
Ocean Systems Engineering, Vol. 7, No. 4 (2017) 371–398
DOI: https://doi.org/10.12989/ose.2017.7.4.371 371

A comparison of the neumann-kelvin and rankine source
methods for wave resistance calculations

Min Yu* and Jeffrey Falzaranoa

Department of Ocean Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77840,
United States

(Received June 16, 2017, Revised June 17, 2017, Accepted August 29, 2017)

Abstract. Calm water wave resistance plays a very important role in ship hull design. Numerical
methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and
the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes
linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source
method considers nonlinear free surface boundary condition and meshes both the ship hull surface and
free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series
60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and
the merits of both numerical techniques were quantified. Based on the results, it is concluded that the
Rankine source method is more accurate in the calculation of the wave-making resistance. Using the
Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to
solve problems like wave current coupling calculation.

Keywords: calm water wave resistance; Neumann-Kelvin method; rankine source method; experiment;
nonlinear free surface boundary condition

1. Introduction

Calm water resistance is mainly composed of wave-making and frictional resistance. For a given
ship speed, frictional resistance is in proportion to the wetted surface area. Since the wetted surface
does not vary greatly for a given ship displacement, the change of frictional resistance is limited.
However, for a given Froude number, wave-making resistance is extremely sensitive to the shape of
the ship hull. Modification of the hull shape can significantly decrease wave-making resistance, thus
the optimization of wave-making resistance is very important.

The mathematical model of wave-making resistance is not difficult, however, the solution of
governing equations is not a challenging task due to the nonlinearity of the boundary conditions.
First, the shape of ship hull surface is nonlinear; second, the free surface boundary condition contains
nonlinear terms; third, the free surface boundary is satisfied on unknown free surface, which is
usually nonlinear. Moreover, the free surface can only be obtained after solving Laplace’s equation,
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which makes the process of solution iterative. Due to these difficulties, there is not a closed form
analytic solution to the wave-making resistance problem.

Background on literature survey, the first stage of research in wave-resistance calculation was the
linear theory, which solves the problem using linearized boundary conditions, for example, Michell’s
thin ship theory (Michell 1898). The linearization of the boundary conditions brings convenience in
calculation, even analytical solution can be derived. However, linear ship theory is only effective
under the assumption that the hull form is linear (very thin or very flat) and the free surface boundary
condition is also linear(wave height is small compared to wave length). These assumptions are
violated for realistic hull forms, thus the linear theory can not give satisfactory result for realistic hull
forms.

Following the linear theory, the Neumann-Kelvin method appeared. The Neumann-Kelvin method
satisfies an accurate hull surface boundary condition but only satisfies the linearized free surface
boundary condition on the calm water surface. In the Neumann-Kelvin method, the Kelvin sources
are distributed on the ship hull surface. Michell (1898), Havelock (1928, 1932) and Peters (1949)
gave the analytic expressions of the velocity potential of the translating point source, which is called
the Green’s function. Noblesse (1981) analyzed different expressions of the Green’s function and
fitted them into a unified form. According to Noblesse’s remarkable work, the Green’s function is
composed of three parts. The first part is the Rankine source part, it indicates the influence of point
source in an infinite fluid domain, Hess and Smith (1962, 1967) derived the velocity potential gen-
erated by point sources distributed on a flat panel. The second part of the Green’s function is the
double integral part, which represents the near-field disturbance of the point source in a fluid domain
with the free surface. Newman (1987) calculated the double integral part by sum of Chebyshev series
and an additional term for the singularity; Ponizy and Noblesse (1994) gave the result of the double
integral by numerical interpolation. The third part of the Green’s function is the single integral part,
which represents the far-field disturbance. The numerical calculation of the single integral part is
difficult because the integrand is highly oscillatory(Baar 1986, Baar and Price 1988). One way to
calculate the single integral part involves two expansions given by Bessho (1964). Ursell (1960)
derived an additional term and make these two expansions completely complementary. Numerical
result of this method were given by Baar (1986), Ursell (1960), Marr (1996), Wang and Rogers
(1989). The other way to calculate the single integral part is by the numerical integration. However,
due to the oscillatory behavior of the integrand, the typical numerical integration methods (e.g., the
Simpson method or the adaptive method(Abramowitz and Stegun 1964)) are extremely inefficient.
So new method must be applied in the numerical calculation of the single integral part. One such
method is developed by Levin (1982, 1997). Levin’s method convert the calculation of an integral
into the calculation of an partial differential equation. However, when Levin’s method is applied to
the single integral part of the Green’s function, Faddeyeva function(Faddeyeva et al. 1961) need to be
calculated, which is difficult and time consuming. The other numerical integral method is the deepest
descend method(Motygin 2014). This method convert the oscillatory integrand into a non-oscillatory
one. Then the routine numerical integration methods can be used in the calculation.

