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Abstract: This paper presents the effects of thermal environment and temperature-dependence of the 
material properties on axisymmetric bending of functionally graded (FG) circular and annular plates. The 
material properties are assumed to be temperature-dependent and graded in the thickness direction. In order 
to accurately evaluate the effect of thermal environment, the initial thermal stresses are obtained by solving 
the thermoelastic equilibrium equations. Governing equations and the related boundary conditions, which 
include the effects of initial thermal stresses, are derived using the virtual work principle based on the 
elasticity theory. The differential quadrature method (DQM) as an efficient and robust numerical tool is 
used to obtain the initial thermal stresses and response of the plate. Comparison studies with some available 
results for FG plates are performed. The influences of temperature rise, temperature-dependence of 
material properties, material graded index and different geometrical parameters are carried out. 
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 1. Introduction

 

Functionally graded materials (FGMs) are heterogeneous composite materials with gradient 

compositional variation of the constituent (usually metal and ceramic) along the thickness direction 

which result in continuously varying material properties.

Circular and annular plates made of functionally graded materials (FGMs) under high-temperature 

environment have found in many engineering fields that need to be super heat resistant, such as the outer

wall and the engine parts of future space-planes, nuclear engineering and reactors. Hence, the investi-

gation of their thermo-mechanical performance is of great interest for engineering design and manufacture.

In comparison with the research on mechanical and thermo-mechanical bending analysis of FG rectan-

gular plates, see for example (Redy and cheng 2001, Qian et al. 2004 and Ferreira et al. 2005) and the 

related cited references within them, there is only few study for circular and annular plates. Reddy et al. (1999) 

examined the axisym-metric bending of functionally graded circular and annular plates using the first 

order shear deformation plate theory (FSDT). A general solution to the Mindlin plate problem for arbitrary 

variation of the consti-tuents was derived in terms of the isotropic Kirchhoff plate solution. Cheng and 

Batra (2000) used an asymptotic expansion method to analyze three-dimensional thermoelastic 
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deformations of functionally graded elliptic plates, rigidly clamped at the edges. Ma and Wang (2003) 

investigated the nonlinear bending and post-buckling of a functionally graded circular plate under 

mechanical and thermal loadings based on the classical plate theory. Ma and Wang (2004) employed 

the third-order shear defor-mation plate theory (TPT) to solve the axisymmetric bending and 

buckling problems of functionally graded circular plates. Relationships between the TPT solutions of 

axisymmetric bending and buckling of functionally graded circular plates and those of isotropic circular 

plates based on the classical plate theory (CPT) were presented. 

Najafizadeh and Heydari (2004) investigated thermal buckling of circular plates compose of 

functionally graded material (FGM). Equilibrium and stability equations of a FGM circular plate 

under thermal loads are derived, based on the 3rd order shear deformation plate theory. The study 

concludes that higher order shear deformation theory accurately predicts the behavior of functionally 

graded circular plate, whereas the first order and classical plate theory overestimates buckling 

temperature. Li et al. (2008) presented an analytical solution for the problem of a uniformly loaded 

FG, transversely isotropic, magneto electro-elastic circular plate with material properties being the 

exponential functions of the thickness coordinate based on elasticity theory. In another research, Li et 

al. (2008) investigated the analytical elasticity solutions for a transversely isotropic functionally 

graded circular plate subject to an axisymmetric transverse load and having material constants as 

power functions. Saidi et al. (2009) studied the axisymmetric bending and buckling of perfect 

functionally graded solid circular plates based on the unconstrained third-order shear deformation 

plate theory.. The solutions for deflections, force and moment resultants and critical buckling loads in 

bending and buckling analysis of FG circular plates based on the presented theory were given in terms 

of the corresponding quantities of the homogeneous plates based on the classical plate theory. Saidi 

and Hasani (2010) studied the thermal buckling analysis of moderate of thick functionally graded 

annular sector plates. Thermal buckling of functionally graded annular sector plate for two types of 

thermal loading, uniform temperature rise and gradient through the thickness, are investigated in their 

studies. Thermal post-buckling behavior of uniform slender FGM beams is investigated by Anandrao 

et al.(2010). They are using the classical Rayleigh-Ritz formulation and finite element analysis. The 

