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Bi-stability in a vertically excited rectangular tank 
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Abstract. We discuss the bi - stability that is possibly exhibited by a liquid free surface in a
parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the
method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities
up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A
“continuation method” of nonlinear dynamics is then used in order to elicit efficiently the instability
boundary in parameters’ space and to predict how steady surface elevation changes as the frequency and/
or the amplitude of excitation are varied. Results are compared against those of the linear version of the
system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with
formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities
due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in
parameters space, there must be a region, inside the quiescent region, where liquid surface instability is
exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the
free surface was substantially disturbed initially.
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1. Introduction

Parametric sloshing is the motion of a liquid’s free surface due to an excitation that acts

perpendicularly to the plane of the undisturbed free surface (Ibrahim 2005). Although parametric

sloshing is less often analyzed in comparison with cases of directly excited sloshing, it has a long

history of investigation in the sciences, initiated by an observation by Faraday (“Faraday

resonance”). In engineering this phenomenon can have catastrophic effects for vibrated structures

containing liquids, if not properly prevented by design (Dodge 1966). For ships, such vertical excitation

arises physically in combination with excitations in other modes of ship motion; for example in pitch

and in roll. Nonetheless, it is important to understand whether heave dominated dynamics could

excite sloshing motion. Furthermore such motion will be an asset on the way to studying the

coupled system at a later stage.

Standing waves generated in vertically oscillating tanks were firstly studied experimentally by

Faraday (1831), Mathiessen (1868, 1870) and Lord Rayleigh (1883a,b, 1887). The same problem

was investigated theoretically later by Lewis (1950), Taylor (1950), Benjamin and Ursell (1954),
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Konstantinov et al. (1978), Perlin and Schultz (1996). In most of these cases, parametric sloshing

was approached by means of linear theoretical models. Whilst such an approach can capture the

region of linear instability, it does not suffice for predicting the ensuing free surface elevations, thus

producing unrealistic infinite amplitudes inside the instability region. 

Faraday resonance was captured by the weakly nonlinear model proposed by Miles (1994),

deriving  from an averaged Lagrangian approach. This model was extended by Decent (1995) and

Decent and Craik (1995) to include fifth-order frequency detuning effects, in order to capture (for

shallow liquid depth) the essential features of a hysterisis phenomenon observed in experiments.

Simonelli and Gollub 1989, Craik and Armitage 1995). In addition, in the last two decades,

Takizawa and Kondo (1995), Chen et al. (1996), Chern et al. (1999), Turnbull et al. (2003),

Fradnsen (2004), Kim et al. (2007), Wu et al. (2007) and others, have employed various numerical

approaches for sloshing prediction, treating the moving free surface either by using Lagrangian

tracking of free surface nodes with regrinding; or by mappings. The last whilst being more accurate

in predicting surface velocity, they are less flexible for application to irregular geometries or to

cases where submerged bodies are present in the flow domain (Frandsen 2003). Also, a drawback

of these numerical approaches is that they are not appropriate for long time simulations. A concise

overview of research efforts concerning the nonlinear behaviour of liquids contained in tanks of

various shapes and subjected to parametric excitation can be found in Ibrahim (2005).

We have recently looked into the problem of 2-D liquid sloshing in a rectangular and vertically

excited tank, based on modal modelling motivated by the adaptive analysis introduced by Faltinsen

and Timokha (2001). The investigation was confined to finite liquid depths and, in the first step, a

priority had been set on producing, through a rational reduction process, the minimal nonlinear

ODE system that could be suitable for the problem (Spandonidis and Spyrou 2011). A theoretical

finding was, further corroboration that an area of bi-stability is likely to need to be added to the

linear stability chart of free surface elevation associated with a parametrically forced liquid. This

area lies entirely inside the domain considered from a linear perspective as globally quiescent. The

interesting feature of this region is that it is initial-conditions-dependent; i.e. one may obtain a stable

wavy surface or a flat surface depending on how much disturbed the free surface was when the

harmonic excitation was firstly applied. Whilst similar observations have appeared also earlier (e.g.,

Decent 1995), in our case this has come from a fundamentally different modelling approach and

through systematic dimension reduction. 

