Steel and Composite Structures, Vol. 1, No. 4 (2001) 377-392 377
DOI: http://dx.doi.org/10.12989/scs.2001.1.4.377

Bending and shear stiffness optimization for rigid
and braced multi-story steel frames

C.J. Gantesft, |. Vayast and A. Spiliopoulostt

Civil Engineering Department, National Technical University of Athens
42 Patision Avenue, GR-10682 Athens, Greece

C.C. Pouangare?

Consulting Engineer, 9 Nikokleous Street, Limassol, Cyprus

Abstract. The response of multi-story building structures to lateral loads, mainly due to earthquake and
wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of
rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and
shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the
structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness
distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is
particularly the case for slender structural systems with prevailing bending deformations, such as flexible
braced frames. This suggests that a new approach to the design of such frames may be appropriate when
serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Key words: rigid frame; braced frame; performance-based design; preliminary design; serviceability;
stiffness equivalence; Timoshenko beam,; stiffness optimization.

1. Introduction
1.1. Design requirements and strategies

The design of multi-story buildings is often governed not by gravity loads but by lateral loads, mostly
caused by earthquake or wind action. This is particularly the case for buildings with high aspect ratio,
defined as the ratio of the height of the building to its width at the base ing¢hgati of the prevailing
lateral action (Stafford Smith and Coull 1991, Connor and Klink 1996, Viest 4986, Taranath
1998).

Strength based, conventional design of multi-story buildings dictates higher bending and shear strengtt
at the base of the building, which gradually decrease with height, following the variation of bending
moments and shear forces, respectively. Unlike concrete structures, where stiffness is primarily dominatec
by the member dimensions and strength is largely influenced by the amount of reinforcement, the
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stiffness and strength properties of standardized stzakealts are much more connected to each other,

so that the above strength distribution results in a more or less similar stiffness distribution. Therefore,
the strength based design approach can be questionable for flexible structures, due to the fact that the
response is very often governed by deflection criteria (Pouangare 1990).

In such cases it may be appropriate to reverse the common approach of designing for strength anc
checking for stiffness. Accordingly, the required stiffness to satisfy deformation criteria is to be derived
first, followed by checking for strength (Connor and Klink 1995). This approach may then lead to
different optimum stiffness distributions with height.

In the present work it is attempted to gain a qualitative understanding of the influence of bending and
shear stiffness distribution on the lateral deflection response of rigid and brdtestonysteeframes
(Ganteset al 2000). This is achieved by modeling the structure with a stiffness equivalent beam of
Timoshenko type, such that not only bending but also shear deformations are accounted for (Przemienieck
1985). By assuming, for the sake of simplicity, linear variations of bending and shear stiffness with
height, analytical expressions for the deflections can be derived. These are used to carry out parametri
studies and reach qualitative conclusions regarding the optimum stiffness distributions. The main
criterion for optimization is the objective of linear or near-linear deflected shape, with the maximum
allowable slope (Pouangare 1990). This is viewed as a first step towards developing a preliminary
design strategy for structures governed by deflection requirements.

1.2. Stiffness requirements

Frames subjected to seismic loading are designed for stiffness in order to limit their lateral
deformations. This limitation refers to both the serviceability and the ultimate limit state (AISC 1995,
Eurocode 3 1992); it applies, therefore, for wind as well as moderate and strong earthquakes. In the
serviceality limit state lateral defomations have to be controlled primarily in order to limit the
damage of non-structural elements, and also to prevent feelings of uneasiness among the occupants.
the ultimate limit state deformations must be limited in order to avoid significant influence of second
order effects and to be allowed to perform the most common, first order analysis.

The structural response to lateral loads may be described by the base shear shear-top displaceme
curve as shown in Fig. 1 (Let al 1997, Vayas 1997). The initial slope of the curve expresses the
elastic stiffness of the structure. For the serviceability limit state, the lateraindgifans calculated on
the basis of the elastic stiffness correspond to the actual deformations of the structure, as the structure
response is expected to be nearly elastic in the event of moderate earthquakes.

