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Abstract. The response of multi-story building structures to lateral loads, mainly due to earthquake
wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consis
rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bendin
shear stiffness distribution on the deformations of such structures is made. This is achieved by modeli
structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiff
distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. Th
particularly the case for slender structural systems with prevailing bending deformations, such as fle
braced frames. This suggests that a new approach to the design of such frames may be appropriat
serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Key words: rigid frame; braced frame; performance-based design; preliminary design; serviceabi
stiffness equivalence; Timoshenko beam; stiffness optimization.

1. Introduction

1.1. Design requirements and strategies

The design of multi-story buildings is often governed not by gravity loads but by lateral loads, m
caused by earthquake or wind action. This is particularly the case for buildings with high aspec
defined as the ratio of the height of the building to its width at the base in the direction of the prevailing
lateral action (Stafford Smith and Coull 1991, Connor and Klink 1996, Viest et al. 1996, Taranath
1998).

Strength based, conventional design of multi-story buildings dictates higher bending and shear s
at the base of the building, which gradually decrease with height, following the variation of be
moments and shear forces, respectively. Unlike concrete structures, where stiffness is primarily do
by the member dimensions and strength is largely influenced by the amount of reinforceme
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stiffness and strength properties of standardized steel elements are much more connected to each oth
so that the above strength distribution results in a more or less similar stiffness distribution. The
the strength based design approach can be questionable for flexible structures, due to the fact t
response is very often governed by deflection criteria (Pouangare 1990).

In such cases it may be appropriate to reverse the common approach of designing for stren
checking for stiffness. Accordingly, the required stiffness to satisfy deformation criteria is to be de
first, followed by checking for strength (Connor and Klink 1995). This approach may then le
different optimum stiffness distributions with height.

In the present work it is attempted to gain a qualitative understanding of the influence of bendi
shear stiffness distribution on the lateral deflection response of rigid and braced multi-story steel frames
(Gantes et al. 2000). This is achieved by modeling the structure with a stiffness equivalent bea
Timoshenko type, such that not only bending but also shear deformations are accounted for (Przem
1985). By assuming, for the sake of simplicity, linear variations of bending and shear stiffnes
height, analytical expressions for the deflections can be derived. These are used to carry out pa
studies and reach qualitative conclusions regarding the optimum stiffness distributions. The
criterion for optimization is the objective of linear or near-linear deflected shape, with the maxi
allowable slope (Pouangare 1990). This is viewed as a first step towards developing a preli
design strategy for structures governed by deflection requirements.

1.2. Stiffness requirements

Frames subjected to seismic loading are designed for stiffness in order to limit their l
deformations. This limitation refers to both the serviceability and the ultimate limit state (AISC 1
Eurocode 3 1992); it applies, therefore, for wind as well as moderate and strong earthquakes
serviceability limit state lateral deformations have to be controlled primarily in order to limit th
damage of non-structural elements, and also to prevent feelings of uneasiness among the occu
the ultimate limit state deformations must be limited in order to avoid significant influence of se
order effects and to be allowed to perform the most common, first order analysis.

The structural response to lateral loads may be described by the base shear shear-top disp
curve as shown in Fig. 1 (Lu et al. 1997, Vayas 1997). The initial slope of the curve expresses
elastic stiffness of the structure. For the serviceability limit state, the lateral deformations calculated on
the basis of the elastic stiffness correspond to the actual deformations of the structure, as the s
response is expected to be nearly elastic in the event of moderate earthquakes.

However, the actual deformations in the ultimate limit state are larger than those calculated ba
the assumption of an elastic structural response. This is due to the nonlinear behavior of the structure
parts of which yield during strong earthquakes. Nevertheless, in order to avoid nonlinear analysi
seismic design codes (AISC 1997, Eurocode 8 1994), propose a simple relationship betwe
nonlinear elastic-plastic and the elastic deformations. The two types of deformations are related t
the value of the behavior factor q, assumed in the analysis as follows:

(1)

where δ = actual lateral deformations for nonlinear response, and δe= corresponding deformations obtaine
by assuming linear response.