Von-Karman strain-displacement relation are used to account for moderately large deflection of FGM 

beams. In all the aforementioned papers, the effects of temperature-dependence of material properties 

on thermo-mechanical bending behavior of FG circular and annular plates were not considered. But it 

is well accepted that the effect of temperature-dependent mechanical properties should be taken into 

account in order to perform a more accurate analysis (Noda 1991, Malekzadeh 2009 and Malekzadeh 

et al. 2010a).

To the authors' best knowledge, the axisymmetric thermo-mechanical bending analysis of FG circular 

and annular plates with temperature-dependent material properties is not investigated previously. 

Hence, this motivates us to consider this problem. The initial thermal stresses are obtained accurately 

using the thermoelastic equilibrium equations including the out-of-plane effects. The material properties 

are assumed to be temperature-dependent and graded in the thickness direction, which can vary according 

to power law distribution. The differential quadrature method (DQM) as a simple and efficient numerical 

technique (Malekzadeh 2009, Malekzadeh et al. 2010a, Bert and Malik 1996, Malekzadeh et al. 

2010b, Malekzadeh et al. 2008) is employed to solve the governing equations. After demonstrating the 

convergence and accuracy of the method, the effects of different geometrical parameters, uniform and 

non-uniform temperature rise and temperature-dependence of the material properties on the response of 

the plates under different boundary conditions are investigated.
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2. Theoretical formulation

Consider a FG annular plate with the inner radius Ri, outer radius Ro and the total thickness h as shown

in Fig. 1. A polar coordinate system (r, θ, z) is used on the middle plane of a plate of uniform thickness 

h. The displacement components of the plate are denoted as u, v, and w in the r-, θ- and z-directions, 

respectively. 

2.1. Temperature-dependent FGMs relations 

The material properties are graded in the thickness direction according to the volume fraction power 

law distribution. The material composition continuously varies such that the top surface of the plate 

(z = h/2) is ceramic-rich whereas the bottom surface of the plate (z = −h/2) is metal-rich. Based on the 

power law distribution, a typical effective material property ‘P’ of the FG plate is obtained as

(1)

Where subscripts m and c refer to the metal and ceramic constituents, respectively; p(≥ 0) is the power 

law index or the material property graded index which takes values greater than or equal to zero; and 

T  [=T(z)] is the temperature at an arbitrary material point of the plate. 

For the FG plate constituents, i.e., ceramic and metal, the material properties are temperature-dependent

and a typical property ‘G’ of them can be expressed as a function of temperature as Kim (2005)

(2)

The coefficients Gi (i = −1, 0, 1, 2, 3) are unique to the constituent materials and cited in Table 1. 

2.2. Thermal equilibrium analysis

The thermo elastic equilibrium equations for the initial thermal stress evaluation are presented. For 

this purpose, it is assumed that the plate is stress free at the temperature T0 and then it operates in a 

thermal environment with non-uniform temperature rise or uniform temperature rise together with 

mechanical constraints at its boundaries. These conditions cause some thermal stresses in the plates and 
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Fig. 1 (a), (b) Geometry and coordinate system of the FG annular plates.
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consequently affect the deflection and stresses of the plate under mechanical loading. In this study, the 

temperature rise is assumed to be uniform or varies across the thickness of the plate and no heat 

generation source exists within the plate. Hence, the temperature distribution along the thickness 

direction can be obtained by solving the following steady state one-dimensional heat transfer equation 

through the thickness of the plate

(3)

where K[= K(z)] is the thermal conductivity of the plate. Different thermal boundary conditions can be 

considered at the top and the bottom surfaces of the plate. Prescribed temperature at the top and bottom 

surfaces are the thermal boundary conditions usually were considered in the literature for FG beams 

and plates analyses. Hence, for brevity purpose and without loss of generality, here these types of the 

boundary conditions are considered, which for plate problem become

(4a,b)

For the case of power law distribution, the solution of Eq. (3) subjected to the boundary conditions 

(4a,b) can be obtained by means of polynomial series solutions Lanhe (2004). The result is

 

(5)
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Table 1 Temperature-dependent coefficients of material properties for ceramic (ZrO2) and metals (Ti-6Al-4V) (Ref. [17]).

