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Abstract. This paper presents a theoretical investigation in free vibration of sigmoid functionally graded 
beams with variable cross-section by using Bernoulli-Euler beam theory. The mechanical properties are assumed 
to vary continuously through the thickness of the beam, and obey a two power law of the volume fraction of 
the constituents. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a 
family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of 
the S-FGM beam are obtained for three different types of boundary conditions associated with simply 
supported, clamped and free ends. Results show that, all other parameters remaining the same, the natural 
frequencies of S-FGM beams are always proportional to those of homogeneous isotropic beams. Therefore, 
one can predict the behaviour of S-FGM beams knowing that of similar homogeneous beams. 
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1. Introduction

The concept of functionally graded materials (FGMs) was first introduced in 1984 as ultrahigh 

temperature-resistant materials for aircrafts, space vehicles, nuclear and other engineering applications. 

Since then, FGMs have attracted much interest as heat-resistant materials. Functionally graded materials

are heterogeneous composite materials, in which the material properties vary continuously from one 

interface to the other. This is achieved by gradually varying the volume fraction of the constituent 

materials. The continuity of the material properties reduces the influence of the presence of interfaces 

and avoids high interfacial stresses. The outcome of this is that this class of materials can survive 

environments with high-temperature gradients, while maintaining the desired structural integrity. 

However, in the case of adding an FGM of a single power-law function to the multi-layered composite, 

stress concentrations appear on one of the interfaces where the material is continuous but changes 

rapidly (Lee and Erdogan 1995, Bao and Wang 1995). Therefore, Chung and Chi (2001) defined the 

volume fraction using two power-law functions to ensure smooth distribution of stresses among all the 

interfaces and this functionally graded material is thus called sigmoid functionally graded material (S-

FGM). Most researchers use the power-law function or exponential function to describe the volume fractions.

However, only a few studies used sigmoid function to describe the volume fractions. Therefore, FGM 
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beams with sigmoid function will be considered in this paper in detail. Many studies have been conducted on 

the static behaviour of FGM structures (Zhong and Yu 2007, Benatta et al. 2008, Yang et al. 2008, Jabbari 

et al. 2008, Sallai et al. 2009, Benatta et al. 2009). However, knowledge of free vibration characteristics of 

beams forms an important aspect in assessing the structural integrity. In addition, the research effort 

devoted to free vibration of FG beams has been very limited. Ying et al. (2008) obtained the exact 

solutions for bending and free vibration of FG beams resting on a Winkler–Pasternak elastic foundation 

based on the two-dimensional elasticity theory by assuming that the beam is orthotropic at any point 

and the material properties vary exponentially along the thickness direction. Li (2008) proposed a new 

unified approach to investigate the static and the free vibration behavior of Euler-Bernoulli and 

Timoshenko beams. Sina et al. (2009) used a new beam theory different from the traditional first-order shear 

deformation beam theory to analyze the free vibration of FG beams. Pradhan and Sarkar (2009) studied the 

bending, buckling and vibration of tapered FGM beams using Eringen non-local elasticity theory. Both 

Euler-Bernoulli and Timoshenko beam theories are considered in their study and the associated differential

equations are solved employing Rayleigh-Ritz method. Pradhan and Phadikar (2009) used general 

differential quadrature (GDQ) and non-local elasticity theory to study bending, buckling and vibration 

behaviors of nonhomogeneous naotubes. Thermal post-buckling behaviour of uniform slender FGM beams is 

investigated by Sanjay Anandrao et al. (2010) using the classical Rayleigh-Ritz (RR) formulation and the 

versatile Finite Element Analysis (FEA) formulation. im ek and Kocaturk (2009) have investigated the 

free and forced vibration characteristics of an FG Euler-Bernoulli beam under a moving harmonic load. In a 

recent study, im ek (2010) has studied the dynamic deflections and the stresses of an FG simply-

supported beam subjected to a moving mass by using Euler–Bernoulli, Timoshenko and the parabolic 

shear deformation beam theory. im ek (2010) studied the free vibration of FG beams having different 

boundary conditions using the classical, the first-order and different higher-order shear deformation 

beam theories. The non-linear dynamic analysis of a FG beam with pinned-pinned supports due to a 

moving harmonic load has been examined by im ek (2010) using Timoshenko beam theory. Yas et al. 