Although the above methodology constitutes an approximation of the real behavior in case of

δ q δe⋅=
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earthquakes, it is evident that the knowledge of the elastic lateral stiffness of a frame is impor
structural design practice. Therefore, the analysis in the present paper will be based on the ass
of elastic response. Subsequent validation of the results for the real elasto-plastic response is 
research goal.

Lateral deflection constraints for multi-story buildings consist of two requirements (Euroco
1992): (a) that the maximum inter-story drift is within a predefined percentage of the story heigh
(b) that the total maximum drift does not exceed another predefined percentage of the total b
height. It is reasonable to combine the two criteria into one, requesting a near-linear deflection line that
satisfies the most stringent between the two constraints (Pouangare 1990). Thus, non-unifor
straining of structural members in regions of eventual high curvature of a nonlinear deflected 
will be avoided.

Consequently, the objective of this paper is to study the influence of bending and shear s
distribution on the deflection response of multi-story buildings subjected to lateral loading. 
specifically, suitable stiffness combinations will be sought, which result in a linear or near-l
deflected shape.

For preliminary design purposes, the stiffness may be determined by approximate analytical m
thus avoiding costly numerical analyses. Such analytical approaches have been developed 
when elaborate numerical tools were less readily available than today (for example Heidebrec
Stafford Smith 1973, Haris 1977, Stafford Smith, Kuster and Hoenderkamp 1981). Nevertheles
still retain great value, as a means of both gaining qualitative understanding of the structural be
and the effect of individual design parameters, and of checking numerical results (Scarlat
Takewaki 1997a, 1997b).

In the present paper this approximate analysis is performed via substitution of the frame by an
equivalent vertical cantilever beam having the same deformation properties, as shown in Fig. 
beam is subjected to deformations due to bending moments and shear forces. This is illustrated i
showing that the total rotation dδ /dx at any cross-section is the sum of a rotation ψ due to flexural
deformation, and a rotation γ due to shear deformation. The beam has correspondingly a ben

Fig. 1 Base shear top displacement curve of a frame
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stiffness, EI, and a shear stiffness, Sv. In other words, it is not a Bernoulli beam but a Timoshen
beam, and its deflected shape must be determined using Timoshenko beam theory (Pouanga
Gionis 1999).

In summary, the proposed approximate analysis process consists of two steps: (i) substitutio
frame by the equivalent Timoshenko beam, and (ii) analytical calculation of the deflections of this
beam. These steps are presented in sections 2 and 3 of the paper, respectively. In section 4 the
this analysis are used to carry out a parametric study and draw conclusions on appropriate s
distributions for different rigid and braced frame structural systems.

2. Stiffness of equivalent beam

As mentioned above, the first step of the proposed approach is the substitution of the actual fra
vertical Timoshenko cantilever beam. To that effect, several expressions have been derived by a numb
of researchers (for example Heidebrecht and Stafford Smith 1973, Haris 1977, Stafford Smith, Kuster an
Hoenderkamp 1981) based on equilibrium and compatibility considerations. A systematic app
based on the application of the direct stiffness method for a typical floor subjected to unit shear 
bending deformation within a symbolic manipulation software, has been proposed by Gionis (19
the present work, simple expressions are used, derived on the basis of calculating deflections via 
method, and enforcing compatibility of deformations at the floor levels.

2.1. Diagonally and X-braced frames

In this section, the expressions of bending and shear stiffness of the equivalent beam representing the
simplest case of a diagonally or X-braced, single-bay frame will be derived (Vayas 1999). In the nex
section the corresponding expressions for other frame configurations will be given.

A typical floor of a diagonally braced multi-story frame is shown in Fig. 4. When this structure is sub
to lateral loads, its overall behavior can be compared to that of a vertical cantilever truss. The b
moments due to external loads are resisted by axial deformations of the columns acting as flange
truss. The equivalent bending stiffness EI of the structure may accordingly be determined from:

Fig. 2 Frame and equivalent vertical cantilever beam
Fig. 3 Bending and shear rotation of a Timosheno

beam
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where E is the Young’s modulus of the material, Ac is the area of the cross-section of one colum
and ho is the width of the frame, equal to the distance between the centerlines of the columns.