However, the actual deformations in the ultimate limit state are larger than those calculated based on
the assumption of an elastic structural response. This is due to theeapbkainavior of the structure,
parts of which yield during strong earthquakes. Nevertheless, in order to avoid nonlinear analysis, most
seismic design codes (AISC 1997, Eurocode 8 1994), propose a simple relationship between the
nonlinear elastic-plastic and the elastic deformations. The two types of deformations are related through
the value of the behavior factgr assumed in the analysis as follows:

0= qlb 1)
where 6= actual lateral deformations for nonlinear response,demndorresponding deformations obtained

by assuming linear response.
Although the above methodology constitutes an approximation of the real behavior in case of strong
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Fig. 1 Base shear top displacement curve of a frame

earthquakes, it is evident that the knowledge of the elastic lateral stiffness of a frame is important in
structural design practice. Therefore, the analysis in the present paper will be based on the assumptio
of elastic response. Subsequent validation of the results for the real elasto-plastic response is a futur
research goal.

Lateral deflection constraints for multi-story buildings consist of two requirements (Eurocode 3
1992): (a) that the maximum inter-story drift is within a predefined percentage of the story height, and
(b) that the total maximum drift does not exceed another predefined percentage of the total building
height. It is reasonable to combine the two criteria into one, requesting a raadiflection line that
satisfies the most stringent between the two constraints (Pouangare 1990). Thus, non-uniform local
straining of structural members in regions of eventual high curvature of a nonlinear deflected shape,
will be avoided.

Consequently, the objective of this paper is to study the influence of bending and shear stiffness
distribution on the deflection response of multi-story buildings subjected to lateral loading. More
specifically, suitable stiffness combinations will be sought, which result in a linear or near-linear
deflected shape.

For preliminary design purposes, the stiffness may be determined by approximate analytical methods
thus avoiding costly numerical analyses. Such analytical approaches have been developed at time
when elaborate numerical tools were less readily available than today (for example Heidebrecht and
Stafford Smith 1973, Haris 1977, Stafford Smith, Kuster and Hoenderkamp 1981). Nevertheless, they
still retain great value, as a means of both gaining qualitative understanding of the structural behavior
and the effect of individual design parameters, and of checking numerical results (Scarlat 1996,
Takewaki 1997a, 1997b).

In the present paper this approximate analysis is performed via stitstiof the fame by an
equivalent vertical cantilever beam having the same deformation properties, as shown in Fig. 2. This
beam is subjected to deformations due to bending moments and shear forces. This is illustrated in Fig. <
showing that the total rotatioshd/dx at any cross-section is the sum of a rotatjodue to flexural
deformation, and a rotatiop due to shear deformation. The beam has correspondingly a bending
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Fig. 2 Frame and equivalent vertical cantilever bean beam
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stiffness,El, and a sheastiffness,S,. In other words, it is not a Bernoulli beam but a Timoshenko
beam, and its deflected shape must be determined using Timoshenko beam theory (Pouangare 199
Gionis 1999).

In summary, the proposed approximate analysis process consists of two steps: (i) substitution of the
frame by the equivalent Timoshenko beam, and (ii) analytical cttmulaf the deflections of this
beam. These steps are presented in sections 2 and 3 of the paper, respectively. In section 4 the results
this analysis are used to carry out a parametric study and draw conclusions on appropriate stiffnes:
distributions for different rigid and braced frame structural systems.

2. Stiffness of equivalent beam

As mentioned above, the first step of the proposed approach is the substitution of the actual frame by
vertical Timoshenko cantilever beam. To teiect, several expressis have been derived by a number
of researchers (for example Heidebrecht and Stafford S®itB, Haris 1977, Stafford Smith, Kuster and
Hoenderkamp 1981) based on equilibrium and compatibility considerations. A systematic approach,
based on the application of the direct stiffness method for a typical floor subjected to unit shear or unit
bending deformation within a symbolic manipulation software, has been proposed by Gionis (1999). In
the present work, simple expressions are used, derived on the basis of calculating deflections via the forc
method, and enforcing compatibility of deformations at the floor levels.

2.1. Diagonally and X-braced frames

In this section, the expressions of bending and sti#amess of the equivalenebm representing the
simplest case of a diagonally or X-braced, single-bay fraithdevderived (Vayas 1999). In the next
section the corresponding expressions for other frame configurations will be given.

A typical floor of a diagonally braced multi-story frame is shown in Fig. 4. When this structure is subjected
to lateral loads, its overall behavior can be compared to that of a vertical cantilever truss. The bending
moments due to external loads are resisted by axial deformations of the columns acting as flanges of thi
truss. The equivalent bending stiffnédsof the structure may accordingly be determined from:
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Fig. 4 Typical floor of single-bay diagonally braced frame

_ EAhS
El = > (2)

whereE is the Young’'s modulus of the materidl, is the area of the cross-section of one column,
andh, is the width of the frame, equal to thistdnce between the centerlines of the columns.

