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Abstract. Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most com-
monly used floating production units to extract hydrocarbons from reservoirs under the seabed. These
structures are usually much larger than general cargo ships and have their natural frequency outside the
wave frequency range. This results in the response to first order wave forces acting on the hull to be negli-
gible. However, second order difference frequency forces start to significantly impact the motions of the
structure. When the difference frequency between wave components matches the roll natural frequency,
the structure experiences a significant roll motion which is also termed as second order roll.

This paper describes the theory and numerical implementation behind the calculation of second order
forces and motions of any general floating structure subjected to waves. The numerical implementation is
validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the
popular approximations used to simplify the computation of second order forces and provides a discussion
on the limitations of each approximation.

Keywords: second order roll; FPSO roll; newman approximation; potential theory; OrcaFlex; KVLCC2;
Quadratic Transfer Function (QTF)

1. Introduction

With the discovery of vast oil and natural gas reserves under the oceans, the number of deep water
floating production units deployed to extract these hydrocarbons has increased by many folds in the
last decade. Currently there are more than 250 floating production units around the world, of which
more than 60 % are FPSOs. Although FPSOs have been built in different shapes and sizes, the ship
shaped hull form is the most common owing to the cheaper conversion of old tankers into FPSOs.

FPSOs are usually huge structures designed such that their natural frequency is outside the wave
frequency range (usually 2-20 seconds). This helps the structure to be relatively stable and allows for
drilling and production operations to be performed on-board (Molin 2002).

In the recent years, a large number of FPSOs have been deployed near Western Africa and off the
coast of Brazil. These environments are characterized by milder seas superimposed with long period
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swells and are quite different than the North Atlantic or Gulf of Mexico environments. It has been
observed that some of these deployed FPSOs exhibit a significant amount of roll motion in operating
conditions (Ferreira et al. 2005). Higher roll amplitudes directly affect the fatigue life of the risers,
ability to offload cargo, efficiency of process equipment and operations. For this reason, there is a
renewed interest to understand the mechanism behind this phenomenon of second order roll motion
(Rezende 2012).

The traditional approach to simulate this type of roll motion is to include the second order differ-
ence and sum frequency effects in addition to the linear diffraction and radiation forces. The second
order forces and moments are described in terms of Quadratic Transfer Functions (QTF) which re-
quire solving both the first and second order potential problem using boundary element methods.

The second order forces and moments can be separated into two components (Chakrabarti 2002):

1. The contribution due to first order quantities computed at bi-chromatic frequencies which can
further be classified into four parts

2. The contribution due to integration of second order diffraction potential over body surface up
to mean water level

Since the first part is evaluated using first order quantities, it requires solving only the bound-
ary value problem corresponding to the first order radiation and diffraction potentials. However, to
evaluate the second order diffraction potential, a second boundary value problem needs to be solved.
This problem has been investigated in detail by many researchers including Newman (1974), Pinkster
(1980), Lee (1995) and Chen (2007). This approach has also been used by the industry to analyze
practical problems (see for e.g., Liu 2003,Matsumoto and Simos 2014). However, in particular, when
only the difference frequency drift forces are important, the problem can be approximated to reduce
calculation time of QTF (Chen and Rezende 2009). While these approximations come at a cost of
accuracy of the evaluated QTF, they have the advantage of being computationally cheap (Rezende
and Chen 2010). Hauteclocque et al. (2012) provide a review of the different forms of approximation
used to simplify the computation of difference frequency QTF.

This paper describes the implementation of the further development of in-house frequency (MDL-
HydroD - Guha et al. 2016) and time domain (SIMDYN - Somayajula and Falzarano 2015a) simula-
tion tools to include the slowly varying drift forces and moments. While the previous implementation
of these tools could be used to analyze complex nonlinear phenomenon such as parametric roll (So-
mayajula and Falzarano 2016c, Somayajula et al. 2014, Somayajula and Falzarano 2015b) and also
compute added resistance in both deep and shallow water (Guha et al. 2016), it still cannot include
slowly varying drift forces and moments into the analysis.