(2011) presented three dimensional solutions for free vibration analysis of functionally graded fiber 

reinforced cylindrical panel by using differential quadrature method (DQM). 

In modern engineering design, there is increasing use of composite beams or of beams made of FGM. 

Hence, beams are used as structural component in many engineering applications and a large number of 

studies can be found in literature about transverse vibration of uniform isotropic beams (Gorman 1975).

Non-uniform beams may provide a better or more suitable distribution of mass and strength than 

uniform beams and therefore can meet special functional requirements in architecture, robotics, aeronautics

and other innovative engineering applications and they have been the subject of numerous studies. 

However, it is more difficult to obtain general closed form solutions for the static and dynamic response 

of beams with arbitrary non-homogeneity and arbitrary varying cross-sections, since the governing 

equations of such beams possess variable coefficients. In the past, many methods have been proposed 

for investigating the dynamic response of non-uniform Euler-Bernoulli beams; for example, the transfer 

matrix method (Chu and Pilkey 1979) the finite element method (Bathe 1982), the boundary element 

method (Beskos 1987), the dynamic stiffness method (Just 1977), the dynamic method in conjunction 

with modal analysis (Ovunk 1974, Beskos 1979), the transformed dynamic stiffness method combined

with the Laplace transform (Beskos and Narayanan 1983), the step-reduction method (Yeh 1979, Yeh et 

al. 1992), and the semi-analytic method (Lee 1990). Laura et al. (1996) used approximate numerical 

approaches to determine the natural frequencies of Bernoulli beams with constant width and bilinearly 

varying thickness. Datta and Sil (1996) numerically determined the natural frequencies of cantilever 

beams with constant width and linearly varying depth. Caruntu (2000) examined the nonlinear vibrations
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of beams with rectangular cross section and parabolic thickness variation. Recently, Elishako and Johnson

(2005) investigated the vibration problem of a beam which has axially non-uniform material properties. 

Free vibration of stepped beams has also received a considerable attention and a comprehensive review 

is given by Jang and Bert (1989a, b). Some of these results can also be found in the monograph by 

Elishako (2005). Hence, the dynamic behaviour of these beams with varying cross-section has been a 

subject of active research. However, research work on FGM structures with varying cross-section is 

scarce. By using the Rayleigh-Ritz method, Guven et al. (2004) considered the transverse vibration of a 

polar orthotropic rotating solid disk whose thickness varies exponentially with any power of the radius. 

The disk was assumed to be under a constant radial stress. Toso and Baz (2004) presented numerical 

solutions for the wave propagation problem of a periodic shell with tapered wall thickness. Theoretical 

results predicted by the transfer matrix method and the wavelet transformation method were compared 

with and verified against the experimental data. Their study demonstrated that a combination of the use 

of FGMs and tapered geometry gives more flexibility in designing a structure with better performance. 

All of these studies, except (Guven et al. 2004), focused on the free vibration of tapered structures only. 

Previous studies clearly show that vibration characteristics of beams structures with continuously 

changing cross-section have significant features and are not yet fully addressed. 

The objective of this paper is to study the free vibration of S-FGM beams with exponentially varying 

width. The classical Bernoulli-Euler beam theory is used in the present study. In this paper, we assume 

that the S-FGM beams are made from two constituent materials, whose material properties are graded 

in the thickness direction according to a power-law distribution of material composition. Comprehensive

numerical results are obtained analytically for beams with clamped-free, hinged-hinged, and clamped-

clamped boundary conditions. Results show that the natural frequencies of S-FGM beams can be 

obtained from the corresponding results for isotropic beams so that a direct analysis of S-FGM beams is 

not necessary. These results confirm those obtained by Abrate (2006) in the case of P-FGM structures 

with uniform section and in which material properties vary along the beam thickness only according to 

power law distributions. 

2. Material properties of S-FGM beams

 

In the case of adding an FGM of a single power-law function to the multi-layered composite, stress 

concentrations appear on one of the interfaces where the material is continuous but changes rapidly 

(Lee and Erdogan 1995, Bao and Wang 1995). Therefore, Chung and Chi (2001) defined the volume 

fraction using two power-law functions to ensure smooth distribution of stresses among all the interfaces.

The two power-law functions are defined by

(1a)

(1b)

where gi, (i = 1,2) is the volume fraction and p is the power law index which takes values greater than or 

equal to zero. 
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By using the rule of mixture, the effective material properties p, such as Young's modulus E, the Poisson

ratio ν, and mass density ρ can be expressed as

(2a)

(2b)

where P1 and P2 denote the materials properties of the bottom and top surfaces of the S-FGM beam, 

respectively (z = ±h/2).