For the evaluation of the shear stiffness of a typical floor, a unit transversé&/fertes applied and
the axial forces in the members are determined, as shown in Fig. 5. The resulting lateral deformation is
determined by means of the force method:

5= YE

pd

2
i

)

>

whereN; are the axial forces in th#& truss member due to the unit shear load, Arate the areas
of the corresponding cross-sections, nan#glys the cross-sectional area of the diagonal Andf
the beam. The application of Eq. (3) to the specific frame of Fig. 4 gives:

(a (b
V=1 -1
ds
—>
1/sin@
¢

Fig. 5 Deformation (a) and axial forces (b) of typical floor of single-bay diagonally braced frame subjected to
unit shear
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Fig. 6 Typical floor of single-bay X-braced frame

d h,
= —tEa (4)
sinf6EA; EAv
The shear deformation of the truss, defined by the angle of sway, is given by:
— 55
$=3 (5)
The shear stiffness is determined from:
vV _1
S==-== 6
ri (6)

Substituting (4) and (5) into (6) and eliminating the lengths of the members leads to the following
expression for the shear stiffness:

B 1
S = 1 1 %

+
EAsin’cosg EAycotd

For the X-braced frame of Fig. 6, where two diagonals participate in the shear force transfer, the
relevant expression may be written as:

_ 1
S = 1 1 (8)

+
2EAsin‘fcoss EApcOtd

However, if in X-braced frames the contritin of the compression diagonal is neglected due to
buckling, Eqg. (7) instead of Eq. (8) should be used.

2.2. Other types of frames

The bending stiffness of other single-bay frames is determined in the same manner as for diagonally
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Table 1 Shear stiffness of typical single-bay frames

1
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0 SI: -
_+_
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S = L
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2S, 2S5, 25 8S,
1
SI:
0 1,1, 1-¢
S S S S,
.Y
S = 3EAG

S: Eq. (9),S: Eq. (10),S;: Eq. (11),S: Eq. (12),& Eq. (13),¢2 Eq. (14),
r: Eq. (15),4: Eqg. (16)

or X-braced frames, from Eq. (2). The shear stiffness is determined by applying similar procedures to
the one adopted for diagonally braced frames, namely via the force method. The results for severa
typical structural systems of braced frames and a single-bay rigid frame are summarized in Table 1. The
expressions of Table 1 are explained in the following equations, véhisréhe shear modulus of the
material, A,y the shear area of the beam cross-sectjpandl, the moments of inertia of the cross-
sections of beam and diagonal, respectively, lgnd the height of the cross-section of the beam.

S, = EAsin‘6cosd 9)
S, = EA,cotf (10)
S; = GAytand (11)
s, = 3Elzzan6 (12)

€= h—eo (13)

p=r(l-¢)+¢ (14)
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= —2=% (15)

lg .
1+ u —=sina
Iy
Y=1-¢ (16)

whereu =0 if the braces are pin-connected at their epds] if the braces are rigidly connected to
the beam and pin-connected at the far end, ;and/3 if the braces are rigidly connected at both
ends.

By using the equivalent stiffness expressions proposed in this section, it is possible to model the
overall deflection behavior of braced or rigid single-bay frames due to lateral loads by studying the
response of a vertical cantilever Timoshenko beam. The distribution of bending and shear stiffness of
the Timoshenko beam with height is directly related to the member properties in individual floors.
Similar equivalent stiffness expressions can be derived for multi-bay frames. The deflections of the
equivalent beam can in many cases be obtained analytically, thus providing the designer with a very
fast and inexpensive tool for preliminary design and for qualitative investigation.

3. Deflections of equivalent beam
3.1. Governing equations

As outlined before, a multi-story frame can be sitiied by a simple, cantilever, Timoshenko beam
that is equivalent with respect to stiffness. The equivalent properties of the beam cross section are it
bending stiffnesskl, and its shear stiffnesS,. The beam is subjected to &stdbuted la¢ral load,
simulating equivalent static wind or earthquake excitation. For the sake of simplicity, the stiffness
properties and the lateral loads are considered in this analysis to vary linearly along the height of the
beam as shown in Fig. 7. This asstimpleads to a simple analytical solution for the deflections, but it
by no means narrows the range of applidgbof the proposed approach, as any other distribution
could be treated by similar means.