An extension of this work to the immediately higher order non-linear model is reported here. This

model allows approximate prediction of the free surface dynamics (and of the associated stability

properties of the obtained surface profiles), without severe limitations on the excitation amplitude or

frequency. The specific aim was to further support (or reject) the above finding, namely the

existence of an area of bi-stability, lying to the left in terms of frequency of the area of primary

resonance). The novelty of the current work accrues mainly from the proposed advanced

investigation of free surface oscillations by means of a 3rd order nonlinear ODE system, that

confirmed the existence of the new (in parameters’ space) region of liquid surface instability for the

case of finite liquid depth. Since there was no immediate plan to consider secondary or higher

resonances, “sufficiently” small amplitude could be assumed. It was found that, the extended model

is also characterised by an area of bi-stability.

To predict the amplitudes of steady liquid surface oscillations as the frequency and/or the

amplitude of excitation (represented the characteristics of the imposed motion on the container) are

varied without performing multiple simulations, the discussed models were coupled with a
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“continuation analysis” algorithm. Use of such numerical algorithms is popular in nonlinear

dynamics investigations. 

2. Formulation of the problem

For the purpose of our work we consider the mobile, rectangular, smooth and rigid tank shown

in Fig. 1. Tank’s velocity is , where n3 is the magnitude of the applied vertical tank

 
displacement and  is the unit vector in the z- axis ( ). The tank is partly filled by an 

inviscid and incompressible fluid. Liquid depth is finite corresponding to a liquid-height-to-tank-

length-ratio of  0.4, but the tank top is high enough so that it is never reached by the moving liquid.

The flow is two-dimensional and irrotational. Such a problem is formulated in terms of the Laplace

equation for the velocity potential Φ(y, z, t) in the fluid volume Q(t), with suitable boundary

conditions on the free surface  and on the tank surface below it S(t)

∆Φ = 0 in Q(t),  on S(t)

 

 and  on (1)

where Ug stands for the gravity potential.

The so called multimodal method uses a Fourier series representation of the solution with time-

dependent unknown coefficients (Narimanov 1957). Faltinsen et al. (2000) postulated Fourier series

representations describing the free-surface elevation and the velocity potential, as follows

, (2)

The modal representation shown in Eq. (2) is based upon the functions fi(y) and ϕi(y, z) which

must be a complete basis for the representation of the mean free surface and the whole liquid

domain, respectively. The most common choice for the modal basis fi(y) and the set of functions
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Fig. 1 System of coordinates and other definitions
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ϕi(y, z) is the set of linear natural modes shown below

(3)

Since natural modes are theoretically defined only in the unperturbed hydrostatic domain, we

follow Faltinsen and Timokha (2002) in interpreting the natural modes as an asymptotic basis,

assuming that the free surface is (“to some extent”) asymptotically close to its unperturbed state.

This could be claimed as legitimate because the procedure needs only the completeness of ϕn(y,z) in

the unperturbed liquid domain. Faltinsen and Timokha (2001) have converted the governing

equations into an infinite-dimensional system of ODEs by following what they call an “adaptive

approach”. Keeping, in the first instance, nonlinear terms up to third-order, this system of ODEs is

reduced to the following form in the case of purely vertical excitation

,   (4)

δ is Kronecker’s delta, p, q, r indicate upper summation limits and  σì represents the µth natural

frequency. The d and t coefficients can be expressed as functions of liquid’s height-to-tank-length

ratio (such analytical expressions can be found in Faltinsen and Timokha 2001). The system

described by Eq. (4) will be referred-to as “the modal system”.

In contrast to a Moiseev type of ordering (Faltinsen 1974), an ordering of the form βn= O(ε1/3), βi

= O(ε), i ≥ n + 1 leads to a finite-dimensional nonlinear modal system (“model - k” where the

integer k denotes the number of dominant modes) that is able to describe sloshing associated with

the critical depth, large-amplitude response and secondary resonance. The coefficient ε = n3α /l is an

indicator of the smallness of excitation. Here it is assumed that ε << 1.

3. Simplified models (linear model and Model-1)

Let us now restrict our investigation to the case of vertical excitation with relatively small

amplitude, with excitation frequency in the vicinity of the principal parametric resonance of the first

mode; i.e., (σ1/σ)2 1/4. Liquid’s height-to-tank-length-ratio is chosen to be larger than the critical

depth (h/l = 0.3368) thus restricting the scope of the current investigation to finite liquid depths. We

do this because, according to Fulzt (1962), in the vicinity of critical depth strong changes and

amplifications in the liquid behaviour occur. 