As the research about wave-making resistance goes on, the nonlinear methods came into being.
Maruo (1966) and Eggers (1966) developed the second order thin ship theory. In their study, the
Taylor expansion was used and it caused contradictions at the ship’s bow and stern. Wehausen (1967)
and Yim (1968) improved the second order theory by mapping the free surface and hull surface into
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a reference domain. Another variant of the second order method is Guilloton’s method(Guilloton
1964, 1965). This method maps the result of linear Michell theory into a better approximation by
inverse streamline tracing method. Among the nonlinear methods, the Rankine source method is
a promising one. Dawson (1977) calculated wave-making resistance by this method. His method
started from the result of double model flow and then calculated the disturbance of this base flow.
He also applied a forward difference scheme to the free surface boundary condition to satisfy the
radiation condition. Dawson’s method can get accurate result for some realistic hull forms. However,
there are some problems with the Rankine source method. One is the numerical dispersion due to
the use of the different scheme in the free surface boundary condition(Han and Olson 1987a, Schultz
and Hong 1989a). Schultz and Hong (1989a) and Cao (1991a) developed the raised panel method.
In their study, the panels were at some distance over the free water surface to reduce the numerical
dispersion. Another problem with the Rankine source method is the oscillation of panel source
strength(Raven 1998). To solve this problem, Raven (1998) shifted the collocation point of each
element forward to reduce the oscillation. Based on the existing work, Raven (1996) and Janson
(1997) developed the fully nonlinear Rankine source method and achieved success on many full hull
forms. Hess et al. (1980) applied higher order panels to the Rankine source method and improved
the result of wave-resistance calculation.

Currently, the prevailing numerical methods of wave-making resistance are the Neumann-Kelvin
method and the Rankine source method. Since the Rankine source method considers the nonlinear
free surface boundary condition, theoretically it is more accurate than the Neumann-Kelvin method.
However, the Neumann-Kelvin method only requires meshing on the ship hull surface, which is a
typical practice in seakeeping analysis in the industry. The Rankine source method needs meshing
both on the ship hull and the free surface. Both the hull surface and free surface need to be remeshed
in every iteration. This brings difficulties in modeling and calculation. Moreover, Neumann-Kelvin
methods can easily work with other Kelvin source method to solve wave-current coupling prob-
lems(e.g., Wang and Rogers (1989), Guha (2012), Guha and Falzarano (2015a, b)). All in all, there
are pros and cons for these two methods, thus it is meaningful to test the limitations of these two
methods. However, the published results about these two methods are limited. In this study, both
methods were implemented and the wave-making resistance of a Wigley III hull and three Series 60
hulls (Cb=0.60, 0.70, 0.80) were calculated. By comparison of these two methods author tries to
qualify the limitations of these two method.

Here is a brief introduction to this paper. The second section mainly describes the governing
equations. Details of Kelvin source method are described in the third section. The fourth part de-
scribes the Rankine source method. The results of Wigley III and three Series 60 ships are given in
the fifth section. Finally, the conclusions are given in the sixth section.

2. Governing equations

In this paper, the coordinate system moves with the ship and has the same speed, but it does not
follow the trim and sinkage. The x axis points to the forward direction, the y axis points to port and
the z axis points upward. The origin is at the midship.
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Fig. 1 Coordinate system

2.1 Gonverningequationso f thetotalpotential

In assumption of the ideal fluid, the fluid domain is an irrotational field. Φ is the velocity poten-
tial; η is the free surface elevation; (X,Y,Z) is any point in the fluid domain; U is the speed of the
ship. The governing equations of the wave-making resistance problem are

Continuity
∇2Φ = 0 (1)

The kinematic free surface boundary condition

ΦXηX + ΦYηY − ΦZ = 0 at Z = η(X,Y) (2)

The dynamic free surface boundary condition

1
2

(U2 − |∇Φ|2) − gη = 0 at Z = η(X,Y) (3)

The hull surface condition
Φn = 0 (4)

~n is the normal vector of the hull surface, as shown in Fig. 3.
The infinite depth condition

ΦZ = 0 when Z → −∞ (5)

Additionally, there should be the radiation condition which guarantees that there are no waves
ahead of the ship. Eqs. (1) to (5) together with the radiation condition are the governing equations of
the wave-making problem.
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2.2 Gonverningequationso f theperturbationpotential

In the study of wave-making problem, for the continence in study, the total velocity potential Φ

is decomposed into the incoming flow potential −UX and the perturbation potential φ

Φ = −UX + φ (6)

Substitute Eq. (6) into Eq. (1) to Eq. (5). The governing equation in term of perturbation
potential φ are

Continuity
∇2φ = 0 (7)

The kinematic free surface condition

(−U + φX)ηX + φYηY − φZ = 0 on Z = η(X,Y) (8)

The dynamic free surface condition

η =
1
g

(
UφX −

1
2
|∇φ|2

)
on Z = η(X,Y) (9)

The hull surface condition
φn = U cos(n, x) (10)

The infinite depth condition
φZ = 0 Z → −∞ (11)

The radiation condition

φ =


O

(
1

√
X2 + Y2

)
, X > 0,

√
X2 + Y2 → ∞

o
(

1
√

X2 + Y2

)
, X < 0,

√
X2 + Y2 → ∞

(12)

O denotes that
φ

√
X2 + Y2

= 0, and o denotes that
φ

√
X2 + Y2

= 1. The radiation condition guarantees

there are no waves ahead of the ship bow.
Eqs. (7) to (12) are the governing equations of the wave-resistance problem in term of perturba-

tion potential φ.

