerically by the proposed method and 
experiments. The test specimens have a large variety of D/t ratios, axial compressive strengths of 
concrete and yield strengths of steel tubes. The different eccentricities have various combinations 
of axial loading and bending moment proportions. 

Fig. 6 illustrates the ratios between capacities of these CFT short columns and the predictions 
of the numerical model. Those ratios in Eurocode 4 predictions are also plotted. As shown in Fig. 6, 
it is clear that the numerical results obtained from this study are in excellent agreement with those 
obtained from the experiment, thus confirming the validity of the proposed model. Therefore, the 
proposed method demonstrates very good analytical predictions of the ultimate strength levels of 
CFT. In this experimental set up, the eccentricities are mainly less than 0.1D; thus, the following 
prediction formula for the axial governing region in Eurocode 4 was applied 

, 1 y
pl Rd a a yd c cd c

ck
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D f
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Here, 0 0(1 )(10 / )a a a e D      and 0 (1 10 / )c c e D   . In addition, Fig. 6 shows that 
the predictions by Eurocode 4 significantly overestimate the ultimate axial strength of CFT. 
Therefore, an estimation using Eurocode 4 with a small amount of eccentricity is dangerous and a 
modification is required. 

An interaction curve for the axial force and the bending moment can be obtained by a series of 
experiments with various eccentricities. These experiments for a circular CFT were conducted by 
Furlong (1967). The diameter of the specimen is 127mm, the thickness is 2.41mm, f ’c is 35MPa, fy 
is 280MPa and the slenderness ratio kl/r is 26.02. The ultimate resisting capacities from the 
experimental results, predicted by Eurocode 4, the numerical model using a confined model and 
that using an unconfined model are illustrated in Fig. 7. 
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Table 2 Properties and ultimate strength of eccentric compression specimens 

No. Specimen 
D 

(mm) 
t 

(mm) 
L 

(mm)
f’c 

(MPa)
ff

(MPa)
Es

 

(MPa)
e 

(mm) 
Pexp

 

(kN) 
Panal

 

(kN) 

1 S30E250B 165 2.82 580.5 48.3 363.3 200,588 7.0 1,525 1,268

2 S20E250A 190 1.94 661.0 41.0 256.4 204,686 8.6 1,533 1,281

3 S12E250A 190 1.13 663.5 41.0 185.7 178,366 8.5 1,229 1,060

4 S10E250A 190 0.86 662.0 41.0 210.7 177,035 7.4 1,219 1,104

5 S30E150B 165 2.82 580.0 48.3 363.3 200,588 17.2 1,123 912 

6 S20E150A 190 1.94 664.0 41.0 256.4 204,686 16.2 1,284 1,216

7 S16E150B 190 1.52 662.0 48.3 306.1 207,403 15.5 1,260 1,211

8 S12E150A 190 1.13 664.0 41.0 185.7 178,366 18.9 1,023 1,026

9 S10E150A 190 0.86 663.0 41.0 210.7 177,035 13.9 1,017 1,005

10 S30E280A 165 2.82 579.5 80.2 363.3 200,588 9.4 1,940 1,573

11 S20E280B 190 1.94 662.5 74.7 256.4 204,686 10.0 2,203 1,931

12 S10E280B 190 0.86 665.5 74.7 210.7 177,035 8.6 1,910 1,780

13 S30E180A 165 2.82 579.5 80.2 363.3 200,588 17.9 1,653 1,173

14 S20E180B 190 1.94 663.0 74.7 256.4 204,686 20.8 1,730 1,866

15 S16E180A 190 1.52 663.5 80.2 306.1 207,403 14.3 1,925 1,683

16 S10E180B 190 0.86 665.0 74.7 210.7 177,035 17.9 1,532 1,732

 

Fig. 6 Comparison of ultimate strengths  
subjected to eccentric compression 

Fig. 7 Interaction curves for eccentric  
compression 

 
 