This paper attempts to compare the various forms of Newman approximation to compute the dif-
ference frequency QTF. Also the second order force and moment are converted into time domain
and compared against a commercial program for validation. Finally, the developed tool and com-
mercial program are applied to simulate second order roll motion of a FPSO hull form and the roll
time histories are compared for validation of the implementation. For the purpose of investigation of
second order roll of FPSOs, the hull form of KVLCC2 (whose hull form and particulars are freely
available) is selected as a candidate hull form and most of the results in this paper correspond to it.
The particulars of KVLCC2 are listed in Table 1 and the body plan is shown in Fig. 1.
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Fig. 1 Body Plan of KVLCC2

Table 1 Details of the KVLCC2

Particulars Value

Length between perpendiculars Lpp (m) 320.00
Breadth B (m) 58.00
Depth D (m) 30.00
Mean Draft T (m) 20.80
Displacement∆ (tonnes) 320438
Vertical Center of GravityKG (m) 18.205
Metacentric Height GM t (m) 5.703
Roll Natural Period Tn (sec) 21.02

2. Potential theory

This section gives a brief overview of the potential theory formulation and application of pertur-
bation method to approximate the problem. Finally, expressions for second order force and moment
are obtained which form the main focus of the paper. Three sets of coordinate systems as assumed
and are listed below.

1. Global Earth Fixed Coordinate System (GCS) which is fixed to the earth and is an iner-
tial frame of reference. The coordinates of any point in this system are specified as x0 =
(x0, y0, z0).

2. Steady Moving Coordinate System (SMCS) is also an inertial frame of reference which
moves with a constant velocity U = Uî + 0ĵ + 0k̂ with respect to GCS. The coordinates
of any point in SMCS are specified as x = (x, y, z).
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3. Body Fixed Coordinate System (BCS) is fixed with the body. This coordinate system trans-
lates and rotates with the ship. The coordinates of any point in BCS are specified as x′ =
(x′, y′, z′).

Throughout this analysis it is assumed that the sinkage and trim in steady forward speed are negli-
gibly small and are ignored. This means that the BCS and SMCS coincide for a ship moving steadily
in calm water with velocity U . A wave of unit amplitude, frequency ωI and wave number kI is as-
sumed to be propagating at an angle β measured anticlockwise from the positive x-axis of GCS. Due
to the steady forward speed of the ship, the frequency of wave encountered in SMCS undergoes a
Doppler shift. This encounter frequency ωe is higher than the incident wave frequency ωI for U > 0
and π

2 < β < 3π
2 . The encounter frequency ωe is related to the incident wave frequency ωI as shown

in Eq. (1)

ωe = ωI − kIU cosβ (1)

For an inviscid and irrotational flow, there exists a complex velocity potentialΦ(x, t) in the entire
fluid domain. Φ(x, t) is defined in SMCS and is given by

Φ(x, t) =− Ux+ ϕSt(x)︸ ︷︷ ︸
Neglect

+ϕI(x, ωI , β)

+ ϕS(x, ωI , β) +
6∑

i=1

ξiϕi(x, ωe, β) (2)

where

• ϕSt(x) is the potential due to the perturbation of the free stream due to the presence of the body
and is called the steady potential

• ϕI(x, ωI , β) is the wave potential due to the incident wave of frequency ωI at an angle β and
is called the incident wave potential

• ϕS(x, ωI , β) is the wave potential due to the reflection of the incident waves from the body
and is called the scattering wave potential

• ϕi(x, ωe, β) is the potential due the waves generated by the unit amplitude motion of the ship
in the ith mode (|ξi| = 1)

Neglecting the effect of steady potential, Φ(x, t) is given by

Φ(x, t) =− Ux+ ϕ (3)

where

ϕ = ϕI(x, ωI , β) + ϕS(x, ωI , β) +

6∑
i=1

ξiϕi(x, ωe, β) (4)
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GoverningEquation: Under the assumption of inviscid and irrotational flow, the governingNavier-
Stokes equation reduces to the Laplace equation shown in Eq. (5) and is valid over the entire fluid
domain

∇2Φ(x, t) = 0
(5)

Boundary Conditions: In addition to satisfying the governing Laplace equation, the velocity po-
tential must also satisfy the boundary conditions over the fluid boundaries. These include the follow-
ing:

1. Kinematic free surface boundary condition: Velocity of the fluid in the direction normal to free
surface is equal to the normal velocity of the free surface.

∂η

∂t
=

∂ϕ

∂z
−
(
−U +

∂ϕ

∂x

)
∂η

∂x
− ∂ϕ

∂y

∂η

∂y
over z = η(t, x, y) (6)

2. Dynamic free surface boundary condition: Pressure on the free surface is constant C = 0 and
is obtained by application of Bernaulli’s equation over the free surface.

∂ϕ

∂t
+

1

2

{(
−U +

∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
}

+ gη = 0 over z = η(t, x, y)

(7)

3. Body boundary condition: Velocity of the fluid in the direction normal to body boundary is
equal to the normal velocity of the body boundary over instantaneous underwater surface S.