Material G−1 G0 G1 G2 G3

E Ti-6Al-4V 0 122.7 −4.605 × 10 − 4 0 0

ZrO2 0 132.2 −3.805 × 10 − 4
−6.127 × 10−8 0

ν Ti-6Al-4V 0 0.2888 −1.108 × 10 − 4 0 0

ZrO2 0 0.3330 0 0 0

α Ti-6Al-4V 0 7.43 × 10−6 7.483 × 10 − 4
−3.621 × 10−7 0

ZrO2 0 13.3 × 10−6
−1.421 × 10 − 3 9.549 × 10−7 0

K Ti-6Al-4V 0 6.10 0 0 0

ZrO2 0 1.78 0 0 0
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Due to axisymmetric temperature distribution and the geometrical periodicity of the annular plate, the 

displacement components of an arbitrary point within the plate are assumed to be u0 = u0(r, z) and 

w0 = w0 (r, z), i.e. the displacements of an arbitrary point of plate along the r- and z-directions, respectively. 

Hereafter, a subscript ‘0’ is used to represent the deformation field variables and the stress components 

in the initial equilibrium state of the plate under thermal loading.

The thermoelastic equilibrium equations and the related boundary conditions can be obtained by 

using the virtual work principle

(6)

where ε0ii and σ0ii (i = r, θ, z)are the normal components of the strain and stress tensor, respectively; γ0rz

and σ0rz are the shear components of the strain and the stress tensor. Also, the integral in this equation 

represent the variation of the elastic potential energy of the plate.

Employing the small deformation assumption, the strain-displacement relations become

(7a-d)

Also, the stress-strain relations can be written as

(8)

where Cpq = [Cpq(z,T); p,q = 1,2,3]are the elastic constants; α  [= α  (z,T)] is the thermal expansion 

coefficient and ∆T[= T(z) −   T0] is the temperature rise at an arbitrary material point of the plate. The 

material elastic coefficients Cpq for an isotropic plate are related to the elastic material properties as 

follows

(9a-c)

where E = [E(z,T)] and v = [v(z,T)] are Young’s modulus and Poisson’s ratio, respectively. 

Substituting Eqs. (7) and (8) into Eq. (6) and performing the integration by part, the thermoelastic 

equilibrium equations and the related boundary conditions can be derived in terms of the displacement 

components as, 

 Thermoelastic equilibrium equations
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                     (10)

δw0 ; (C55 + C13)

                        (11)

Boundary conditions at the edges r = Ri and r = Ro

  Either δu0 = 0 or  (12a,b)

 

  Either δw0 = 0 or (13a,b)

Boundary conditions at the surface (z = −h/2)

  Either δu0 = 0 or  (14a,b)

 

  Either δw0 = 0 or (15a,b)

Boundary conditions at the surface (z = h/2)

 

  Either δu0 = 0 or  (16a,b)

 

  Either δw0 = 0 or (17a,b)

where (●)' (●).

2.3. Equilibrium under thermo-mechanical loading 

Under the action of axisymmetric mechanical loading, the total displacement components measured 
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from the plate undeformed configurations become u0(r, z) + u(r, z) and w0(r, z) + w(r, z) along the r- and 

z-directions, respectively. The equilibrium equations with the related boundary conditions can be 

obtained using the virtual work principle

 

             −  (18)

where the first integral represent the virtual work of the internal forces including the initial thermal 

stresses and the second integral is the virtual work of the external load q(r) acting on the top surface of the 

plate. Note that (εii, γrz) and (σii, σrz) with i = r,θ, z are the strain and the stress tensor com-ponents due to 

external mechanical loading, respectively. Also, since, the displacement components at equilibrium state 

are known, one has δε0rr = δε0θθ = δε0zz = δγ0rz = 0 and hence they are not included in Eq. (18).