The interaction curve predicted by the numerical analysis considering the confinement effect is 
best fit to the experimental results. Also, the provisions in Eurocode 4, a simplified method, 
provide a reasonable estimation of the interaction curve. It should be noted that even an indirect 
consideration of the confinement effect by a rectangular stress block can successfully predict the 
ultimate resisting capacity of CFT. Fig. 7 shows that the resisting capacities of CFT predicted by 
the confined model and the unconfined model are nearly equivalent in a moment-dominant region. 
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Table 3 Properties of the combined axial force and moment specimens 

Specimen 
Naxial 
(kN) 

D 
(mm) 

t 
(mm) 

L 
(mm)

fy 
(MPa)

f‘c 
(MPa)

Mu,exp 

(kN-m)
Mu,conf 

(kN-m) 
Mu,unconf 

(kN-m) 

CU0 0 280 4 1100 285 24.2 131 133 133 
CU023 542 280 4 1100 285 24.2 155 155 137 
CU034 812 280 4 1100 285 24.2 160 164 144 
CU045 1200 280 4 1100 288 29.1 183 194 129 
CU056 1354 280 4 1100 285 24.2 171 167 102 
CU074 2000 280 4 1100 288 29.1 159 165 68 

 

(a) CU023 (b) CU034 

(c) CU045 (d) CU074 

Fig. 8 Momnet curvature relationship of combined axial force and bending specimens 
 
 

This coincides with the pure bending cases. However, the unconfined model significantly 
underestimates the resisting capacity in an axial-force-dominant region despite the relatively low 
confinement pressure, even when a large D/t ratio of 52 is applied. For example, the predicted 
moment capacity at an axial force of 600kN using the unconfined model is roughly half that of the 
confined model. 
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5.3 Axial force and bending moment combination 
 
Liu et al. (2003) conducted an experiment on CFT specimens subject to a combination of axial 

force and bending moment. In this experiment, an axial actuator supplies axial compression and 
lateral actuators provide two-point lateral loading onto a rigid body connected to each end of a 
CFT specimen. Therefore, the axial force and bending moment can be independently applied. In 
each test, a certain level of axial compression is initially applied and the bending moment is then 
gradually applied until failure. Therefore, the moment-curvature relationships under various axial 
load levels can be obtained. Detailed properties of seven test specimens are given in Table 3. 
Every specimen has the same dimensions, but specimens CU045 and CU075 are composed of 
concrete with slightly higher strengths compared to the others. The numbers in the specimen 
names denote the percentage of loaded axial force with respect to the ultimate axial strength of the 
section. 

Comparisons of the moment-curvature relationships between the experimental and the 
numerical prediction using confined model and the unconfined model are illustrated in Fig. 8. The 
order of the plots is sorted by specimen name, which is equal to sorting by the applied axial force 
level. The results of the analysis are in good agreement with not only the predictions of the 
ultimate moment but also the nonlinear behavior of the CFT columns. Note that most of the 
analytical results slightly underestimate the overall moment-curvature behavior. That is, the results 
of the analytical model are on the safe side. Therefore, the proposed model may be successfully 
adopted for the design procedure without sacrificing any accuracy. The ultimate moments 
predicted by the unconfined model significantly decreased as the initial fixed axial force increased. 
This is in agreement with the interaction curves shown in Fig. 7, also confirming the importance of 
considering the confinement effect in numerical evaluations of the behavior of CFT columns. 
 
 
6. Evaluation of the design recommendation 

 
Eurocode 4 (2004) is the only design guideline for confined composite members considering 

the confinement effect. It provides the most accurate predictions of the ultimate resisting capacity 
(Giakoumelis et al. 2004). This code also considers the slenderness effect by adopting the relative 
slenderness λ, which is a function of the column length L , despite the fact that the limitation of λ < 
0.5 implies a short column. In addition, the axial compression and bending moment interaction 
curve is calculated using rectangular stress blocks, as shown in Fig. 9. The tensile strength of the 
concrete is typically neglected. 