Fig. 1 shows the volume fraction distribution of ceramic phase through the thickness for several values

of the power law index. The value of p equal to zero represents a fully ceramic beam and infinite p, a 

fully metallic beam. The variation of the composition of ceramics and metal is linear for p = 1. The 

volume fraction rapidly changes near the top and bottom surfaces for p < 1 but vary rapidly near the 

middle surface for p > 1. Therefore, if the S-FGM plate is used as the undercoat in a laminated material, 

the material distribution with p > 1 is the better choice.

3. Theoretical formulations

Consider an elastic S-FGM beam of length L and constant thickness h, with exponentially varying 

width. Based on the Euler-Bernoulli hypothesis, the displacements parallel to the x -and z -axes of an 

arbitrary point in the beam, denoted by  and , respectively, take the form of

(3a)

 

(3b)

P z( ) g1 z( )P2 1 g1 z( )–[ ]P1 for  0 z h/2≤ ≤+=

P z( ) g2 z( )P2 1 g2 z( )–[ ]P1 for  h/2– z 0≤ ≤+=

u x z t, ,( ) w x z t, ,( )

u x z t, ,( ) u x t,( ) z
∂w

∂x
-------–=

w x z t, ,( ) w x t,( )=

Fig. 1 Variation of the volume fraction through the thickness of a S-FGM beam with differing material 
parameters p.
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where u(x, t) and w(x, t) are the displacement components of a point in the mid-plane. The normal 

resultant force N, bending momentM, and transverse shear force Q are related to the normal strain

 and flexural curvature  by

(4)

and

(5)

whrer b is the width of the cross-section which is assumed to vary exponentially along the length of the 

beam.

The equations of motion for the beam, with the axial inertia term being neglected, can be derived as 

follows

(6a)

(6b)

where

(7)

The Eq. (6b) can be rewritten as follows

(8)

with 

For harmonic vibrations, the displacement can be expressed as

 

(9)

where ω is the natural frequency of the FGM beam. Substitution of Eq. (9) into Eq. (8) leads to the 

following ordinary differential equation.
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(10)

Here µ is a real constant and defined as µ2 = ω2 / ζ. 

Solution of Eq. (10) requires the geometry of the cross-section of the beam to be specified. The 

characteristic height of the cross-section or the thickness of the beam is kept constant and the 

characteristic width of the cross-section is assumed to vary exponentially along the length of the beam 

so that b(x) = b0e
δx. Here δ is the non-uniformity parameter and b0 is the width of the cross-section of 

the beam at the left end of the beam where x = 0 that is b0 = b(0). 

For the family of the cross-sections with exponentially varying characteristic width and constant 

characteristic height, Eq. (10) reduces to

(11)

Solution of Eq. (11) can be obtained as

(12)

where

   

The present study considers the S-FGM beams with three different end supports, i.e., a beam with left 

end clamped  and the other end free (clamped-free), a beam hinged at both ends (hinged-hinged), and a 

beam clamped at both ends (clamped-clamped): 
● For a clamped-free beam

(14a)

(14b)

● For a hinged-hinged beam

(15a)

(15b)

● For a clamped-clamped beam
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(16b)

4. Mathematical solutions

Solution of Eq. (11) subjected to either one of the boundary conditions given by Eqs. (14) – (16) can 

be written as

. (17)

Here the coefficients b1 and b4 depend on δ, p and ω. Application of the boundary conditions in each 

case yields an implicit equation for the determination of the natural frequency ω for a given non-

uniformity parameter δ and the material index p. The coefficients b1, b4 and the natural frequency 

equations are given below for each physical case considered in the present study:

● Case 1: S-FGM beam hinged at both ends (hinged-hinged)     

(18)

(19)

(20)

● Case 2: S-FGM beam clamped at both ends (clamped-clamped)

(21)

(22)

(23)

● Case 3: The left end of the S-FGM beam is clamped while the right end is free (clamped-free)

(24)
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(25)

(26)

5. Physical meaning of the quantities A11, B11, D11 and I1 

 

If both the Young’s modulus and the Poisson’s ratio are considered for calculating the coefficients 

(A11, B11, D11), the integration will turn out to be very complicate. Delale and Erdogan (1983) indicated 

that the effect of Poisson’s ratio on the deformation is much less than that of Young’s modulus. Thus, 

Poisson’s ratio of the beams is assumed to be constant. 