By considering the constitutive relations for the mechanical stress-strain, the thermal equilibrium 

equations (10) and (11) and performing the integration by parts from Eq. (18) with respect to spatial 

coordinate variables r and z, the equilibrium equations and the related boundary conditions can be 

obtained as follows
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  Either δw = 0 or (24a,b)

Boundary conditions at the surface (z = h/2)

 

  Either δu = 0 or (25a,b)

  Either δw = 0 or (26a,b)

3. Solution procedure

If it is not impossible to solve the above system of equations analytically, it is very difficult to obtain 

such a solution. Therefore, here the differential quadrature method as an efficient and accurate numerical 

tool (Malekzadeh 2009, Malekzadeh et al. 2010a, Bert and Malik 1996, Malekzadeh et al. 2010b, 

Malekzadeh et al. 2008) is employed to solve these systems of equations. 

The basic idea of the differential quadrature method is that the derivative of a function, with respect to 

a coordinate variable at a given sampling point, is approximated as the linear weighted sums of its 

values at all of the sampling points in the domain of that variable. In order to illustrate the DQ 

approximation, consider a function f(ξ,η) having its field on a domain aξ ≤ ξ ≤ bξ and aη ≤ η ≤ bη. Let, 

in the given domain, the function values be known or desired on a grid of sampling point. According to 

the DQ method, the derivatives of a function f(ξ,η) can be approximated as

 for i = 1,2,...Nξ  (27a-e)

From this equation one can deduce that the important components of DQ approximations are weighting

coefficients and the choice of sampling points. In order to determine the weighting coefficients a set of test 
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where .

The weighting coefficients of the second order derivative can be obtained as (Bert and Malik 1996)

(29)

In a similar manner the weighting coefficients along the η-direction can be obtained. In the numerical 

computations, the roots of Chebyshev polynomials are used (Bert and Malik 1996)

(30)

In employing the DQ method, the equilibrium equations are discretized at the domain grid points (ri, 

zj) with i = 2,3,...,Nr − 1 and j = 2,3,...,Nz − 1. And the boundary conditions are discretized at the 

boundary grid points (rt, zj) with i = 1, Nr and j = 1, Nz. Here, r1 = Ri, rNr = R0 and z1 = −h / 2, zNz = h / 2. 

In this study, without loss of generality, the number of DQ grid points in the thickness and the radial 

directions are assumed to be equal and they are taken to be Nr = Nz = N. Here for brevity purpose, only 

the DQ discretized forms of the thermal equilibrium equations are presented and the other equations 

can be discretized in a similar manner. 
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where i = 2,3,..,Nr − 1, and i = 2,3,..,Nz − 1, After discretizing the governing equations, one obtains a 

system of linear algebraic equations which in the matrix form become

 (33)

Where  is the matrix of unknown degrees of freedom of all layers, [SK0] and 

{f0} are the stiffness matrix and the load vector, respectively. 

After solving these equations, the initial thermal stresses at each DQ grid points are obtained from the 

constitutive relations (8) as

(34)

In a similar manner as those of the thermoelastic equilibrium equations, the DQ rules can be 

employed to discretize the thermo-mechanical governing equations. Then, by solving the resulting 

system of algebraic equations, the displacement and stress components are obtained.

4. Numerical results

In this section, firstly, the fast rate of convergence and the accuracy of the method are investigated. 

Then, the effects of the different geometrical parameters, the uniform and non-uniform temperature rise 

and the temperature-dependence of material properties on the thermo-mechanical bending response of 

FG circular and annular plates are presented. 

In the numerical calculation, the following dimensionless quantities are introduced

    

    (35a-g)
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300 K ≤ T ≤ 1100K.Also, the stress free temperature is assumed to have the value of T0 = 300 K. Otherwise 

specified, the plate is subjected to non-uniform temperature rise and ∆T = 800 K.