The relevant expressions for the stiffness properties and the lateral loading may then be written as

pr ) aElg BSva

TX

YPT Elp SvB

Fig. 7 Loading, deflected shape, and stiffness distribution of equivalent cantilever beam
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pP(§) = pr(y+$—-y¢) (7)
El(§) = Elg(1-¢ +ad) (18)
Si(¢) = Se(1-¢+ %) (19)
where X
¢ = g (20)

The system of differential equations of éduium for this beam is given by:
—(Elg)" = -p (21)
S(0'-y) = ~(Ely') (22)

where denotes differentiation with respectxtd=or given stiffness distributions, these equations
can be solved analytically for the deflectiohsnd the flexural rotationd; taking into account the
appropriate boundary conditions:

 zero deflection at the base:

50) =0 (23)
* zero bending rotation at the base:
@(0) = 0 (24)
* zero bending moment at the top:
M(H) =00 ¢'(H)=0 (25)
» zero shear force at the top:
V(H) =00 yH) =00 d(H)-y(H) =0 (26)

Here, a slightly different approachillhbe employed to obtain the deflectionsamely the force
method.

3.2. Calculation of deflections with the force method

The shear forces and bending moments due to the external loads and a unit horizontal force at th
positionx, where the displacement is to be determined are, respectively, equal to:

* Due to external loads:
Shear force:

V(&) = Zpr(1+ v+ E-yE)(1-OH 27)
Bending moment:

M(E) = Zpr(2+ y+ E—yE)(1-&)°H’ (28)
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» Due to a unit force at the positidg= x¢/H:
Shear force:

- M, é<¢
VO=0 . (29)
' 0
Bending moment:
_ o D&-&Es&
M) = 0o (30)

The lateral deformations at positidp may be determined by summing up the bending and shear
deformations &, and &, respectively:

5= &+ 0 (31)

Using the force method, and & are obtained by appropriate integration:

MM
%= e & 32
"L El (32)
vV
= [ dx (33)
s
By executing the integration the following expressions are found for the deformation at any gosition
- H'p;
% = GErDe a4
- H?py
55 - ZS\IBDS (35)
where

+E[—12+ 28+ E—Y(6—4E + E)] + af[48— 4E —3E + y(24 - 148 + 3E%)]
+a°[24+ 185 — &+ 12+ 1& —6E + &)])

+120°[-3+ a(2+ Y] O1+ (a—1)&]log[1+ (a —1)&]} (36)
__ 1

2(B-1)°

+2B(-2+ B+ By) Hog[1+ (B-1)¢&]} (37)

S

{(B-1)¢[2+ - BE+ N2—-4B- &+ BE)]
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are dimensionless quantities representing the relative significance of bending and shear deformations
respectively.
The total deformation, obtained by addiigand d, may be written as:

2
_pH' g Ds O
0= 25,0 M3 +Dq] (38)
where:
_ SH’
Pm = El, (39)

is a factor describing the relative importance of shear stiffness with respect to bending stiffness at
the base, and depends primarily on the structural system.
The base shear is equal to:

1
Vg = EpT(l +y)H (40)
Inserting Eqg. (40) into Eq. (38) the total lateral deformation is obtained in dimensionless form as:

O _ 1 O
007 = Ty TgpuDe+ DS 41)

4. Analysis results
4.1. Performance criteria

All seismic codes provide limitations for inter-story drifts in order to limit the damage in non-
structural elements, as well as reduce second order effects, thus rendering the ordinary linear analysi
methods that ignore them more reliable. In addition, limits are imposed on the maximum total drift on
top of the building. The two criteria can be combined, so that the design target is a uniform, as far as
possible, drift distribution over the height of the building, suggesting a linear variation of lateral
deflections.

A fundamental assumption of the proposed approach must also be reminded here, namedjidhat ela
deformations, as obtained by the above analysis, are considered to adequately represent the deformations
the real, elasto-pftic system. This assumption is in accordance to most codes, which suggest to obtain
elasto-plastic displacements by multiplyingstiaones with an appropriate behavior factor. However,
gualitative conclusions obtained according to this assumption must in future be verified by means of
elasto-plastic analyses.

4.2. Numerical results

Egs. (41) and (39) indicate that for low valuespgfthe shear deformatiorsse prevailing, while for
high values ofoy the bending deformations are more important.
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Fig. 8 Variation of drift along the height of the building = =0.1 and values of,, between 0.2 and
100, for triangular loadingyE 0)
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Fig. 9 Variation of drift along the height of the building faf = 0.2, a between 0.1 and 1, afglbetween 0.5
and 2, for triangular loading/€ 0)

It is reminded that according to Fig. 7 and Egs. (18) and (19), values of the paramatels
smaller than 1 correspond by definition to a reduction in stiffness, and therefore, normally, in strength
as well, along the height of the building.