Substituting the gradation of the Young’s modulus and mass density of S-FGM beams in (2) into the 

definition of coefficients in Eqs. (5) and (7) respectively, we obtain the coefficients of S-FGM beams

(27a)

(27b)

(27c)

(27d)

For S-FGM beams with constant Poisson’s ratio, the parameters A11, B11 and D11 are defined in Eq. (5) as

(28)

Therefore, it is clear that (1 − ν  2)A11 equals the area under the E(z) curve from z = −h / 2 to z = h / 2, 

as indicated in Ref (Delale and Erdogan 1983). Similarly, the parameters B11 and D11 are related to the 

first and second moments of the area under the E(z) curve from z = −h / 2 to z = h / 2 with respect to 

the z = 0 axis. In the same way, the parameter I1 from Eq. (7) is related the area under the ρ(z) curve 

from z = −h / 2 to z = h / 2. They are simplified as

● (1 − ν  2)A11 = the area under the E(z) curve from z = −h / 2 to z = h / 2 (29a)

b4

λ1

λ2

-----–=

2λ1 16 λ2 δ–( )µ2
e

2λ
2

2λ2 δ+( )2
– 2 δ

2
2µ–( )λ2 δ

 3
–[ ]( ) λ1 δ+cos  [8 3δ 4λ2–( )µ2

e
2λ

2

+ 2λ2 δ+( )2

8λ1

2
λ2 δ

3
2δµ+–( )] λ1 4λ1λ2e

λ
2

2λ2 δ+( )2
2δλ2 δ

 2
2µ+ +–( ) 8µ

2
+[ ]+sin× 0=

A11

h

1 ν
2

–
--------------

E1 E2+

2
------------------⎝ ⎠

⎛ ⎞=

B11

h
2

E1 E2–( )

8 1 ν
2

–( )
----------------------------

p
2

3p+( )
p 1+( ) p 2+( )

-----------------------------------=

D11

h
3

12 1 ν
2

–( )
-------------------------

E1 E2+

2
------------------=

I1 h
ρ1 ρ2+

2
-----------------⎝ ⎠

⎛ ⎞=

A11 B11 D11, ,( ) 1

1 ν
2

–
-------------- E z( ) zE z( ) z

2
E z( ), ,( ) zd

h/2–

h/2

∫=



Mathematical Solution for Free Vibration of Sigmoid Functionally Graded Beams with Varying Cross-Section 497
● I11 = the area under the ρ(z) curve from  z = −h / 2 to z = h / 2 (29b)

● (1 − ν  2)B11 = (1 − ν  2)A11 × (29c)

● (1 − ν  2)D11 = (1 − ν  2)A11 × (29d)

where  is the distance from the centroid of the area (1 − ν  2)A11 to the axis z = 0, and  is the second 
moment of the area (1 − ν  2)A11 with respect to the axis passing through the centroid. It can be seen 

from Eq. (29c) that the location of the centroid  can be expressed by the parameters A11 and B11 as

(30)

From Eqs. (27), the quantity B11 is positive if the Young’s moduli satisfy E1 > E2; in this case the 

location of the centroid  is also positive. Based on work presented by Sankar (2001) where ZNA = −
B11 / A11 is the location of the neutral surface of the FGM beams, it can be observed that the axes of the 

physical neutral surface and the centroid (Eq. (30)) of the area under the E(z) curve coincide. The 

neutral surfaces versus the material parameter p with different ratios of Young’s moduli are plotted in 

Fig. 2 for S-FGM beams. The results indicate that the neutral axes move far away from the z = 0 axis as 

the parameter p increases for E1 / E2 > 1 (with E1 fixed). With the same parameter p and Young’s moduli 

E1 and E2, the locations of the neutral surfaces of the S-FGM beams are closer to the middle surfaces.