As a first example, the convergence behavior for the displacement components and the radial normal 

and transverse shear stress components of the FG annular plates are presented in Tables 2 and 3, 

respectively. Fast rate of convergence of the method for both displacement and stress components is 

quite obvious. Also, one can see that in all cases under consideration, 21 and 27 DQ grid points are 

sufficient to obtain the displacement and stress components, respectively. 

To validate the presented formulations and the method of solution, results for FG circular plates with 

clamped edge are compared with those obtained by Reddy et al. (1999) and Li et al (2008) based on the 

FSDT in Table 4. Also for the case of rolled simply supported FG circular plates, results of the present 

approach are compared with those of Reddy et al. (1999) in Table 5 for different values of the material 

grad index (p) and the thickness-to-outer radius ratio of plate. It should be mentioned that the material 

properties and other parameters are the same to those used by Reddy et al (1999). In all cases, good 

agreement between the results of the present approach and the other methods exist. 

After demonstrating the fast rate of convergence and accuracy of the method, at this stage the effects 

of different parameters on the bending response of the annular plates are investigated.

As a first example, the effects of the uniform and the non-uniform temperature rise on the deflection 

and stress components of the FG annular plates with both edges clamped are shown in Figs. 2 and 3, 

respectively. In Fig. 2(a) and 2(b), the variation of the deflection at the central point of the plate 

(ξ = 0.5, η = 0) verses the uniform and non-uniform temperature rise and its variation along the radial 

Table 2 Convergence of the non-dimensional displacement components of the clamped-clamped FG annular 
plate [λ = 0.5, p = 1, ∆T = 800K]*

Uniform temperature rise Non-Uniform temperature rise

h / Ro = 0.2 h / Ro = 0.5 h / Ro = 0.2 h / Ro = 0.5

N U W U W U W U W

 11 −0.0644 −1.5086 −0.0209 −0.3958 −0.0463 −1.0131 −0.0148 −0.2688

 15 −0.0634 −1.5140 −0.0205 −0.3939 −0.0456 −1.0149 −0.0145 −0.2672

 19 −0.0632 −1.5160 −0.0203 −0.3936 −0.0455 −1.0161 −0.0144 −0.2671

 21 −0.0632 −1.5165 −0.0203 −0.3935 −0.0455 −1.0164 −0.0143 −0.2670

 25 −0.0632 −1.5166 −0.0203 −0.3935 −0.0455 −1.0164 −0.0143 −0.2670

*U = U(0.5, 0.5), W = W(0.5,0)

Table 3 Convergence of the non-dimensional stress components of the clamped-clamped FG annular plate
[λ = 0.5, p = 1, ∆T = 800K]*

Uniform temperature rise Non-Uniform temperature rise

h / Ro = 0.2 h / Ro = 0.5 h / Ro = 0.2 h / Ro = 0.5

N

15 −2.4213 0.0568 −1.1743 0.0375 −1.8807 0.0532 −0.9925 0.0369

19 −2.4092 0.0567 −1.1341 0.0374 −1.8686 0.0531 −0.9586 0.0368

23 −2.4050 0.0566 −1.1145 0.0373 −1.8642 0.0531 −0.9419 0.0367

27 −2.4036 0.0565 −1.1037 0.0373 −1.8625 0.0531 −0.9326 0.0367

29 −2.4036 0.0565 −1.1037 0.0373 −1.8624 0.0531 −0.9266 0.0367

*Σrr = Σrr(0.5, 0.5), Σrz = Σrz(0.5,0).

 rr∑  rz∑  rr∑  rz∑  rr∑  rz∑  rr∑  rz∑
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direction for a given temperature rise is shown, respectively. It can be seen from Fig. 2(a) and 2(b) that 

for the same value of temperature rise, the uniform temperature rise has more effect than the non-

uniform tem-perature rise on the results and by increasing the temperature rise, the discrepancy 

between the results increase dramatically. This may be due to the fact that for uniform temperature rise 

the material properties of the whole plate decrease in spite of the non-uniform temperature rise that 

changes only those of some part of the plate. Hence, in the uniform case, the stiffness of plate decreases 

more than the non-uniform case. The same behavior was observed for the natural frequencies of the FG 

beams and plates (Malekzadeh et al. 2010a, Bert and Malik 1996, Malekzadeh et al. 2010b). In Fig. 