(V s −∇Φ).n̂ = 0 (8)

The velocity of ship surface V s at a point x on the underwater ship surface S is equal to the
sum of the velocities induced due to translational and rotational motions of the ship.

V s = ξ̇ + ω × [x− ξ] (9)

Thus the body boundary condition over the instantaneous wetted surface S is given by

∂ϕ

∂n
≡ ∇ϕ.n̂ =

{
ξ̇ + ω × (x− ξ)

}
.n̂−W .n̂ (10)

where W = ∇(−Ux + ϕSt) is the velocity vector due to the steady flow around the hull
moving forward with speed U .
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4. Bottom boundary condition: The normal velocity of the fluid at the bottom boundary is equal
to the normal velocity of the boundary. For a impenetrable seabed in deep water the normal
velocity is zero and the boundary condition is given by

∂ϕ

∂z
= 0 over the bottom z = −∞ (11)

5. Radiation boundary condition: This condition allows the locally generated waves to propagate
outwards to ∞ in a fluid domain which is unbounded horizontally. This is also sometimes
referred to as the Sommerfield radiation condition.

lim
r→∞

√
r

[
∂ϕS

∂r
− ikϕS

]
= 0 (12)

lim
r→∞

√
r

[
∂ϕi

∂r
− ikϕi

]
= 0 for i = 1, 2, ..., 6 (13)

The free surface and body boundary condition are in general nonlinear and hence an exact analyt-
ical solution is not available. However, it is possible to adopt a perturbation approach to separate the
problem into various orders of nonlinearity. The solution ϕ and other parameters of interest (wave
elevation, pressure, normal vector, position vector) are expressed as a series expansion in terms of a
small quantity ϵ (usually of the order of wave slope).

ϕ = ϵϕ(1) + ϵ2ϕ(2) + ϵ3ϕ(3) + ... (14)

η = ϵη(1) + ϵ2η(2) + ϵ3η(3) + ... (15)

p = p(0) + ϵp(1) + ϵ2p(2) + ϵ3p(3) + ... (16)

n̂ = n̂(0) + ϵn̂(1) + ϵ2n̂(2) + ϵ3n̂(3) + ... (17)

x = x(0) + ϵx(1) + ϵ2x(2) + ϵ3x(3) + ... (18)

The problem is thus reduced to solving a successive set of Laplace equations each with linearized
boundary conditions. ϕ(1) is obtained by solving the linearized problem shown below. The obtained
solution of ϕ(1) is further used in formulating the linearized problem for ϕ(2) and so on.

∇2ϕ(1) = 0 (19)
∂η(1)

∂t
− U

∂η(1)

∂x
=

∂ϕ(1)

∂z
over z = 0 (20)

∂ϕ(1)

∂t
− U

∂ϕ(1)

∂x
= −gη(1) over z = 0 (21)

∂ϕ(1)

∂n
=

6∑
k=1

ξ̇knk + ξkmk over S0 (22)
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∂ϕ(1)

∂z
= 0 over z = −∞ (23)

where S0 is the mean underwater hull surface and

(n1, n2, n3) = n̂′ (24)
(n4, n5, n6) = x′ × n̂′ (25)
(m1,m2,m3) = −(n̂′.∇)W (26)
(m4,m5,m6) = −(n̂′.∇)(x′ ×W ) (27)

andW ≈ −Uî+0ĵ+0k̂ is the velocity vector due to the steady flow around the hull neglecting the
effect of steady potential.

3. Second order forces and moments

The pressure at any point in the fluid is given by the Bernaulli’s equation

p = −ρgz − ρ
∂Φ

∂t
− ρ

2
|∇Φ|2

= −ρgz − ρ
∂ϕ

∂t
+ ρU

∂ϕ

∂x
− ρU2

2

− ρ

2

{(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
} (28)

Redefining the pressure to be the gauge pressure the constant term −ρU2

2 can be removed from
the dynamic pressure expression resulting in

p = −ρgz − ρ
∂ϕ

∂t
+ ρU

∂ϕ

∂x
−ρ

2

{(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
}

(29)

Substituting ϕ = ϵϕ(1) + ϵ2ϕ(2) + ϵ3ϕ(3) + ... and z = z(0) + ϵz(1) + ϵ2z(2) + ϵ3z(3) + ... into
the expression for pressure, exact expressions for various orders of pressure in terms of the potential
can be obtained. The hydrodynamic force acting on the body is obtained by integrating the pressure
over the wetted surface of the vessel

F =

∫
S
p.n̂dS (30)

M =

∫
S
p.(x× n̂)dS (31)

Applying a perturbation approach and substituting the perturbed expansion for pressure and nor-
mals, the hydrodynamic force and moment can be expressed as

F = F (0) + ϵF (1) + ϵ2F (2) + ... (32)
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F =

(∫
S0

dS +

∫
wl

ζrdl + ...