3. The Neumann-Kelvin method

3.1 Linearizationo f the f reesur f aceconditions

Expand the free surface conditions (8) and (9) on the calm water surface by Taylor expansion
and keep the linear terms:

UηX + φZ = 0 on Z = 0 (13)



376 Min Yu and Jeffrey Falzarano

η −
U
g
φX = 0 on Z = 0 (14)

Substitute Eq. (14) into Eq. (13), the combined free surface condition is

φXX + K0φZ = 0 on Z = 0 (15)

Where K0 = g/U2. Eqs. (7), (10), (11), (12) and (15) are the governing equations of the
Neumann-Kelvin method.

3.2 Theintegralidentity

To reduce the number of freedom in the calculation, the surface panel method is used in the
Neumann-Kelvin method. As shown in Figs. (2) and (3), assume there is a virtual fluid domain
Di inside of the hull surface; De is the fluid domain outside of the hull surface; φe is the velocity
potential outside of the ship hull; φi is the velocity potential inside of the ship hull; S f e is the free
water surface outside of the ship hull; S f i is the free water surface inside of the ship hull; S is the
ship hull; S he is the outside surface of ship hull; S hi is the inside surface of ship hull; ~n is the normal
vector pointing into the fluid domain; ~ne is the normal vector of boundary of De . ~ni is the normal
vector of boundary of Di.

In De, by Green’s theorem(Brard 1972)

Tφe =
1

4π

	
S he+S f e

(
φeGne − φ

e
ne

G
)

dS (16)

~X is the coordinate of field point; ~X0 is the coordinate of source point. φe is supposed to be 0 on

Fig. 2 Surfaces of different domains
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Fig. 3 Normal vectors of different domains

other boundaries of De.

T =


1 when ~X is in De
1
2 when ~X is on S h

0 when ~X is not in De

(17)

Similarly,

(1 − T )φi =
1

4π

	
S hi+S f i

(
φiGni − φ

i
ni

G
)

dS (18)

Combine Eqs. (16) and (18). Since the S he and S hi are the same surface S h with different normal
vector, denote them as S h. By Fig. (3), on hull surface: ∂

∂ni
= ∂

∂n , ∂
∂ne

= − ∂
∂n ; on free water surface:

∂
∂ni

= − ∂
∂n , ∂

∂ne
= − ∂

∂n . In the whole fluid domain

φ =
1

4π

"
S h

{ [
φe

n − φ
i
n

]
G +

[
φi − φe

]
Gn

}
dS

+
1

4π

"
S f e

[
φe

nG − φeGn
]
dS

+
1

4π

"
S f i

[
φi

nG − φiGn
]

dS

(19)

On the free surface S f e and S f i, by the linear assumption of the Neumann-Kelvin method, ∂
∂~n ≈

− ∂
∂Z , dS ≈ dXdY . The surface integral can be changed to a double integral.

1
4π

"
S f e

(
φe

nG − φeGn
)

dS

=
1

4π

"
S f e

(
φeGZ − φ

e
ZG

)
dXdY

(20)
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φe and G both satisfies the free surface boundary condition (15), substitute it into Eq. (20)

1
4π

"
S f e

(
φeGZ − φ

e
ZG

)
dXdY

=
1

4πK0

"
S f e

(
φe

XXG − φeGXX
)

dXdY

=
1

4πK0

"
S f e

[(
φe

XXG + φe
XGX

)
−

(
φeGXX + φe

XGX
)]

dXdY

=
1

4πK0

"
S f e

[(
φe

XG
)

X
−

(
φeGX

)
X

]
dXdY

=
1

4πK0

"
S f e

(
φe

XG − φeGX
)

X
dXdY

(21)

Using the Green’s theorem∮
L

Pdx + Qdy =

"
D

(
∂Q
∂x
−
∂P
∂y

)
dxdy (22)

L is the boundary of D. Let P = 0 "
D

∂Q
∂x

dxdy =

∮
L

Qdy (23)

Fig. 4 Directions of the line integrals
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Using Eq. (23)
1

4πK0

"
S f e

(
φe

XG − φeGX
)

X
dXdY

=
1

4πK0

∮
Che

(
φe

XG − φeGX
)

dY
(24)

By Eqs. (21) and (24)
1

4π

"
S f e

(
φe

nG − φeGn
)

dS

=
1

4πK0

∮
Che

(
φe

XG − φeGX
)

dY
(25)

Similarly
1

4π

"
S f i

[
φi

nG − φiGn
]

dS

=
1

4πK0

∮
Chi

(
φi

XG − φiGX
)

dy
(26)

Substitute Eqs. (25) and (26) into Eq. (19). By Fig. (4), Che = Ch, Chi = −Ch

φ =
1

4π

"
S h

{[
φe

n − φ
i
n

]
G +

[
φi − φe

]
Gn

}
dS

+
1

4πK0

∮
Ch

{[
φe

X − φ
i
X

]
G +

[
φi − φe

]
GX

}
dY

(27)

By Eq. (27), the point sources and dipoles are distributed both on the ship hull surface S w and
the waterline Cw. The source strength σs is

σs = φe
n − φ

i
n (28)

The dipole strength is
md = φi − φe (29)

The fluid inside of the ship hull surface is virtual, so φi can be chosen arbitrarily. If φi
n = φe

n,
then σs is zero and only dipoles exist; if φi = φe, then md is zero and only point sources exist. If φi

is other values, then it is the combination of point sources and dipoles. So the combination points
sources and dipoles are not unique(Only point sources are used in this study, md is set to be zero later
in the derivation(see Eq. (33)).