6. Numerical results and discussion

We suppose that the S-FGM beam is made from a mixture of ceramic and metal and the composition 

varies from the top to the bottom surface; i.e. the top surface (z = h / 2) of the beam is ceramic-rich 

(alumina), whereas the bottom surface (z = −h / 2) is metal-rich (aluminum). Typical values for alumina 

z

I z
2

z I 

z

z
B11

A11

--------=

z

Fig. 2 Locations of the neutral surfaces versus the material parameter p for E1 = 70 GPa and varying E2.
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and aluminum are listed in Table 1 (Sallai et al. 2009, Huang and Shen 2004). It is assumed in the 

following example that the S-FGM beam thickness h = 0.1 m the slenderness ratio L / h = 10;

Table 2 lists the natural frequencies ( ) of an exponential narrowing isotropic homogeneous

beam (δ = −1 and E1 / E2 = 1). The present results agree very well with those given by Cranch and Adler

(1956) and by Tong et al. (1995).

The three first normalized natural frequencies ( ) of S-FGM beams, where ζ0 denote 

the value of ζ of an isotropic homogeneous beam (E1 / E2 = 1).

Table 3 lists the first three dimensionless natural frequencies ( ) of clamped-free (C-F), 

hinged-hinged (H-H), and clamped-clamped (C-C) S-FGM beam for a given non-uniformity parameter 

δ, where ζ0 denote the value of ζ of a fully metallic beam. It can be observed that the natural frequencies 

decrease with an increase in the volume fraction index p because this means a reduction in the 

volumetric percentage of alumina whose Young’s modulus is much higher than aluminum.

For the three cases of the boundary conditions (H-H, C-C, C-F), the natural frequencies of S-FGM beams

increase with the mode numbers. It is found that the isotropic homogeneous beams have higher 

frequencies than the graded beams. The natural frequencies for the hinged-hinged and clamped-clamped

boundary conditions are independent from the sign of δ since the implicit equations for the natural 

frequency involve δ  2 only. All the natural frequencies of the non-uniform beam are greater than those 

of the uniform beam for the clamped-clamped boundary conditions and the natural frequencies increase 

with the non-uniformity parameter δ. The fundamental natural frequency of the non-uniform beam for 

the hinged-hinged boundary conditions is observed to be decreasing with the non-uniformity parameter 

δ while the higher frequencies are increasing. All the natural frequencies of an exponentially narrowing 

beam are greater than those of the uniform beam for the clamped-free boundary conditions and increase 

with the increasing magnitude of the non-uniformity parameter δ as is shown in Table 1. However, the 

natural frequencies of an exponentially widening beam are smaller than those of the uniform beam for 

the clamped-free boundary conditions.    

In Figs (3)-(5) the normalized natural frequencies  of the non-uniform S-FGM beams are plotted 

versus the normalized frequencies of the non-uniform aluminium beams for the H-H, C-C and C-F boundary

conditions respectively. These results show remarkable proportionality between the natural frequencies 

of non-uniform S-FGM beams and those of isotropic non-uniform beams. The present observation will 

dramatically reduce the need for extensive numerical analysis of non-uniform S-FGM beams since 

µ
n

ω
n
/ ζ=

ωn ω
n
/ ζ0=

ωn ω
n
/ ζ0=

ωn

Table 1 Material properties (Sallai et al. 2009, Huang and Shen 2004)

Materials
Property

E (GPa) ρ (kg/m3) ν

Aluminum 70 2707 0.3

Alumina 380 3800 0.3

Table 2 Natural frequencies (µ
n
) for an exponentially narrowing beam (δ = −1) under the C-F conditions.  

Mode number Present Cranch and Adler (1956) Tong et al. (1995)

1 4.723 4.735 4.7347

2 24.2017 24.2025 24.2005

3 63.8645 63.85 63.8608

4 123.098  – 123.091
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their natural frequencies can be deduced from those of the isotropic plate.

Fig. 6 shows that the normalized natural frequencies of the non-uniform beam are almost proportional 

to the normalized natural frequencies of the uniform beam (δ = 0) with the same boundary condition 

especially for high natural frequencies. Hence, the high natural frequencies of non-uniform beam (with 

exponentially varying width) can be obtained from the corresponding results for uniform beam so that a 

direct analysis of non-uniform beam is not necessary.   