){
p(0) + ϵp(1) + ϵ2p(2) + ...

}
.{

n̂′ + ϵ(θ(1) × n̂′) + ϵ2Hn̂′ + ...
} (33)

M = M (0) + ϵM (1) + ϵ2M (2) + ... (34)

M =

(∫
S0

dS +

∫
wl

ζrdl + ...

){
p(0) + ϵp(1) + ϵ2p(2) + ...

}
.{

x′ × n̂′ + ϵ
[
ξ(1) × n̂′ + θ(1) × (x′ × n̂′)

]
+ ϵ2

[
H(x′ × n̂′) + ξ(1) × (θ(1) × n̂′)

]
+ ...

} (35)

where the waterline integral
∫
wl ζrdl appears due to the Taylor expansion of the integral on the in-

stantaneous wetted surface S about the mean wetted surface S0. ζr is the relative waterline and is
given by

ζr = η − (ξ3 − ξ5x+ ξ4y) (36)

Note that ξ(1) = ξ1î+ ξ2ĵ+ ξ3k̂ and θ(1) = ξ4î+ ξ5ĵ+ ξ6k̂ represent the first order displacement
and rotation vectors and the matrix H represents the second order rotation matrix as defined in Eq.
(37).

H =

−1
2

(
ξ25 + ξ26

)
0 0

ξ4ξ5 −1
2

(
ξ24 + ξ26

)
0

ξ4ξ6 ξ5ξ6 −1
2

(
ξ24 + ξ25

)
 (37)

Expanding the terms and collecting the terms proportional to ϵ2 in Eq. (33) and Eq. (35) results in
expressions for the second order force and moment as shown in Eq. (38) and Eq. (39) respectively.

F (2) =

∫
S0

p(0)
(
Hn̂′) dS +

∫
S0

p(1)(θ(1) × n̂′)dS

+

∫
S0

p(2)n̂′dS +

∫
wl

ζ(1)r p(0)(θ(1) × n̂′)dl︸ ︷︷ ︸
=0 as p(0)=0 on wl

+

∫
wl

ζ(1)r p(1)n̂′dl +

∫
wl

ζ(2)r p(0)n̂′dl︸ ︷︷ ︸
=0 as p(0)=0 on wl

(38)
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M (2) =

∫
S0

p(0)
[
H(x′ × n̂′) + ξ(1) × (θ(1) × n̂′)

]
dS

+

∫
S0

p(1)
[
ξ(1) × n̂′ + θ(1) × (x′ × n̂′)

]
dS +

∫
S0

p(2)
(
x′ × n̂′) dS

+

∫
wl

ζ(1)r p(0)
[
ξ(1) × n̂′ + θ(1) × (x′ × n̂′)

]
dl︸ ︷︷ ︸

=0 as p(0)=0 on wl

+

∫
wl

ζ(1)r p(1)
(
x′ × n̂′) dl + ∫

wl
ζ(2)r p(0)

(
x′ × n̂′) dl︸ ︷︷ ︸

=0 as p(0)=0 on wl

(39)

The second order force and moment obtained from perturbation theory accommodate interaction
between two wave trains with different amplitudes and frequencies. The interaction between two reg-
ular waves (bi-chromatic waves) gives rise to forces and moments at difference and sum frequencies.
The total second order force and moment denoted by Eq. (38) and Eq. (39) respectively are the sum
of the forces and moments due to sum and difference frequency effects as represented below

F (2)(ωm, ωn) = F (2d)(ωm, ωn) + F (2s)(ωm, ωn) (40)

M (2)(ωm, ωn) = M (2d)(ωm, ωn) +M (2s)(ωm, ωn) (41)

where

• F (2s)(ωm, ωn) is the sum frequency component of the second order force

• F (2d)(ωm, ωn) is the difference frequency component of the second order force

• M (2s)(ωm, ωn) is the sum frequency component of the second order moment

• M (2d)(ωm, ωn) is the difference frequency component of the second order moment

If the two regular wave trains in a bi-chromatic wave have amplitudesAm andAn, a set of second
order transfer functions can be defined as shown below. These transfer functions are also referred to
as quadratic transfer functions (QTFs).