Set the local coordinate at any point on the waterline Cw. ~n is the normal vector pointing outside
of the ship hull. ~t is tangent to Cw, ~τ is vertical both to ~n and ~t. The local coordinate system is shown
in Fig. (4). Set

αt = cos(X, t); ατ = cos(X, τ); αn = cos(X, n) (30)

By Eqs. (28) to (30), in the local coordinate system on the waterline Cw

φe
X − φ

i
X = σsαn − αt

∂md

∂t
− ατ

∂md

∂τ
(31)
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Then substitute Eq. (28) to Eq. (31) into Eq. (27)

φ =
1

4π

"
S h

(σsG + mdGn)dS +
1

4πK0

∮
Ch

mdGXdY

+
1

4πK0

∮
Ch

(
σsαn − αt

∂md

∂t
− ατ

∂md

∂τ

)
GdY

(32)

Only the point sources are used in this study, set md = 0

φ =
1

4π

"
S h

σsGdS +
1

4πK0

∮
Ch

σsαnGdY (33)

By equation above, the sources are distributed on the hull surface and the waterline. Substitute
Eq. (33) into Eq. (10). G contains the term −1/|~R|, ~R = ~X − ~X0. When ~X → ~X0, −1/|R| is 0/0. Use a
hemisphere to remove this singularity, as shown in Fig. (5).

lim
ε→0

"
ε

∂

∂n

(
−

1
R

)
σsdS

= lim
ε→0

"
ε

∂

∂R

(
−

1
R

)
σsdS

=2πσs

(34)

Substitute Eqs. (33) and (34) into Eq. (10)

1
2
σs +

1
4π

"
S h

σsGndS +
1

4πK0

∮
Ch

αnσsGndy

=U cos(n, x)
(35)

Fig. 5 Removal of the singularity
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Eq. (35) is the integral identity of the Neumann-Kelvin method. It is satisfied on the hull surface.
If the Green’s function is known, the only unknown variable is σs. In this study, the hull surface is
discretized into flat panels and the source strength is a constant in every panel. Eq. (35) is satisfied
on one point in every panel, which is called the collocation point. The waterline is also discretized
and set the source strength of the waterline the same with the source strength of the panel in which
the waterline belongs to. The number of unknown variable is the same with the number of equations.
This study mainly used rectangular panels in the meshing and some triangular panels were also used
for the continence of modeling. The mesh on the hull surface is shown in Fig. (6).

3.3 The Green function

The Green function for the wave-making resistance problem is determined by coordinates of the
source and field points, the velocity of fluid U, and the wave number g/U2. Then normalize the
coordinates of source and field point by the wave number. As a result of the normalization, the
Green’s function only relies on relative position of source and field points. Using the coordinates
defined above, the Green’s function can be written in the form(Wehausen and Laitone 1960)

G = −
1
r0

+
1
r

+
4
π

∫ π/2

0
dθ

? ∞

0
dk

ekz cos(kx cos θ) cos(ky sin θ)
k cos2 θ − 1

+ 4
∫ π/2

0
dθez sec2 θ sin(x sec θ) cos(y sec2 θ sin θ) sec2 θ

(36)

XY

Z

XY

Z

Fig. 6 Mesh on the hull surface
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where

(x1, y1, z1) =
g

U2 (X1,Y1,Z1) (37)

(x0, y0, z0) =
g

U2 (X0,Y0,Z0) (38)

(x, y, z) = (x1 − x0, y1 − y0, z1 + z0) (39)

r0 =

√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (40)

r =

√
(x1 − x0)2 + (y1 − y0)2 + (z1 + z0)2 (41)

(X1,Y1,Z1) is the dimensional coordinate of the field point; (X0,Y0,Z0) is the dimensional coordinate
of the source point; r0 is the distance between the field and source points; r is the distance between
field and the image of the source point above the xy plane.

>
denotes the principle value of the

integral.
The Green function can be divided into three parts:

1. R = −
1
r0

+
1
r

, the Rankine source term, which denotes the potential of point source in an

infinite fluid domain.

2. D =
4
π

∫ π/2
0 dθ

> ∞
0 dk

ekz cos(kx cos θ) cos(ky sin θ)
k cos2 θ − 1

, the double integral term, which denotes the
near-field potential of the source. D is non-oscillatory and symmetric in x and y directions.

3. W = 4
∫ π/2

0 dθez sec2 θ sin(x sec θ) cos(y sec2 θ sin θ) sec2 θ, the single integral term, which de-
notes the far-field potential of the source. W is a wavelike disturbance which represents waves
generated by translating point source.

The following subsections will discuss the calculation of the Green function.