For the evaluation of the shear stiffness of a typical floor, a unit transverse force V = 1 is applied and
the axial forces in the members are determined, as shown in Fig. 5. The resulting lateral deform
determined by means of the force method:

 (3)

where Ni are the axial forces in the ith truss member due to the unit shear load, and Ai are the areas
of the corresponding cross-sections, namely Ad is the cross-sectional area of the diagonal and Ab of
the beam. The application of Eq. (3) to the specific frame of Fig. 4 gives:

EI
EAch0

2

2
---------------=

δs

Ni
2

EAi

-------- l i
i

∑=

Fig. 4 Typical floor of single-bay diagonally braced frame

Fig. 5 Deformation (a) and axial forces (b) of typical floor of single-bay diagonally braced frame subject
unit shear
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The shear deformation of the truss, defined by the angle of sway, is given by:

 (5)

The shear stiffness is determined from:

 (6)

Substituting (4) and (5) into (6) and eliminating the lengths of the members leads to the follo
expression for the shear stiffness:

 (7)

For the X-braced frame of Fig. 6, where two diagonals participate in the shear force transf
relevant expression may be written as:

(8)

However, if in X-braced frames the contribution of the compression diagonal is neglected due
buckling, Eq. (7) instead of Eq. (8) should be used.

2.2. Other types of frames

The bending stiffness of other single-bay frames is determined in the same manner as for dia

δs
d

sin2θEAd

----------------------
ho

EAb

---------+=

ϕ
δs

a
----=

Sv
V
ϕ
--- 1

ϕ
---= =

Sv
1

1

EAdsin2θ cosθ
---------------------------------- 1

EAb θcot
---------------------+

---------------------------------------------------------------=

Sv
1

1

2EAdsin2θ cosθ
-------------------------------------- 1

EAb θcot
---------------------+

------------------------------------------------------------------=

Fig. 6 Typical floor of single-bay X-braced frame
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or X-braced frames, from Eq. (2). The shear stiffness is determined by applying similar proced
the one adopted for diagonally braced frames, namely via the force method. The results for 
typical structural systems of braced frames and a single-bay rigid frame are summarized in Table
expressions of Table 1 are explained in the following equations, where G is the shear modulus of the
material, Abv the shear area of the beam cross-section, Ib and Id the moments of inertia of the cross
sections of beam and diagonal, respectively, and hb is the height of the cross-section of the beam.

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

S1 EAdsin2θ cosθ=

S2 EAbcotθ=

S3 GAbvtanθ=

S4

3EIb θtan

e2
-----------------------=

ε e
ho

-----=

φ r 1 ε–( ) ε+=

Table 1 Shear stiffness of typical single-bay frames

S1: Eq. (9), S2: Eq. (10), S3: Eq. (11), S4: Eq. (12), ε: Eq. (13), φ: Eq. (14),
r: Eq. (15), ψ: Eq. (16)

Sv
1

1
S1

----- 1
S2

-----+
----------------=

Sv
1

1
2S1

-------- 1
S2

-----+
--------------------=

Sv
1

1
2S1

-------- 1
2S2

--------+
-----------------------=

Sv
1

1
2S1

-------- 1
2S2

-------- ε
2S3

-------- φ 1 ε–( )
8S4

-------------------+ + +
-----------------------------------------------------------------=

Sv
1

1
S1

----- 1
S2

----- ε
ψS3

--------- φψ 1 ε–( )
S4

------------------------+ + +
----------------------------------------------------------------=

Sv 3EAb

hb
2

aho

--------=
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where µ = 0 if the braces are pin-connected at their ends, µ = 1 if the braces are rigidly connected t
the beam and pin-connected at the far end, and µ = 4/3 if the braces are rigidly connected at bo
ends.