Q
(2d)
i (ωm, ωn) =

F
(2d)
i (ωm, ωn)

AmAn
for i = 1, 2, 3 (42)

Q
(2s)
i (ωm, ωn) =

F
(2s)
i (ωm, ωn)

AmAn
for i = 1, 2, 3 (43)
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Fig. 2 Difference frequency pairs in bi-frequency (ωm, ωn) plane

Q
(2d)
i (ωm, ωn) =

M
(2d)
i−3 (ωm, ωn)

AmAn
for i = 4, 5, 6 (44)

Q
(2s)
i (ωm, ωn) =

M
(2s)
i−3 (ωm, ωn)

AmAn
for i = 4, 5, 6 (45)

4. Quadratic Transfer Function (QTF) approximations

Practically, the second order forces play an important role only when the natural frequency of
the structure is outside the wave frequency zone where the first order forces are insignificant. If the
natural frequency of a structure is higher than the wave frequency range, like a tension leg platform
(TLP), then the sum frequency effects play a dominant role. However, for soft moored systems such
as semi-submersibles and FPSOs, the difference frequency effects are most dominant. In analyzing
the motions of a FPSO, the difference frequency effects are more important as the natural period is
in the low frequency zone.

It can be seen from Eq. (38) and Eq. (39) that to evaluate the second order force and moment
up to O(ϵ2) requires computation of p(2) which in turn requires calculation of ϕ(2). Thus for exact
calculation, a second boundary value problem for ϕ(2) needs to be solved. This makes obtaining
exact values for Q(2d)(ωm, ωn) and Q(2s)(ωm, ωn) computationally expensive. In order to make the
problem tenable Pinkster (1980) suggested replacing the total potential ϕ(2) by the incident potential
ϕ
(2)
I which is analytically known. The QTF calculated using this approach is know as the Pinkster’s

approximated QTF. Note that this still requires calculating the QTF for each of the frequency pairs in
the bi-frequency plane.
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Fig. 3 Sway QTF using different Newman approximations
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Fig. 4 Roll QTF using different Newman approximations

Practically, it is seen that the difference frequency QTFs have their largest contribution coming
from frequency pairs on or near the diagonal ωm −ωn = 0 in the bi-frequency plane. The difference
frequency diagonals are shown in Fig. 2. For such cases, Newman (1974) suggested an approximation
of the QTF using a method which just requires the QTF values for the diagonal pairs. The diagonal
represents the pair of frequencies where the difference frequency forces except for the terms involving
the second order potential are constant terms. These constant values over the diagonal are termed as
the mean drift forces. Newman approximation utilizes the mean drift forces to predict the QTF values
for the off-diagonal frequency pairs. The original Newman approximation is given by Eq. (46)

Q(2d)(ωm, ωn) = Q(2d)(ωm, ωm) (46)

However, other forms of Newman approximation which have become quite accepted include the
arithmetic mean and geometric mean models shown in Eq. (47) and Eq. (48) respectively

Q(2d)(ωm, ωn) =
1

2

(
Q(2d)(ωm, ωm) +Q(2d)(ωn, ωn)

)
(47)

Q(2d)(ωm, ωn) = sign(Q(2d))
√

Q(2d)(ωm, ωm)Q(2d)(ωn, ωn) (48)
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Fig. 3 and Fig. 4 shows a comparison of the sway and roll QTFs of KVLCC2 for incident bi-
chromatic beam waves between the three forms of Newman approximations. The frequency domain
program used in this investigation (MDLHYDROD developed by Guha and Falzarano 2015) only
provides the output of mean drift coefficients and does not calculate QTF at each of the frequency
pairs in bi-frequency plane. Thus the investigation in this section will be limited to using the different
Newman approximation models to estimate the QTF. The output mean drift coefficients from the
frequency domain program are used in SIMDYN to calculate the Newman approximated QTFs which
are then used to generate the second order force and moment time series. The conversion from QTF
to time series is described in the next section.

5. Numerical computation of second order forces and moments in time domain

For evaluating the motions of a vessel including the second order effects, the frequency domain
formulation described in the previous section needs to be transformed into the time domain. A uni-
directional irregular wave train in the time domain is represented by the inverse Fourier transform of
the complex wave amplitudes generated from a spectrum as shown below

η(t) = Re

{
N∑

m=1

Ameiωmt

}
(49)

where Am is the complex wave amplitude (characterizing the amplitude and phase) of each of theN
wave components in the wave train. It is also assumed that the frequencies ωm are equally spaced be-
tween 0 andωN . Themagnitude of amplitude is obtained from the spectrum by |Am| =

√
2S(ωm)dω

and the phase is obtained from a uniform random variable which assumes values between 0 and 2π.
Using this description of the waves in time domain, the second order forces and moments can be
evaluated by