The variation of the nondimensionalized deformation along the height of the building for the case of
triangular loadingy= 0) is presented in Figs. 8, 9 and 10 for various values of the paramgtesndg.

Fig. 8 shows the influence of parametgrfor a case of decreasing stiffness along the height of the
building. It is observed that for low values @f, where shear deformations govern the response, the
design target of linear variation of the lateral deformations is best achieved by a reduction in both
bending and shear stiffness over the height of the structure, defined here by values of the parameters
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Fig. 10 Variation of drift along the height of the building faf = 50, a between 0.1 and 1, argibetween
0.5 and 2, for triangular loading £ 0)

and 8 equal to 0.1. However, for increasing valuegp@fthe deformation line becomes increasingly
nonlinear, in a flexural manner, if this stiffness distribution is maintained.

This is also verified by Fig. 9, whepg, is kept constant, equal to 0.2, so that shear deformations
govern, whilea is varied between 0.1 and 1, githetween 0.5 and 2. The influence of the bending
stiffness distribution parameteris insignificant in this case of prevailing shear response. Again, the
design target is best served by small valueg§ ofhich suggests decreasing shear stiffness with height.

In the case of mostly flexural buildings, characterized byesmingoy, better results are achieved for
higher a values, as illustrated by Fig. 10. As expected, the lateral deformations are mostly influenced
by the distribution of the bending stiffness rgraetera) for such buildings with prevailing bending
deformations. On the contrary, the influence of shear stiffness distribution (par@netqractically
insignificant.

4.3. Discussion of results

As already mentioned, strength based, conventional wisdom dictates higher bending and shea
strength at the base of the building, which gradually decreases with height, following the variation of
bending moment and shear force, respectively. Using Eqgs. (27) and (40) the ratio of applied shear force
to base shear, is given by:

V _(@A+y+é-y)(1-4)
Vg - 1+y (42)

Similarly, the ratio of externally applied overturning moment to the overturning moment at the base
of the structure is given by:

3M_ _ (2+y+E—yH(L-§&)?
2VgH 2(1+y) (43)
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Fig. 11 Variation of demand in shear and bending strength over the height of the building for triangular

lateral loading ¥= 0)

Egs. (42) and (43) are presented graphically for the case of triangular logdi@yi6 Fig. 11. The
curves express the requirements of the building in shear and bending strength. For braced frames thes
requirements correspond primarily to requirements for the dimensions of braces and columns,
respectively. As expected, the requirements decrease from the top to the base of the structure.

Considering, as explained before, that the variation of strength is not very much deviating from the
variation in stiffness, a discrepancy is found for structures with high valwg,cdind accordingly
prevailing bending deformationghe strength requirements suggest the adoption otrlewd 3- values,
while the serviceabiy requirements, as discussed before, are served better byrtagl 3- values.

This constitutes a disadvantage for slender bracing systems with large height-to-width ratios, in which

the bending deformations prevail.
Figs. 12 to 14 illustrate types of buildings for which the above discussion is relevant. The rigid frames
of Fig. 12 deform primarily as shear cantilevers, when subjected to lateral loads. Therefore, there is no
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Fig. 12 Rigid frames with prevailing shear mode of lateral deformation
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Fig. 13 Braced frames with prevailing flexural or combined shear-flexural mode of lateral deformation
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Fig. 14 Mixed rigid-braced frame with combined shear-flexural mode of lateral deformation

discrepancy between the stiffness distributions resulting from strength and deflection requirements.
Slender braced frames with high aspect (height to widtt), Isuch as the first example of Fig. 13,
deform primarily as flexural cantilevers. For such structures a design governed by deflection requirements
will result in differentstiffness distributions than one for which strength criteria prevail.
The other two braced frames of Fig. 13 with higher aspect ratios, as well as the combined rigid and brace
frames like the one shown in Fig. 14 constitute intermediate cases, for which further analysis is needed.

5. Conclusions

The response of multi-story steel building structures subjected to lateral loads has b&ieyaiade
for preliminary design purposes. A simplified analysis method has been suggested, based on substitution c
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the building by a stiffness-equivalent Timoshenko beam. The results of this analysis have been used t
gain qualitative understanding of the influence of bending and shear stiffness distribution on the

deflection response of such structures. A design criterion has been established that requires linear ¢
near-linear deflection distribution along the height. It has been observed that the conventional stiffness
distribution, dictated by strength constraints, is not the best to satisfy this deflection criterion in the case
of flexible braced frames. This suggests that a new approach to the design of such frames may b
appropriate when deflection criteria govern.
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