Faltinsen and Timokha (2009) introduced to the modal system an empirical linear damping term,

represented by the damping ratio ζ1. From a physical perspective, this damping term could
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empirically account for boundary–layer damping. Linearization of the modal system for the

dominant mode β1, after incorporating damping and perpendicular harmonic excitation n3 = n3α

cos(σt), results in the following Mathieu-type equation

(5)

where, β1 stands for the time-dependant response of the free surface at y= − l/2; i.e., at its interface

with the left tank wall. Benjamin and Ursell (1954) had investigated the free surface elevation under

similar forcing, using Mathieu functions for expressing analytically the solution. 

On the other hand, for mode ordering β1 = O(ε 1/3), βµ = O(ε ), µ >1, by retaining only β1 and

following thinking as before (as regards external excitation and damping), the modal system can

generate the following equation

(6)

By  is meant the time-dependant response of the free surface, tracking the elevation at

y = − l/2; i.e., at its interface with the left tank wall. To obtain the elevation for all other points

(y, 0) of the liquid surface, β should be multiplied by  .

4. Non-linear Model-2

For mode ordering β i= O(ε1/3), i = 1, 2  and  βµ = O(ε), µ > 2, a set of modal equations can be

obtained from the modal system that can cater, in principle, for intermodal interactions. The first

two nonlinear equations couple  β 1 with β 2. The equations are linear in β u when  µ = 3, 4, 5, 6,

although, nonlinear terms are found in β1 and β2. The higher modes (µ > 6) are handled by the

linear modal equations. Assuming harmonic external excitation n3 = n3αcos(σt) and restricting

ourselves only to the frequency region of primary resonance (only the two first equations are kept)

the nonlinear equations for β1 and β2 receive the following form

        (7)

 

In Table 1 were collected the numerical values for the coefficients of the model, corresponding to

a liquid-height-to-tank-length-ratio of 0.4. As pointed out by Faltinsen (2001), this system is better
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than a model like that of Eq. (6) since it allows calculations for depths below the critical depth.

Also, it could be used for the region of secondary resonance. The elevation at y = − l/2 should be

 while at other locations it can easily deduced by combining with Eq. (3).

5. Investigation of dynamics

To elicit efficiently the stability chart of a nonlinear dynamical system in the presence of state

coexistence one can use a “continuation” method. Such numerical methods usually accept the

mathematical model in the so called “autonomous canonical form” dx/dt = f (x; b). Here x and b

are, respectively, the state and control parameters’ vectors of the o.d.e. problem at hand. Variation of

one or more components of the control vector b creates, through solution of the above vector

differential equation, branches of steady-state solutions. Mathematical details of the applied

algorithm can be found in Dhooge et al. (2003). 

Since Model-1 as well as Model-2 are characterised by explicit time - dependence in β1’s

equation, a dummy pair of differential equations is introduced with respect to the new variables x =

sin(σt), y = cos(σt). As a result, the model is converted into a system of six 1st - order o.d.e.s that,

whilst retaining dynamical equivalence, at steady-state, with the original system of o.d.e.s, it is

relieved from the explicit time-dependence (Spyrou and Tigkas 2011)

 

                        

                         

where

,    ,    ,     

(8)

Due to the parametric nature of the above nonlinear system, one should expect to find an

instability region in parameters’ space in which, stable limit-cycle behaviour would be exhibited.

Comparison of the obtained stability charts for Model-1 and Model-2 is shown in Fig. 2. They both
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Table 1 Numerical values for Model-2 coefficients.

parameter value parameter value parameter value parameter value

d1 3.1830916 d5 −4.29018 −3.0415866 −23.082502

d2 3.4140089 7.1955657 10.6047 2.3162401

d3 −0.25615791 4.5672544 13.512814 σ1 5.119

d4 −0.5947726 4.0684728 −7.9163157 σ2 7.8

d4 d8

d1 d5 d9

d2 d6

d3 d7
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differ from the diagram presented by Benjamin and Ursell (1954) in the region of bi-stability (area

C). Area A is the one where every external excitation (with the fitting specification) leads invariably

to a flat liquid surface (region of global stability). In area B, an external excitation generates

persistent periodic oscillations in liquid’s free surface. To realise this in a computational

environment one should assume a small initial surface disturbance when the excitation is applied

(this is not necessary in a physical experiment).  Area C defines the region of system bi-stability

where, the same external excitation leads either to a quiescent surface or to a wavy one, depending

on the initial condition (in terms of β, ϕ). 