F
(2)
i = F

(2d)
i + F

(2s)
i

(50)

where (∗) represents complex conjugate and F (2d)
i (t) and F (2s)

i (t) are given by

F
(2d)
i (t) = Re

{
N∑

m=1

N∑
n=1

AmA∗
nQ

(2d)
i (ωm, ωn)e

i(ωm−ωn)t

}

F
(2s)
i (t) = Re

{
N∑

m=1

N∑
n=1

AmAnQ
(2s)
i (ωm, ωn)e

i(ωm+ωn)t

} (51)

However, implementing this formulation necessitates taking a double inverse Fourier transform
which is computationally expensive. However, utilizing the symmetry and observing that the pairs
of (ωm, ωn) along the diagonals in bi-frequency plane correspond to same second order frequency
components, an alternative scheme using a single inverse Fourier transform can be formulated. Since
the focus of this paper is on difference frequency effects on roll motion, the formulation will be
developed for the difference frequency QTF. A similar scheme can also be applied to evaluating the
sum frequency forces and moments, but will not be discussed here. More details on numerically
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implementing the alternative scheme for sum frequency forces and moments can be found in Duarte
et al. (2014).

Fig. 2 shows the various frequency pairs which contribute to the same second order difference
frequency component of the second order force/moment. Along each diagonal in Fig. 2 the difference
between the frequency pairs is constant. The main diagonal ωm − ωn = 0 corresponds to zero
difference frequency term or the mean term of the second order force/moment. The kth off-diagonal
to the right of the main diagonal in the bi-frequency plane corresponds to a difference frequency of
kδω. The double summation in Eq. (51) can now be represented as sums across the diagonals in
the bi-frequency plane. The double inverse Fourier transform (over ωm and ωn) in Eq. (51) is now
reduced to a single inverse Fourier transform (over ωk) as shown in Eq. (52)

F
(2d)
i (t) = Re

{
N∑
p=1

ApA
∗
pQ

(2d)(ωp, ωp)︸ ︷︷ ︸
Main Diagonal

+ 2

N−1∑
k=1

Sum along each Off-Diagonal︷ ︸︸ ︷(
N−k∑
l=1

Al+kA
∗
lQ

(2d)
i (ωl+k, ωl)

)
eiωkt

︸ ︷︷ ︸
Sum over Off-Diagonals

} (52)

The summations in the second term in Eq. (52) represent the contribution due to the off-diagonals
to the right of the main diagonal in Fig. 2. The effect of the off-diagonals to the left of the main
diagonal is equal to the contribution due to the off-diagonals towards the right of the main diagonal.
This is due to the special property of the difference frequency QTF as shown below

Q(2d)(ωn, ωm) = Q(2d)(ωm, ωn)
∗ (53)

Thus the contribution due to frequency pairs obtained by interchanging the frequencies is the same
as shown below

Re
{
AmA∗

nQ
(2d)(ωm, ωn)e

i(ωm−ωn)
}

= Re
{(

A∗
mAnQ

(2d)(ωm, ωn)
∗ei(ωn−ωm)

)∗ }
= Re

{(
AnA

∗
mQ(2d)(ωn, ωm)ei(ωn−ωm)

)∗ }
= Re

{
AnA

∗
mQ(2d)(ωn, ωm)ei(ωn−ωm)

}
(54)

SIMDYN has been developed to include the option to choose which Newman approximation to
use. This allows for a comparison of the second order moment in time domain using the different
approximations. Fig. 5 shows the comparison of roll drift moment obtained using the three different
Newman approximations described in the previous section. It can be seen that in a deepwater scenario
all three approximations are almost equivalent.
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Fig. 5 Comparison of second order roll moment using different Newman approximations for KVLCC2 hull
subjected to irregular beam sea realization from JONSWAP spectrum with significant wave heightHs = 7 m
and modal period Tz = 7 s

6. Validation studies

The above described method to calculate the second order forces and moments is numerically im-
plemented into the time domain program SIMDYN described in Somayajula and Falzarano (2015a).
However care is taken to avoid any double counting of the hydrodynamic forces. The second order
forces and moments and the nonlinear Froude-Krylov and hydrostatics (described in Somayajula and
Falzarano 2015a) cannot be considered together as it would result in double counting. Thus when
the second order forces and moments are included in analysis only linear Froude Krylov and hydro-
statics are additionally included. Once the force and moment time series are obtained, the resulting
motions are solved for using a numerical integration scheme described in Somayajula and Falzarano
(2015a). For zero speed case, the results from SIMDYN are validated against a commercial software
OrcaFlex. Although the combination of MDLHYDROD and SIMDYN can handle forward speed
case, it cannot be compared with OrcaFlex as it cannot perform calculations for forward speed.