By using the equivalent stiffness expressions proposed in this section, it is possible to mo
overall deflection behavior of braced or rigid single-bay frames due to lateral loads by studyin
response of a vertical cantilever Timoshenko beam. The distribution of bending and shear stiffn
the Timoshenko beam with height is directly related to the member properties in individual f
Similar equivalent stiffness expressions can be derived for multi-bay frames. The deflections 
equivalent beam can in many cases be obtained analytically, thus providing the designer with
fast and inexpensive tool for preliminary design and for qualitative investigation.

3. Deflections of equivalent beam

3.1. Governing equations

As outlined before, a multi-story frame can be substituted by a simple, cantilever, Timoshenko bea
that is equivalent with respect to stiffness. The equivalent properties of the beam cross section
bending stiffness, EI, and its shear stiffness, Sv. The beam is subjected to a distributed lateral load,
simulating equivalent static wind or earthquake excitation. For the sake of simplicity, the stif
properties and the lateral loads are considered in this analysis to vary linearly along the heigh
beam as shown in Fig. 7. This assumption leads to a simple analytical solution for the deflections, bu
by no means narrows the range of applicability of the proposed approach, as any other distributi
could be treated by similar means.

The relevant expressions for the stiffness properties and the lateral loading may then be wri

r
1

1 µ 
I d

I b

----sinα+

------------------------------=

ψ 1 ε–=

Fig. 7 Loading, deflected shape, and stiffness distribution of equivalent cantilever beam
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 (18)

 (19)
where

 (20)

The system of differential equations of equilibrium for this beam is given by:

 (21)

 (22)

where  denotes differentiation with respect to x. For given stiffness distributions, these equatio
can be solved analytically for the deflections δ and the flexural rotations ψ, taking into account the
appropriate boundary conditions:

• zero deflection at the base:
 (23)

• zero bending rotation at the base:
 (24)

• zero bending moment at the top:

 (25)
• zero shear force at the top:

 (26)

Here, a slightly different approach will be employed to obtain the deflections, namely the force
method.

3.2. Calculation of deflections with the force method

The shear forces and bending moments due to the external loads and a unit horizontal forc
position xo where the displacement is to be determined are, respectively, equal to:

• Due to external loads:
 Shear force:

 (27)

 Bending moment:

 (28)

p ξ( ) pT γ ξ γ ξ–+( )=

EI ξ( ) EIB 1 ξ αξ+–( )=

Sv ξ( ) SvB 1 ξ βξ+–( )=

ξ x
H
----=

EIψ ′( )″– p–=

Sv δ ′ ψ–( ) EIψ′( )′–=

′

δ 0( ) 0=

ψ 0( ) 0 =

M H( ) 0 ψ′ H( ) 0=⇒=

V H( ) 0 γ H( ) 0 δ′ H( ) ψ H( ) 0=–⇒=⇒=

V ξ( ) 1
2
---pT 1 γ ξ γξ–+ +( ) 1 ξ–( )H=

M ξ( ) 1
6
---pT 2 γ ξ γξ–+ +( ) 1 ξ–( )2H2

=
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• Due to a unit force at the position ξ0= x0/H:
 Shear force:

 (29)

 Bending moment:

 (30)

The lateral deformations at position ξ0 may be determined by summing up the bending and sh
deformations, δb and δs, respectively:

 (31)

Using the force method, δb and δs are obtained by appropriate integration:

 (32)

 (33)

By executing the integration the following expressions are found for the deformation at any positξ:

 (34)

 (35)

where

 

 

(36)

(37)

V ξ( )
1 ξ ξ0≤,

0 ξ ξ0>,



=

M ξ( )
ξ0 ξ– ξ ξ0≤,

0 ξ ξ0>,



=

δ δb δs+=

δb
MM
EI

----------
0

x0

∫ dx=

δs
VV
Sv

-------
0

x0

∫ dx=

δb

H4pT

6EIB

------------DB=

δs

H2pT

2SvB

------------DS=

DB
1

12 α 1–( )5
-------------------------- 1 a–( )ξ α2{{ 36– 18– 3 2γ+( )ξ 2 16γ+( )ξ2 3 1 γ–( )ξ3+ +[ ] =