According to the above method, there is a discontinuity in the interaction curve (see the black 
solid line in Fig. 9). Moreover, previous overestimations of Eurocode 4 shown in Fig. 7 which 
shows eccentrically loaded cases with eccentricities less than or equivalent to 0.1D, implying that 
the provision of Eurocode 4 in cases involving low eccentricity is not valid. Thus, the author 
suggests a slight modification in the form of a linear connection between Npl,Rd for e=0 and the 
point corresponding to e=0.1D at the stress-block-based interaction curve (see the gray solid line 
in Fig. 9). The axial force-bending moment interaction diagram represents the ultimate resisting 
capacity of the column member. As mentioned earlier, the provision in Eurocode 4 suggests that 
plastic resistance to a concentric axial load should take into account the slenderness ratio of the 
CFT column. Thus, the validity of Eq. (13) according to various slenderness ratios is investigated 
in a comparison with a 1D beam finite element analysis. The following material and geometric  
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Fig. 9 Interaction curve and corresponding stress distribution in Eurocode 4 

 
 
properties are assumed: Es = 200 GPa, fy = 350 MPa, f ’c = 35 MPa, D = 300 mm and t = 15 mm. 
Three slenderness ratio values (kL/r = 10, 20 and 30) are assessed. The slenderness ratio is limited 
to 30, as the resisting capacity of columns with a slenderness ratio greater than 30 is seriously 
influenced by the P-Δ effect (Kwak et al. 2010) and because slender columns do not exhibit the 
beneficial effects of composite behavior (Huang et al. 2012). The resulting interaction curves are 
illustrated in Fig. 10. 

Fig. 10 shows that there are discrepancies between analysis result and prediction from the 
Eurocode 4 except for slenderness ratio 30. Analysis result presents that the relatively long 
columns have less resisting capacity due to the P-Δ effect. Therefore, Eurocode 4, which ignores 
the P-Δ effect when e/D > 0.1, gives a conservative estimation. Moreover, a region in which the 
axial force is dominant, i.e., e/D < 0.1, predictions of the Eurocode 4 seem to give underestimated 
values, except when the axial compressive strength at kL/r = 10. 
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Fig. 11 Interaction diagrams of CFT in accordance with the D/t ratio 
 
 

This can explain the overestimations of the axial resisting capacities of Eurocode 4 for the 
experimental specimens depicted in Fig. 6, as the slenderness ratios of the test specimens are 
commonly around 15. Considering that a column is an axial member and is usually exposed to 
small eccentricities, underestimation of the axial region may yield an uneconomical design. Thus, 
the assumption of full plasticity for a very short CFT column is inappropriate. However, 
predictions by Eurocode 4 are less than those obtained from the analyses in all of the investigated 
slenderness ratios. Hence, Eurocode 4 provides a safety estimation of the resisting capacity of a 
normal-strength CFT column. 

Fig. 11 presents the ultimate resisting capacities of the CFT columns for various values of D/t 
ratios. The material properties assume a normal grade, in this case fy = 350 MPa and f ’c = 35 MPa. 
The slenderness ratio is kL/r =30, as previously mentioned, to ensure good agreement between 
Eurocode 4 and the numerical results. The diameters are fixed at 300mm and the thickness of the 
steel tube ranges from 5mm to 30mm in all cases, in accordance with the D/t ratios of 10, 20, 40 
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and 60. Eurocode 4 restricts the maximum values of the D/t ratio to D/t = 90ൈ235/fy; thus, D/t = 
60.4 is the maximum value for the 350MPa steel tube. Generally, Eurocode 4 provides a 
reasonable estimate of the interaction curve for the overall D/t range. A slight improvement of 
resisting capacity was observed when thick (30mm) steel tube is adopted(see Fig. 11(a)). This may 
be due to the fact that large confinement pressure deteriorate the longitudinal yield strength of steel 
tube as mentioned in previous study (Kwak et al. 2012).The ultimate resisting capacity variations 
due to yield strengths of the steel tubes are plotted in Fig. 12. The yield strengths of the steel tubes 
ranged from 250 MPa to 750 MPa, with f ’c = 35 MPa, D = 300mm, t = 15mm and kL/r = 30. It 
should be noted that the confinement pressure is very low if a low-strength steel tube, such as the 
250 MPa tube here, is used. In this case, the corresponding maximum hoop strength indicator α is 
0.06, which is less than 1/3 of the value of α at 0.206 for a yield strength of more than 350MPa. 
Even with a small amount of confining pressure, analysis result exhibits very good agreement with 
Eurocode 4. It can be indirectly concluded that the relationship between the yield strength of 
concrete and the confinement effect is considerable for a relatively low-strength steel tube. 