Note that although SIMDYN has a viscous roll damping calculation included, no viscous roll
damping has been used in this study to achieve large roll angles for effective comparison between
the two programs. In reality, the viscous damping coefficients are either obtained from free decay
experiments or empirical methods (Himeno 1981, Falzarano et al. 2015). In the event of unavailability
of free decay experiments, the damping can also be identified from model tests in irregular seas using
system identification techniques (see for e.g., Somayajula and Falzarano 2016a, b)

Fig. 6a shows a comparison of the second order roll moment due to bichromatic incident beam
waves with wave heightsH1 = 7 m,H2 = 8 m and wave periods T1 = 7 s, T2 = 10.75 s. A similar
comparison for the case of irregular wave from JONSWAP spectrum superimposed on a regular wave
is shown in Fig. 6b
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(a) Bi-chromatic incident beam waves with two regular wave compo-
nents with wave heights H1 = 7 m, H2 = 8 m and wave periods
T1 = 7 s, T2 = 10.75 s
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(b) Irregular beam sea realization from JONSWAP spectrumwith signif-
icant wave heightHs = 8 m and modal period Tz = 7 s superimposed
with a regular waveH = 7 m and T = 11 s

Fig. 6 Second order roll drift moment of KVLCC2
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In each of the two examples shown in Figure 6, the example is first setup in OrcaFlex. After the
OrcaFlex simulation is completed, the wave profile from OrcaFlex simulation is retrieved and used
as an input to SIMDYN simulation. It can be seen that the results compare very well in both regular
and irregular wave scenarios.
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Fig. 7 Comparison of linear roll motion of KVLCC2 between OrcaFlex and SIMDYN

The comparison of linear roll motion between OrcaFlex and SIMDYN for KVLCC2 ship subject
to a beam sea realization from JONSWAP spectrum with significant height Hs = 8 m and modal
period Tz = 7 s superimposed on a regular wave of height H = 7 m and period T = 11 s is shown
in Figure 7. Note that the nonlinear second order roll moment is not included in the calculation of
roll motion. Since the roll natural frequency is outside the wave frequency zone, the roll response is
significantly low.
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Fig. 8 Comparison of second order roll motion of KVLCC2 between OrcaFlex and SIMDYN

However including the nonlinear second order roll moment into the force vector results in sig-
nificantly larger roll response and is shown in Fig. 8. A comparison within a smaller 1000 second
window is also shown in Fig. 9. The comparison of roll motion between SIMDYN and OrcaFlex in
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Fig. 9 Comparison of second order roll motion of KVLCC2 between OrcaFlex and SIMDYN

case irregular seas shows that the motion comparison is somewhat reasonable but not an exact match.
Although the two time series agree well at the beginning, they quickly diverge from each other as
seen in Fig. 9.

Since the external roll moment and all the particulars are the same between the two cases (see
Fig. 6), the only possible difference is in the inclusion of radiation forces in time domain. While the
frequency dependent added mass and radiation damping have a physical meaning in regular wave
scenario, for the irregular wave case they need to be transformed into the impulse response functions
(also known as retardation functions) for computation in the time domain. The radiation force vector
in the time domain is given by Eq. (55)

{Frad} = −[A(∞)]{ξ̈} −
∫ t

−∞
[K(t− τ)]{ξ̇(τ)}dτ (55)

where {ξ} represents the 6 × 1 displacement vector, [A(∞)] denotes the 6 × 6 infinite frequency
added mass matrix and [K(τ)] represents the 6× 6 impulse response functions (IRF). The IRFs are
usually calculated from the radiation damping using Eq. (56)

[K(τ)] =
2

π

∫ ∞

0
[B(ω)−B(∞)] cos(ωτ)dω (56)

The accuracy of the calculated IRF depends on the computation of the improper integral shown
in Eq. (56). The input frequency domain data for both programs is only provided at a set of discreet
frequencies. Therefore it is common to assume a decaying functional tail for the radiation damping
at higher frequencies and include it in the computation of the improper integral shown in Eq. (56).
OrcaFlex uses a ω−3 tail approximation. However, SIMDYN uses a ω−2 tail based on the classical
works of Greenhow (1986) and Perez and Fossen (2008). This means that SIMDYN uses a slower
decaying tail and hence will result in higher damping as compared to OrcaFlex. This is illustrated in
Fig. 10 which shows the comparison of the impulse response function for the roll mode computed
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Fig. 10 Comparison of Roll IRF calculated from SIMDYN and OrcaFlex

from both programs. Although both IRFs converge in the tail region, SIMDYN IRF has a higher
value at τ = 0 which clearly indicates the higher damping introduced by the heavier tail function
assumed.