The phase space structure of the considered dynamical system is nevertheless quite an ordinary

one. The domains of attraction of the two competing stable patterns occupy certain complementary

regions of phase space. They are separated by a surface defined by the incoming (stable) manifold

of the unstable periodic solution. The results obtained from Models 1 and 2 are in qualitative

agreement although there is quite substantial quantitative difference. Model 2, as well as any other

higher models that, in principle, one can systematically derive by the discussed adaptive mode

ordering method, is expected to be more accurate than Model 1, for larger free surface motions,

under the condition that no additional assumptions are introduced. However, no experimental work

in this area that could be used as reference for the presented results exists. Next step of our work is

to experimentally reproduce the identified types of motion using the NTUA shaking table facility.

A glimpse of system dynamics can be obtained also by simply selecting several points that lie in

the regions A, B and C of Fig. 2, and then integrating the non-linear system, trying a variety of

initial conditions. In Fig. 3 are presented the time histories of elevation β for a point inside the area

C, for two, slightly different, initial elevations, when ζ1 = ζ2 = 0.02 and n3a = 0.02 m. Initial

elevation β (0) = 0.19 m leads to a stable point (zero elevation) while β (0)= 0.194 m leads to a

stable periodic pattern. This indicates what is meant as “bi-stability”.

Different types of behaviour of Model-2 are shown in Fig. 4, for three frequency values in the

Fig. 2 Nonlinear stability chart of Model-1 (dotted line) and Model-2 (dashed line), for an assumed damping
ratio ζ1 = 0.02. The two models have the same linear stability chart (solid line) since their linearised
version coincide. In contrast to the linear system’s stability region (solid line), in the chart of the non-
linear models (dotted and dashed line) a new area of bi-stability appears (indicated by C). In there, an
initial surface disturbance may (or may not) persist, depending on the initial condition. The nonlinear
boundaries predicted by Model-1 and Model-2 differ significantly from each other as the frequency
becomes lower
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vicinity of σ = 2σ1. At low frequency, every low-to-moderate excitation produces a response that

eventually settles to the trivial point (that, as a matter of fact, is stable). Increase of the excitation

frequency leads, through fold of limit-cycles bifurcation, to the initial-conditions-dependent area

where the trivial state coexists with a stable limit cycle. In-between those (in phase plane) is found an

unstable limit-cycle (Fig. 4(a)). Further increase of frequency leads, through a subcritical bifurcation, to

the “classical” area of instability associated with principal parametric resonance (Fig. 4(b)), where the

unstable limit-cycle disappears and the stable trivial solution becomes unstable. A supercritical

(“smooth”) bifurcation locus represents in fact the boundary with the stability area to the right of

the “classical” linear instability area.

Fig. 3 Time history of β for σ = 9.7 rad/s. Slightly different initial elevations lead to different stable
responses

Fig. 4 Phase plots for ζ1 = ζ2 = 0.02 m and n3a = 0.02 m: (a) Limit sets in the initial-condition-dependent
area (σ = 9.7 rad/s) and (b) A stable limit cycle dominating in the region of linear instability (σ =
10.2 rad/s). For comparison, the outer closed orbit shown is the limit-cycle derived from the
simplified nonlinear model (Model-1)
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6. Conclusions

2-D liquid sloshing in a rectangular and vertically excited tank has been investigated with focus

on the existence of a bi-stability area. The work was limited to finite liquid depth, corresponding to

a tank-height-to-depth ratio of 0.4. A global picture of liquid surface dynamics was theoretically

obtained, pertinent to model nonlinearity up to third-order. A relatively sophisticated nonlinear

model has been derived, based on modal modelling and according to the adaptive analysis of

Faltinsen and Timokha (2001). Continuation analysis results support the contention that a new area

of bi-stability should be added to the stability chart of free surface oscillations. Investigation of the

influence of the damping term on the size of that area is a matter to be considered.

A next step towards confirming the validity of results will be the investigation of the dynamic

behaviour associated with the immediately higher order non-linear model. Areas of secondary

resonance (higher excitation frequency) and also the chaotic areas (higher excitation amplitude)

discussed by Ibrahim (2005) are also very interesting topics of further research. 

Of course, experimental reproduction of the identified types of numerical solutions will be

required before these are considered as established patterns of the behaviour of the physical system

under consideration.
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