+ξ 12– 2ξ ξ2 γ 6 4ξ– ξ2
+( )–+ +[ ] αξ 48 4ξ– 3ξ2 γ 24 14ξ 3ξ2

+–( )+–[ ]+  

+α3 24 18ξ ξ3 γ 12 18ξ 6ξ2 ξ3+–+( )+–+[ ] }

+12α2 3– α 2 γ+( )+[ ] 1 α 1–( )ξ+[ ] log 1 α 1–( )ξ+[ ] }⋅

DS
1

2 β 1–( )3
----------------------{ β 1–( )ξ 2 ξ βξ γ 2 4β– ξ βξ+–( )+–+[ ]=

+2β 2– β βγ+ +( ) 1 β 1–( )ξ+[ ]log⋅ }
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are dimensionless quantities representing the relative significance of bending and shear defor
respectively.

The total deformation, obtained by adding δb and δs, may be written as:

(38)

where:

(39)

is a factor describing the relative importance of shear stiffness with respect to bending stiffn
the base, and depends primarily on the structural system.

The base shear is equal to: 

(40)

Inserting Eq. (40) into Eq. (38) the total lateral deformation is obtained in dimensionless form

(41)

4. Analysis results

4.1. Performance criteria

All seismic codes provide limitations for inter-story drifts in order to limit the damage in n
structural elements, as well as reduce second order effects, thus rendering the ordinary linear 
methods that ignore them more reliable. In addition, limits are imposed on the maximum total d
top of the building. The two criteria can be combined, so that the design target is a uniform, as
possible, drift distribution over the height of the building, suggesting a linear variation of la
deflections.

A fundamental assumption of the proposed approach must also be reminded here, namely thastic
deformations, as obtained by the above analysis, are considered to adequately represent the deform
the real, elasto-plastic system. This assumption is in accordance to most codes, which suggest to
elasto-plastic displacements by multiplying elastic ones with an appropriate behavior factor. Howev
qualitative conclusions obtained according to this assumption must in future be verified by me
elasto-plastic analyses.

4.2. Numerical results

Eqs. (41) and (39) indicate that for low values of ρM the shear deformations are prevailing, while for
high values of ρM the bending deformations are more important. 

δ
pTH2

2SvB

------------ ρM

DB

3
------ DS+ 

 =

ρM

SvBH2

EIB

--------------=

VB
1
2
---pT 1 γ+( )H=

δ
H
----

SvB

VB

-------⋅ 1
1 γ+
----------- 1

3
---ρMDB DS+ 

 ⋅=
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It is reminded that according to Fig. 7 and Eqs. (18) and (19), values of the parameters α and β
smaller than 1 correspond by definition to a reduction in stiffness, and therefore, normally, in st
as well, along the height of the building.

The variation of the nondimensionalized deformation along the height of the building for the c
triangular loading (γ = 0) is presented in Figs. 8, 9 and 10 for various values of the parameters ρM, α and β.

Fig. 8 shows the influence of parameter ρM for a case of decreasing stiffness along the height of 
building. It is observed that for low values of ρM, where shear deformations govern the response,
design target of linear variation of the lateral deformations is best achieved by a reduction i
bending and shear stiffness over the height of the structure, defined here by values of the paramα

Fig. 8 Variation of drift along the height of the building for α = β = 0.1 and values of ρM between 0.2 and
100, for triangular loading (γ = 0)

Fig. 9 Variation of drift along the height of the building for ρM = 0.2, α between 0.1 and 1, and β between 0.5
and 2, for triangular loading (γ = 0)
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and β equal to 0.1. However, for increasing values of ρM the deformation line becomes increasing
nonlinear, in a flexural manner, if this stiffness distribution is maintained.