3.4 The Rankine source potential

R includes two terms, −
1
r0

and
1
r

, which represent the potential of a point source and its image

source in an infinite fluid domain. Hess and Smith (1962, 1967) in their remarkable work gave
results of the potential and velocity generated by point sources distributed on quadrilateral panels.
Their results were used to calculate the Rankine source part R.

3.5 The nearfield potential

D is the double integral part of the Green’s function. It can be calculated by the sum of Chebyshev
series and a singularity(Newman 1987, Eq. 48)

D ≈ S +

16∑
i=0

16∑
j=0

18∑
k=0

Pi jk[ f (R)]i
(
−1 +

4
π
θ

) j (2
π
α

)2k

(42)
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(R, θ, α) is the spherical coordinates, where

R =

√
x2 + y2 + z2; θ = arctan

 x√
y2 + z2


α = arctan

(y
z

) (43)

f (R) is a function of R

f (R) =


2R (0 < R ≤ 1)
(2R − 5)/3 (1 ≤ R ≤ 4)
(R − 7)/3 (4 ≤ R ≤ 10)
1 − 20/R (10 ≤ R ≤ ∞)

(44)

Coefficients Pi jk are given in four tables by Newman (1987). S is the term to remove singularity
near origin(Newman 1987, Eq. 21)

S = − U1 + zU3 − yV3 − xU2

+
1
2

[−z2U5 + y2(U3 + U5) − x2U3]

+ yzV5 + xzU4 − xyV4

+
1
6

[z3U7 + y3(V5 + V7) − x3U4]

+
1
2

[−z2yV7 − z2xU6 − y2z(U5 + U7)

+ yx(U4 + U6) + x2zU5 − x2yV5] + xyzV6

(45)

Where

Um =
2im

π

∫ π
2

− π2

cosm θ log(υ)dθ (46)

Vm =
2im

π

∫ π
2

− π2

cosm−1 θ sin θ log(υ)dθ (47)

υ = z cos2 θ − y cos θ sin θ + i|x| cos θ (48)

Um and Vm are still in the integral form. To improve the calculation efficiency, Vm terms can be
calculated by trigonometric series(Newman 1987, Eq. 27)

Vm =
22−m

m

[
1
2 m− 1

2

]∑
k=0

Cm
k (−1)k sin[(m − 2k)α]

(
ρ

R + x

)m−2k
(49)
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Fig. 7 Value of D(x, y, z) when z = −0.1

-15

-10

y

-5

0
0

2
4

x

6
8

10
12

-3

-1

0

-2

D
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Um can be calculated by iterative formula

mUm + (m − 1)Um−2

2im
1 · 1 · 3 · ... · (m − 3)

2 · 4 · 6 · ... · (m)
−

22−m

2

·

[
1
2 m− 1

2

]∑
k=0

Ck
m(−1)k(m − 2k) cos[(m − 2k)α]

(
ρ

R + x

)m−2k

(50)

U0 = 2 log
(R + x

4

)
(51)

Γ is the gamma function
Γ(n) = (n − 1)! (52)

n is a positive integer. The double integral term D can be calculated by Eq. (42) to Eq. (52). The
results are shown in Figs. (7) to (9). By these results, it is clear that D only has effect on the fluid
domain which is near the point source. The influence of D decays rapidly when the field point is far
away from the source point. So D presents the near-field influence of the point source in the fluid
domain.
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3.6 The far-field potential

W is the single integral part of the Green’s function. Calculation of W is difficult since the
integrand oscillates severely, especially when z→ 0. Define f as the integrand of W

f = ez sec2 θ sin(x sec θ) cos(y sec2 θ sin θ) sec2 θ (53)

f is shown in Fig. (10) to Fig. (12).
From the results we can see that f is increasingly oscillatory when z goes close to 0. Both the

frequency and amplitude grows fast when z→ 0. For this reason, the calculation of W only has very
low efficiency by the routine numerical integration method(e.g., the Simpson method).

Numerical integration
Due to the oscillatory behavior of the integrand, W can not be calculated by the routine integration

method. One idea is to change the integrand into a less oscillatory one. The steepest descend method
is used in this study. W can be written in the form

W = 2Im(I(x, y, z) + I(x,−y, z)) (54)

where

I(x, y, z) =

∫ ∞

0
eω(x,y,z,t)dt (55)

ω(x, y, z, t) = z(1 + t2) + i(x − yt)
√

1 + t2 (56)
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By Jordan’s lemma and the steepest descend method(Motygin 2014), change the integral path
t → eiθt

I(x, y, z) =

∫ t∗

0
eω(x,y,z,t)dt + eiθ

∫ ∞

0
eω(x,y,z,t?+teiθ)dt (57)

where

cos 2θ =
−z√

y2 + z2
, sin 2θ =

−y√
y2 + z2

(58)

cos θ =

√
1 + |z|/

√
y2 + z2

2
(59)

sin θ = sign(−y)

√
1 − |z|/

√
y2 + z2

2
(60)

t∗ =
|x| sin θ

2(|z| cos θ − y sin θ)
(61)

The two integrals in Eq. (57) can be transformed into integrals on [−1, 1]∫ t∗

0
g(t)dt =

t∗
2

∫ 1

−1
g
(
t∗(t + 1)