Table 3 First three dimensionless natural frequencies of non-uniform FGM beam with exponential width variation

δ ρ
C-F H-H C-C

0

0 6.9143 43.3312 121.3286 19.4087 77.6350 174.6787 43.9974 121.2806 237.7585

0.5 5.2682 33.0154 92.4442 14.7881 59.1526 133.0933 33.5231 92.4076 181.1559

1 5.0326 31.5388 88.3097 14.1268 56.5070 127.1408 32.0238 88.2748 173.0538

5 4.5137 28.2868 79.2038 12.6701 50.6804 114.0310 28.7217 79.1725 155.2098

10 4.4385 27.8153 77.8838 12.4589 49.8358 112.1305 28.2430 77.8530 152.6229

3.5160 22.0345 61.6972 09.8696 39.4784 88.8264 22.3733 61.6728 120.9034

1

0 5,6210 39,4074 117,7370 19.2186 77.8158 174.9620 44,2696 121.6481 238.1609

0.5 4,2828 30,0257 89,7076 14.6433 59.2903 133.3092 33,7300 92,6880 181,4624

1 4.0912 28.6829 85.6955 13.9884 56.6386 127.3470 32.2219 88,5422 173,3467

5 3,6694 25,7253 76,8592 12.5460 50.7985 114.2159 28,8994 79,4124 155.4724

10 3,6082 25,2965 75,5782 12.3369 49.9518 112.3123 28,4177 78,0889 152,8812

2.8583 20.0392 59.8708 09.7729 39.5704 88.9705 22.5117 61.8597 121.1080

2

0 5,7205 35,7418 114,8223 18,6568 78,3702 175,8168 45,1074 122,7553 239,3698

0.5 4,3586 27,2330 87,4868 14,2152 59,7128 133,9605 34,3688 93,5312 182,3835

1 4.1637 26,0149 83,5740 13,5795 57,0422 127,9692 32,8317 89,3481 174.2266

5 3,7343 23,3324 74,9565 12,1793 51,1604 114,7740 29,4463 80,1352 156,2616

10 3,6721 22,9435 73,7072 11,9763 50,3077 112,8611 28,9555 78,7996 153,6572

2.9089 18.1752 58.3887 9.4873 39.8523 89.4052 22.9377 62.4227 121.7227

-1

0 9.2878 47.5930 125.5906

0.5 7.0767 36.2626 95.6915

1 6,7602 34,6408 91,4118

5 6.0631 31.0689 81.9861

10 5,9621 30,5511 80,6196

4.7230 24.2017 63.8645

-2

0 12,3080 52,2769 129,9688

0.5 9,3778 39,8315 99,4524

1 8.9584 38.0500 95.0044

5 8,0347 34,1266 85,2083

10 7,9008 33,5578 83,7881

6.2588 26.5835 66.3745

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3
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Fig. 3 Natural frequencies of hinged-hinged S-FGM beams compared to natural frequencies of aluminum beams
with similar boundary conditions: (a) δ = 0; (b)δ = 1; (c)δ = 2.

Fig. 4 Natural frequencies of clamped-clamped S-FGM beams compared to natural frequencies of aluminum 
beams with similar boundary conditions: (a) δ = 0; (b)δ = 1; (c)δ = 2.
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Fig. 5 Natural frequencies of clamped-free S-FGM beams compared to natural frequencies of aluminum 
beams with similar boundary conditions: (a) δ = 0; (b)δ = 1; (c)δ = 2, (d) δ = −2.

Fig. 6 Natural frequencies of non-uniform beam compared to natural frequencies of uniform beams with 
similar boundary condition ( p = 1): (a) hinged-hinged; (b) clamped-clamped; (c) clamped-free.
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Fig. 7 shows the 1st, 2nd, and 5th mode shapes of beams with different boundary conditions (H-H, C-

C, C-F) and with various values of the non-uniformity parameter (δ  ). Note that the mode shape 

associated with δ = 0 corresponds to the mode shape for the uniform beam. It is found that varying width

and boundary conditions have a significant influence on the mode shapes. It may be seen from Eq. (17) 

that the amplitude of the transverse vibrations is proportional to . Therefore amplitude of the mode 

shapes for a given non-uniformity parameter δ increases with x for narrowing beams (δ  < 0) and decreases

with x for widening beams (δ  > 0). 

 

7. Conclusions

Free vibration behavior of sigmoid functionally graded beams with exponentially varying width is 

investigated by using Bernoulli–Euler beam theory. Young’s modulus of the assumed beam varies in 

the thickness direction according to two power law. It is found that the natural frequencies of non-

uniform S-FGM beams were proportional to those of the corresponding non-uniform homogenous beam. 

Then, S-FGM beams behave like homogeneous beams which mean that no special techniques or 

software needs to be developed for their analysis.
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