This is also verified by Fig. 9, where ρM is kept constant, equal to 0.2, so that shear deformat
govern, while α is varied between 0.1 and 1, and β between 0.5 and 2. The influence of the bendi
stiffness distribution parameter α is insignificant in this case of prevailing shear response. Again,
design target is best served by small values of β, which suggests decreasing shear stiffness with hei

In the case of mostly flexural buildings, characterized by increasing ρM, better results are achieved fo
higher α values, as illustrated by Fig. 10. As expected, the lateral deformations are mostly influ
by the distribution of the bending stiffness (parameter α) for such buildings with prevailing bending
deformations. On the contrary, the influence of shear stiffness distribution (parameter β ) is practically
insignificant.

4.3. Discussion of results

As already mentioned, strength based, conventional wisdom dictates higher bending and
strength at the base of the building, which gradually decreases with height, following the variat
bending moment and shear force, respectively. Using Eqs. (27) and (40) the ratio of applied she
to base shear, is given by:

(42)

Similarly, the ratio of externally applied overturning moment to the overturning moment at the
of the structure is given by: 

(43)

V
VB

------ 1 γ ξ γξ–+ +( ) 1 ξ–( )
1 γ+

-------------------------------------------------------=

3M
2VBH
-------------- 2 γ ξ γξ–+ +( ) 1 ξ–( )2

2 1 γ+( )
---------------------------------------------------------=

Fig. 10 Variation of drift along the height of the building for ρM = 50, α between 0.1 and 1, and β between
0.5 and 2, for triangular loading (γ = 0)
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Eqs. (42) and (43) are presented graphically for the case of triangular loading (γ = 0) in Fig. 11. The
curves express the requirements of the building in shear and bending strength. For braced fram
requirements correspond primarily to requirements for the dimensions of braces and co
respectively. As expected, the requirements decrease from the top to the base of the structure

Considering, as explained before, that the variation of strength is not very much deviating fro
variation in stiffness, a discrepancy is found for structures with high value of ρM, and accordingly
prevailing bending deformations. The strength requirements suggest the adoption of low α and β-values,
while the serviceability requirements, as discussed before, are served better by high α and β - values.
This constitutes a disadvantage for slender bracing systems with large height-to-width ratios, in
the bending deformations prevail.

Figs. 12 to 14 illustrate types of buildings for which the above discussion is relevant. The rigid f
of Fig. 12 deform primarily as shear cantilevers, when subjected to lateral loads. Therefore, the

Fig. 11 Variation of demand in shear and bending strength over the height of the building for trian
lateral loading (γ = 0)

Fig. 12 Rigid frames with prevailing shear mode of lateral deformation
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discrepancy between the stiffness distributions resulting from strength and deflection requirem
Slender braced frames with high aspect (height to width) ratio, such as the first example of Fig. 13

deform primarily as flexural cantilevers. For such structures a design governed by deflection requir
will result in different stiffness distributions than one for which strength criteria prevail.

The other two braced frames of Fig. 13 with higher aspect ratios, as well as the combined rigid and
frames like the one shown in Fig. 14 constitute intermediate cases, for which further analysis is ne

5. Conclusions

The response of multi-story steel building structures subjected to lateral loads has been investigated
for preliminary design purposes. A simplified analysis method has been suggested, based on subst

Fig. 13 Braced frames with prevailing flexural or combined shear-flexural mode of lateral deformatio

Fig. 14 Mixed rigid-braced frame with combined shear-flexural mode of lateral deformation



392 C.J. Gantes, I. Vayas, A. Spiliopoulos and C.C. Pouangare

used to
n the

linear or
tiffness
e case
may be

ral

ce

stribution

Civil

ing,

nalysis

eismic

eismic

s
-288.
the building by a stiffness-equivalent Timoshenko beam. The results of this analysis have been 
gain qualitative understanding of the influence of bending and shear stiffness distribution o
deflection response of such structures. A design criterion has been established that requires 
near-linear deflection distribution along the height. It has been observed that the conventional s
distribution, dictated by strength constraints, is not the best to satisfy this deflection criterion in th
of flexible braced frames. This suggests that a new approach to the design of such frames 
appropriate when deflection criteria govern.
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