2

)
dt =

∫ 1

−1
f (t)dt (62)∫ ∞

0
g(t)dt = 2

∫ 1

−1

1
(1 − t)2 g

(
t + 1
1 − t

)
dt =

∫ 1

−1
f (t)dt (63)

An efficient method to calculate the integral
∫ 1

0 f (t)dt is by the Clenshaw-Curtis quadrature(Gentleman
1972). ∫ 1

−1
f (t)dt = d0 + 2

∞∑
k=1

dk

1 − (2k)2 (64)

where
dk =

2
π

∫ π

0
f (cos θ) cos(2kθ)dθ (65)

dk can be calculated by the trapezoidal rule

dk ≈
2
N

 f (1)
2

+
f (−1)

2
+

N−1∑
n=1

f (cos(
nπ
N

)) cos(
2πnk

N
)

 (66)

W can be calculated by Eq. (54) to Eq. (66).

The functional method
The other way to calculate the single integral term W is by functional series. W can be expressed

by two Bessel’s series(Bessho 1964)
When x√

ρ
is small

W = −2e
z
2

∞∑
n=0

(−1)nεnKn(
1
2
ρ) ´J2n(x) cos(nα) (67)
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Table 1 A combination of two methods in calculation of far-field disturbance

−0.3 < z < 0 z < −0.3

x < 8
√

y
The steepest

descend method

Bessho’s series
(Eq. 67)

8
√

y < x < 12
√

y
The steepest

descend method

x > 12
√

y
Bessho’s series

(Eq. 68)

When x√
ρ

is large

W = 2πe
z
2

∞∑
n=0

εnIn(
1
2
ρ) ´Y2n(x) cos(nα) (68)

where
ρ = y2 + z2, α = tan−1(

y
z

) (69)

εn =

1 n = 1
2 n ≥ 2

(70)

There is an additional term which is missing from the Bessho’s series(Ursell 1960) and this term
makes the two Bessho’s series truely complementary. However, this missing term is only effective
near the xy plane. In this study, the Bessho’s function will not be used near the free surface, so this
additional term will not be discussed here.

A combination of the two methods
In this study, a combination of the numerical integration and the Bessho’s series is used to cal-

culate W. In the domain near the xy plane and in the transformed area of two Bessho’s series, the
numerical integral is used. Bessho’s series is used in the rest of the fluid domain. The detailed
algorithm is shown in Table (1).

The results of W are shown in Fig. (13) to Fig. (15). Fig. (13) shows that the value of W oscillates
much when z → 0, thus the accurate numerical integral method should be used in this domain. As
z grows, the oscillation decays as value of z grows. When z = −1.0, both the numerical integration
and Bessho’s series are used. By Fig. (15), the value of W is continuous. These two method give the
same result in the domain far away from the xy plane.

4. The Rankine source method

4.1 Free surface boundary condition

In the Rankine source method, the free surface boundary conditions are linearized on a base flow.
Set

Φ = ψ + ϕ (71)

η = H + ξ (72)
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ψ and H are the potential and wave elevation of the base flow, ϕ and ξ refer to the perturbation flow.
Substitute Eqs. (71) and (72) into Eqs. (2) and (3) and keep the linear terms about the perturbation

flow.
ψXηX + ψYηY + ϕXHX + ϕY HY − ψZ − ϕZ = 0 (73)

1
2

[U2 − ∇ψ · ∇ψ − 2∇ψ∇ϕ] − gη = 0 (74)

Substitute Eq. (74) to Eq. (73). The combined free surface condition is

1
2

(ψX
∂

∂X
+ ψY

∂

∂Y
)[ψ2

X + ψ2
Y + ψ2

Z + 2ψXϕX + 2ψYϕY

+ 2ψZϕZ] − g(ϕXHX + ϕY HY ) + g(ψZ + ϕZ) = 0

on z = H(x, y)

(75)

4.2 The integral identity

S is surface composed of the free surface and the hull surface; DI is the virtual fluid domain;
DE is the fluid domain; φI is the perturbation potential in DI; φE is the perturbation potential in DE .
Different from the Neumann-Kelvin method, the virtual domain DI has no free surface and denotes
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the whole domain above S . ~X is the field point; ~X0 is the source point. The normal vectors of different
domain are as shown Fig. (16).

By the Green’s theorem

tφI =
1

4π

"
S

(
φIGnI −GφI

nI

)
dS (76)

Since φ is the perturbation potential, the integral on other boundaries is 0.

t =


1 when ~X is in DI
1
2 when ~X is on S
0 ~X is in DE

(77)

Similarly

(1 − t)φE =
1

4π

"
S

(
φEGnE −GφE

nE

)
dS (78)

By Fig. (16), on S
∂

∂n
= −

∂

∂nE
=

∂

∂nI
(79)

Combine Eq. (76) and Eq. (78), consider Eq. (79)

φ =
1

4π

"
S

[
(φI

n − φ
E
n )G + (φE − φI)Gn

]
dS (80)

By Eq. (80), we can see there is sources and dipoles distributed on S . Since the fluid domain DE

is virtual, φE can be set to φE = φI . So the velocity potential is continuous on S .