2(c) and 2(d), the variation of the in-plane displacement component along the thickness direction and 

the radial direction are presented (∆T = 800 K). It can be seen that uniform temperature rise increases 

its value at a given section but the non-uniform temperature rise considerably affects its behavior along 

the radial direction. In Fig. 3, the variation of the stress components across the plate thickness (at 

ξ = 0.5) verses the uniform and non-uniform temperature rise are shown. It should be mentioned that 

Σθθ has a similar behavior as Σrr and hence it is not presented here for brevity. It is observed that non-

uniform temperature affects the radial and normal components of the stress and uniform temperature 

rise change the transverse shear stress. Also, the most discrepancy between the results for Σrr occurs at 

the top surface (ceramic rich) of the plate. 

The effect of temperature-dependence of the material properties on the bending response of FG plate is 

Table 4 Comparison of the non-dimensional deflection of the uniformly loaded FG clamped circular plate 
(ν = 0.288 Em / Ec = 0.396)

Material graded index (p)

h / Ro Theory 0 2 4 10 25 50 100

0.05

Present 2.548 1.399 1.279 1.152 1.075 1.044 1.027

FSDT [4] 2.554 1.402 1.282 1.155 1.077 1.046 1.029

Elasticity [9] 2.561 1.405 1.282 1.157 - 1.049 1.032

0.1

Present 2.629 1.438 1.313 1.185 1.107 1.076 1.059

FSDT [4] 2.639 1.444 1.320 1.190 1.112 1.080 1.063

Elasticity [9] 2.667 1.456 1.329 1.201 - 1.091 1.074

0.2

Present 2.957 1.597 1.456 1.319 1.239 1.207 1.190

FSDT [4] 2.979 1.613 1.473 1.333 1.250 1.216 1.199

Elasticity [9] 3.093 1.658 1.511 1.375 - 1.262 1.244

Table 5 Comparison of the non-dimensional deflection of uniformly loaded FG rolled simply supported 
circular plate (ν = 0.288 Em / Ec = 0.396)

Thickness to radius ratio (h / Ro)

0.05 0.1 0.15 0.2

p present FSDT [4] present FSDT [4] present FSDT [4] present FSDT [4]

0 10.382 10.396 10.456 10.481 10.576 10.623 10.735 10.822

4 5.216 5.223 5.249 5.261 5.301 5.325 5.374 5.414

10 4.697 4.704 4.728 4.739 4.776 4.799 4.843 4.882

25 4.381 4.386 4.411 4.421 4.458 4.478 4.523 4.559

50 4.253 4.258 4.287 4.258 4.329 4.349 4.394 4.429

102 4.185 4.189 4.214 4.189 4.261 4.280 4.325 4.359
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shown by studying the variation of the displacement and the stress components of the FG clamped-

clamped annular plates subjected to non-uniform temperature rise. In Figs. 4 and 5, the results for the 

displacement and the stress components are presented, respectively. It is obvious that the displacements are 

greatly underestimated when the temperature-dependence of the material parameters is not taken into 

account. The discrepancy between the temperature-dependent and temperature independent solution for the 

deflection increases dramatically as the temperature rise increases. The effect of temperature-dependence 

of material can also be seen on the stress components especially on the radial and shear stress component. 

In some previous analysis of FG plates in thermal environment, the pre-stress analysis was not 

performed and the initial thermal stresses were usually obtained approximately from the thermal strains; 

see for example (Kim 2005 and Prakash and Garapathi 2006). For the circular plates under axisymmetric 

thermal loading, based on elasticity theory these approximate formulations reduce to 

    

    (36)

Here, comparisons between the results obtained for FG annular plate based on the exact analysis presented

in Sec. 2.2 and the approximate formulation (36) for the initial thermal stresses, are presented. In Table 