 
 

(a) fy = 250 MPa (b) fy = 350 MPa 

(c) fy = 550 MPa (d) fy = 750 MPa 

Fig. 12 Interaction diagrams of CFT in accordance with the strength of steel tube 
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(a) f’c = 25 MPa (b) f’c = 30 MPa 

(c) f’c = 55 MPa (d) f’c = 75 MPa 

Fig. 13 Interaction diagrams of CFT in accordance with the strength of concrete 
 
 

On the other hand, Eurocode 4 appears to non-conservatively predict the ultimate resisting 
capacity of a CFT column as the yield strength of the steel tube increases. The interaction curve 
becomes linear for a high-strength steel tube, such as the 750MPa tube here. In this case, the ratio 
of the load carried by the steel to entire the cross-section, Asfy / (Asfy + Acf’c), is 0.85. Therefore, 
the behavior of the CFT column is governed by the steel tube. In addition, the difference between 
the confined model and the unconfined model is slight. Therefore, the combination of a high-
strength steel tube and normal-strength concrete is not desirable. 

Interaction diagrams with various strengths of concrete are shown in Fig. 13. The concrete 
strengths ranged from 25MPa to 75MPa, with fy = 350MPa, D = 300mm, t =15mm and kL/r =30. It 
can be observed that Eurocode 4 is in quite good agreement with the analysis results for CFT 
columns with normal-strength concrete (f ’c < 35 MPa). However, significant conservative 
predictions of the axial resisting capacity are observed when the compressive strength of concrete 
is relatively high. Furthermore, there are only slight differences in the concentric axial strength of 
CFT between the predictions of Eurocode 4 and the unconfined case. This can be explained by the 
equation for the axial plastic resistance given by Eurocode 4 (see Eq. (13)). The plastic capacity is 
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represented as Npl,rk = ηa0Asfy + (1+k)Acf’c where k = ηa0 tfy / Df’c. Therefore, the proportions of the 
axial resisting capacity provided by the steel tube and the concrete are simply represented by the 
coefficients ηc0 and k, respectively. While ηa0 linearly increases from 0.915 to 0.96 as the strength 
of the concrete ranges from 25MPa to 75MPa, the coefficient k decreases dramatically from 0.15 
to 0.01. Thus, the compressive strength increment of concrete due to confinement pressure is 
neglected as the strength of the unconfined case increases. However, this underestimation is not 
serious because the error is less than 10%. Meanwhile, the overestimations of Eurocode 4 are near 
the point of balanced eccentricity, but the error is also less than 10%. 
 
 
7. Conclusions 

 
A one dimensional fiber beam finite element model to evaluate the behavior and ultimate 

resisting capacity of a circular CFT is proposed by adopting a proper material model for the 
confinement effect. The validity of the proposed numerical analysis model is established by 
comparing the analytical predictions with results from previous experimental studies about pure 
bending and eccentric compression cases. Moreover, the analysis result gives accurate estimations 
of both the behavior and the ultimate resisting capacity of CFT columns, while the analysis result 
using an unconfined material model significantly underestimates these values. 

The ultimate resisting capacities predicted by the proposed numerical model and the design 
guidelines in Eurocode 4 are compared. The predictions by Eurocode 4 and the full plasticity 
interaction diagrams of CFT columns show good agreement with the analysis when normal-
strength materials are used and when the column is relatively slender (kL/r=30). In such a range, 
the modified version of Eurocode 4 successfully estimates the resisting capacities of CFT with 
variations of the depth-to-thickness ratio. In addition, overestimations are observed when high-
strength concrete is combined with a normal-strength steel tube, and vice versa. Although rigorous 
analysis involves increased computational effort, it should be done for a proper design of such a 
column. 
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