φ =
1

4π

"
S
σGdS (81)

σ is the source strength
σ = φI

n − φ
E
n (82)

Fig. 16 Normal vectors in the Rankine source method
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Substitute Eq. (6) into Eq. (82)

Φ = −UX +
1

4π

"
S
σGdS (83)

Substitute Eq. (83) into Eqs. (4) and (75) and the source strength σ can be calculated. In
numerical calculation, S is discretized into flat panels and the source strength is a constant in every
panel. The mesh in the Rankine source method is shown in Fig. (17).

In Eq. (83), S is the whole free water surface. L is the ship length. In numerical calculation, the
panels can only cover part of the free surface. In this study. panels cover the free surface which is L
ahead of the bow, L behind the stern and L in width. The free surface elevation varies severely near
the ship hull and decays far away the ship hull. For this reason, the panels are dense near the ship
hull and relative sparse far away the ship hull. The distribution of the mesh seeds in y direction is a
geometric sequence and the coefficient is b2/b1 = 1.1, as shown in Fig. (18).

4.3 The forward shift of the allocation point

In the Rankine source method, the source strength over one panel is a constant and the boundary
condition is satisfied on one point which is called the allocation point. For intuition the alloca-
tion should be the geometry center. However, calculated source strength oscillates severely for this
choice. That is to say, the calculated result of the source strength varies severely between the nearby
panels(Raven 1998). This is the sign of error in the numerical calculation. One method to solve this
is to move the allocation point ahead of the geometry center, as shown in Fig. (18). By this method,
the result of the source strength is continuous over the nearby panels. Since the location of the al-
location point can be chosen freely over the panel, the forward shift of the allocation point would
not introduce extra error in the calculation. The prove of the effectiveness of this method is give by

XY

Z

XY

Z

Fig. 17 Mesh in the Rankine source method
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Fig. 18 Forward shift of the allocation point

Raven (1998). In this study, the distance between the allocation point and the geometry center is
10% of the panel length, µ = 0.1a, as shown in Fig. (18).

4.4 The raised panel method

In the Rankine source method, the discretization of source strength and the use of difference
scheme in the boundary condition introduce the numerical wave dispersion(Han and Olson 1987b,
Schultz and Hong 1989b). That is to say, the calculated wave length is different from the actual wave
length. To reduce the wave dispersion, the panels are above the free surface at some distance, which

Fig. 19 The raised panel method
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is called the raised panel method. The effectiveness of this method is given by Musker (1989) and
Cao (1991b). In the Rankine source method, the free surface elevation varies in every iteration. So
the free surface should be remeshed in every iteration. In the raised panel method, the panels are
above the free surface and the calculated result is not sensitive to the distance of panels above the
free surface(Raven 1996). So the free surface does not need to be remeshed in every step. This can
bring much convenience in calculation and this is another advantage of the raised panel method. The
panels should not be too close to the free surface since the effect of the raised panel method is too
weak to reduce the wave dispersion. The panels should not be too far away from the free surface
either since this would cause the singularity in the calculation. In this study, the panels are above the
free surface 15% of the panel length, δ = 0.15a, as shown in Fig. (19).

4.5 The difference scheme

The boundary conditions requires the derivative of velocity. The forward difference scheme in x
direction can introduce virtual frictional force and thus satisfy the radiation condition(Dawson 1977).
The result of calculation is not sensitive to the choice of the difference scheme(Raven 1996). In this
study, four point forward scheme is used in x direction

∂ f
∂x
≈

10 fi, j − 15 fi−1, j + 6 fi−2, j − fi−3, j

6∆x
(84)

Central scheme is used in y direction

∂ f
∂y
≈

fi, j+1 − fi, j−1

2∆x
(85)

4.6 Initial conditions

In the derivation of the Rankine source method, there is no restriction on the initial condition.
In practice, often a uniform ship speed and calm water free surface are chosen. However, for highly
nonlinear cases(e.g., the Froude number is very large), the simple initial conditions may lead to
divergence of the result. For these highly nonlinear cases, the choice of initial conditions is important.
The principle is to choose the initial conditions which are close to the (expected) final result, for
example, choose the initial conditions as the result from Dawson’s method. This is in accordance
with the assumptions of the perturbation method. From Eqs. (71) and (72), ϕ and ξ should be small
variables compared with ψ and H.

4.7 The convergence criteria

By the free surface boundary condition (75)

g(ϕZ − ϕXHX − ϕY HY ) + (ψX
∂

∂X
+ ψY

∂

∂Y
)

(ψXϕX + ψYϕY + ψZϕZ)

= −gεk + (ψX
∂

∂X
+ ψY

∂

∂Y
)εd on Z = H(X,Y)

(86)

Where

εk = ψZ − ψXHX − ψY HY (87)
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Fig. 20 Wave elevation and contour of Wigley III, Fn = 0.3

εd =
1
2

(U2 − ψ2
X − ψ

2
Y − ψ

2
Z) − gH (88)

Set εk = εd = 0 be the convergence criteria. This can be explained physically and mathematically.
Mathematically, when εd and εk are both 0, then the right hand side of equation is 0. Since Eq. (86) is
satisfied on the whole free surface Z = H(X,Y), by the left hand side of Eq. (86), ϕx = ϕy = ϕz = 0.
As φ is the disturbance potential, this means the algorithm is convergent. Physically, from Eqs. (87)
and (88), εk = εd = 0 means that ψ and H satisfy the kinematic and dynamic free surface boundary
condition, which implies that ψ and H are already the convergent solution.