Another point of difference between the two programs is the computation of infinite frequency
added mass matrix. SIMDYN uses the exact infinite frequency added mass computed from the fre-
quency domain formulation. However, OrcaFlex does not take an input for the infinite added mass
matrix. It instead calculates the infinite frequency added mass matrix by using the added mass at a
given frequency and the impulse response function matrix. The relation is shown in Eq. (57) and the
theory behind it is described in detail in Somayajula and Falzarano (2015a). It calculates an estimate
using data for each specified input frequency and finally takes an average of all the estimates to arrive
at the final infinite frequency added mass which is then used in solving the equation of motion. How-
ever, in this particular example it was found that the infinite frequency added mass in roll A44(∞)
calculated by this method was only 0.33% different from that provided directly by the frequency
domain program. Note that effect of this difference does not show up in the second order forces or
moments but only comes up when the motions are solved for numerically

[A(∞)] = [A(ω)] +
1

ω

∫ ∞

0
[K(τ)] sin(ωτ)dτ (57)

With these differences in the computation of radiation force vector, one would assume that in case
of no external damping, the motions predicted by SIMDYN would be less as compared to OrcaFlex
as is seen in Figs. 8 and 9.

6.1 Second order forces in forward speed

The example considered in the above sections is a zero forward speed case. However, the current
development of the program allows for the calculation of second order forces in forward speed too.
Since OrcaFlex cannot handle non-zero forward speed of the vessel, the second order forces in non-
zero forward speed case cannot be compared with it. As the forward speed formulation is still based
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Table 2 Details of the S175 container ship

Particulars Value

Length between perpendiculars Lpp (m) 175.00
Breadth B (m) 25.40
Mean Draft T (m) 9.50
Displacement∆ (tonnes) 25266
Vertical Center of GravityKG (m) 9.50
Roll Natural Period Tn (sec) 18.70

Fig. 11 Underwater mesh for S175 container ship

off a zero speed Green function, a finer hull form S175 container ship is chosen to satisfy the slender
assumption. The particulars of S175 container ship are listed in Table 2. The underwater mesh of the
vessel used to calculate the frequency domain data is shown in Fig. 11.

The comparison of the zero and forward speed added resistance in frequency domain (fromMDL-
HYDROD program) is shown in Fig. 12. The comparison of forward speed added resistance in
frequency domain against experiments can be found in the works of Guha and Falzarano (2015).
The added resistance QTF for head sea case is shown in Fig. 13 and the corresponding time history
of second order surge added resistance experienced in an irregular wave realized from JONSWAP
spectrum is shown in Fig. 14.
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Fig. 12 Frequency domain added resistance for S175 container ship in head seas
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Fig. 13 Added Resistance QTF for head seas for S175 container ship (Fr = 0.25)
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Fig. 14 Added Resistance for S175 container ship in a JONSWAP spectrum wave realization with significant
wave heightHs = 8 m and peak period Tp = 14 s (Fr = 0.25)

7. Conclusions

In this paper the time domain simulation program developed in Somayajula and Falzarano (2015a)
has been extended to include the second order difference frequency forces and moments in addition
to the linear Froude Krylov and hydrostatics. Specifically, the work has focused around the use of the
Newman approximation for predicting the QTF from just the mean drift coefficients. The different
forms of the Newman approximation have been implemented and the corresponding results in both
frequency domain and time domain have been compared. It has been found that all three forms of
Newman approximation result in qualitatively similar results in the deep water case.

The developed formulation has been applied to the problem of second order roll motion of a FPSO
excited by bi-chromatic and irregular beam seas. The developed approach has been validated by
comparison with a commercial software OrcaFlex in the case of zero speed.

The current time domain simulation tool is capable of calculating the mean drift forces and mo-
ments in the case of forward speed. The force in the surge direction in case of forward speed is
also known as added resistance. With the current formulation, added resistance of a structure can be
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calculated in time domain. At present the current available commercial software, OrcaFlex, cannot
predict the added resistance in time domain. One of the future investigations would be to compare
the added resistance in time domain with either a commercial or another research code to validate the
results.

Another proposed extension to the current stage would be to include the shallow water dispersion
relation formulation and extend the capability of the time domain code to handle finite water depth
scenario. This will provide an opportunity to compare the different forms of the Newman approxi-
mation for finite depth scenario where it is believed that the various approximations do not agree well
with each other (Rezende et al. 2008).
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