σ0rr C11 C12 C13+ +( )α z T,( ) T σ0θθ,∆– C12 C22 C23+ +( )α z T,( ) T∆–= =

σ0zz C13 C23 C33+ +( )α z T,( ) T σ0rz,∆– 0= =

Fig. 2 (a)-(d). Effect of uniform and non-uniform temperature rise on the non-dimensional displacement components 
of the clamped-clamped FG annular plate (λ = 0.5, h / Ro = 0.2, p = 2).
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Fig. 3 (a)-(c). Variation of the non-dimensional stress components across the thickness of the clamped-
clamped FG annular plate with uniform and non-uniform temperature rise (λ = 0.5, p = 2, ξ = 0.5, h/Ro

= 0.2).

Fig. 4 (a)-(c). Effect of the temperature-dependence of the material properties on the non-dimensional 
displacement components of the clamped-clamped FG annular plate (λ = 0.5, p = 1, ξ = 0.5, h/Ro = 0.2).
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6, the percentages of the difference between the results of the two approaches for the deflection and the 

transverse shear stress and for two different sets of boundary conditions are given. It is interesting to 

note that the difference between the two approaches is 14.94% and 22.8% for the deflection and the 

transverse shear stress component of the clamped-simply supported FG annular plate, respectively. Also,

the difference between the results of the two approaches increases as the temperature rise increases. 

In Fig. 6, the components of stress tensor obtained based on the two approaches are compared. Based 

on the results presented in Table 6 and Fig. 6, one can see that the exact evaluation of initial thermal 

stress is essential for an accurate bending analysis of FG plates. 

The effect of geometrical parameters on the response of the FG annular plates for two different set of 

boundary conditions are presented in Table 7. It can be seen that increasing the inner-to-outer radius 

ratio and thickness-to-outer radius ratio causes the center deflection to decrease monotonically. 

5. Conclusions

The axisymmetric bending analysis of FG annular plates with temperature-dependent material 

Fig. 5 (a)-(c). Effect of the temperature-dependence of the material properties on the non-dimensional stress 
component of the clamped-clamped FG annular plate (λ = 0.5, ξ = 0.5, p =1, h/Ro = 0.2).
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properties subjected to thermo-mechanical loading is presented. The problem is formulated based on 

the elasticity theory. The initial thermal stresses are obtained by solving the thermoelastic equilibrium 

Table 6 The percent of the difference between the results for the deflection and the transverse shear stress for 
the FG annular plate with and without approximation subjected to non-uniform temperature rise 
(ξ = 0.5, η = 0)

∆T(K)

Boundary conditions 100 200 400 600 800

W
Clamped 0.4360 0.7923 1.3872 2.0182 2.8536

Clamped -Simply supported 1.8741 3.7461 7.4844 11.216 14.940

Clamped 0.2046 0.4081 0.7920 1.1204 1.3817

Clamped -Simply supported 3.0036 5.9636 11.752 17.366 22.804

%  Difference of (wi) = 100 × [(wi)Without. − app.

 − (wi)With.−app.] / (wi)Without. −app.

%  Difference of ( ) = 100 × [( )With.−app. − ( )Without.−app] / ( )With.−app.

Σrz

Σij Σij Σij Σij

Fig. 6 (a)-(c) Comparison of the stresses of the clamped-simply supported FG annular plate with and without 
approximation of initial thermal stress (λ = 0.5, ξ = 0.5, p =1, h/Ro = 0.2).
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equations of the plate. Using the virtual work principle, the thermo-mechanical equilibrium equations 

and the related boundary conditions, which include the effects of initial thermal stresses, are derived. 

The differential quadrature method as an efficient and accurate numerical tool is used to solve the 

governing equations. The effects of temperature rise and the different geometrical parameters on the 

displacement and stress components of the FG plates are investigated. It is shown that the temperature-

dependence of the material properties has significant effects on the results. Also, it is exhibited that the 

exact evaluation of the initial thermal stress is essential for an accurate bending analysis of FG plates. 

Although this work has not been considered analytically, it is not impossible and it can be performed 

and it's still open. The solutions can be used as benchmark for other numerical methods.
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