In every iteration, calculate εk and εd on every panel on the free surface. Then the convergence
criteria is

(εk)max < aU (89)

(εd)max < bU2 (90)

a and b are chosen as constants, usually a = b = 0.005.
In this study, the Rankine source is implemented and the calculated free surface elevation and

contour are shown in Fig. (20).

5. Comparision of the Neumann-Kelvin and Rankine source methods

To compare the Neumann-Kelvin and Rankine source method, and to explore the limitations of
these two methods, both methods were implemented and the wave-making resistance of a Wigley III
ship and three Series 60(Cb=0.6, 0.7, 0.8) ships were calculated by both methods. The results were
compared to the experimental results. In the calculation, for the Neumann-Kelvin source method,
approximately 2000 elements were used for the ship hull surface; for the Rankine source method,
approximately 2000 elements were used for the ship hull surface and 6000 elements were used for
the free surface. The results are shown in Fig. (21)

The calculated results by two methods were compared with experiment results from DTMB(Todd
1963). Only the total drag coefficients were given by the experiments and the wave-making coeffi-
cients were calculated by the three-dimensional transform(Lewis 1988). The result of Wigley III was
also compared with the calculated result by Marr (1996). For the Wigley III and Series 60(Cb=0.6)
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Fig. 21 Comparision of the Neuman-Kelvin and the Rankine source method on four ships

ship, the results were shown for Froude number Fn = 0.1 ∼ 0.4. For the Series 60(Cb=0.7,0.8)
ship, the results were shown for shorter range of Froude number due to the lack of experiment data
for the high Froude number. This is reasonable because Series 60(Cb=0.7,0.8) ship are full form
ships. When the Froude number is too high, wave breaking would appear in the experiment, which
is not considered in the potential theory. Moreover, the full form ship usually can not travel at a high
Froude number in actual use.

From the results we can see that the Neumann-Kelvin method can yield relative good result
for the Wigley III ship(compared to the series 60 ships), especially when the Froude number is
small. But it gives unrealistic results of wave-making resistance for the series 60 ships. As the
block coefficient grows, the curve of wave-making resistance begins to oscillate at a lower Froude
number and oscillates more severely. This is because the Wigley III is an idealized hull form and
somewhat like the thin ship. The waves generated by the ship are close to the linear waves. However,
the Series 60 ships are more realistic ship hulls. As the block coefficient of hull forms grows, the
waves generated by the ship are highly nonlinear at a lower Froude number. This violate the basic
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assumption of the Neumann-Kelvin method.
Compared to the Neumann-Kelvin method, the Rankine source method gives much more satis-

factory result for Wigley III and all three Series 60 ship hulls. Unlike the Neumann-Kelvin method,
the Rankine source method uses nonlinear free surface condition. So as the block coefficient and the
Froude number grows, the Rankine source method can still satisfy the highly nonlinear free surface
boundary condition. However, For the Series 60(Cb=0.7,0.8) ships, when the Froude number is high,
the Rankine source generates large error. This may caused by the direct pressure integral over the hull
surface in the calculation. Since the pressure on the fore half and rear half of the ship hull is oppo-
site, the wave-making resistance is the subtraction of two large numbers. This may cause numerical
errors in the calculation. One possible solution is by the wave cut analysis, which is discussed by the
author’s another paper(Yu and Falzarano 2017).

6. Conclusions

In this study, two methods of calculating wave-making resistance were explored. The first method
is the Neumann-Kelvin method, which assumes the linear free surface condition. The key point of
the Neumann-Kelvin method is to calculate the Green function, especially the single integral part. In
this study, the derivation of the integral identity and the method to calculate the Green function were
discussed.

The second method of calculating wave-making resistance is the Rankine source method, which
uses the nonlinear free surface condition. The raised panel method and the shift of collocation point
were used in this study. The integral identity, initial conditions, and convergence criteria were also
discussed in this paper.

In this study both the Neumann-Kelvin and the Rankine source method were implemented and
the wave-making resistance of a Wigley III ship and three Series 60 (Cb=0.6,0.7,0.8) ships were
calculated. The Neumann-Kelvin method can only give satisfactory result for Wigley III ship but the
Rankine source method can give much more reasonable results for all ships. The main difference
of the results is due to the treatment of free surface boundary condition. This study denotes that the
free surface boundary condition is very important to problem of wave-making resistance. Based on
the results of this paper, the Rankine source method is more accurate in the calculation of the wave-
making resistance. However, the Neumann-Kelvin method is much more convenient in modeling
since it only needs to mesh the ship hull surface. Moreover, the Neumann-Kelvin method can be
used to solve wave and current coupling problems(e.g., Xie et al. (2015), Liu and Falzarano (2016),
Guha and Falzarano (2016)). As the result of this paper, although the Neumann-Kelvin method is
limited, it may still be valuable in practical use for cautious considerations.
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