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1. Introduction 
 

Nowadays, wastewater treatment and intensification of 

the separation process is one of the most objectives in 

environmental protection. Adequate treatment of 

wastewater can reduce the environmental impact of specific 

industrial plant as well the consumption of clean water used 

in the production process. For starch and gluten production 

in wheat wet-processing, so called Martin process, water is 

used in the process of flour hydration, starch and gluten 

separation, starch refinement, as well as for cleaning of the 

equipment and the work space. The largest amount of the 

wastewater is created during the starch separation process. 

The obtained wastewater settles in sedimentation tanks, 

after which it is decanted and then it undergoes a 

purification procedure (Šaranović et al. 2011). The potential 

of cross-flow microfiltration as a separation method for the 

purification of starch industry wastewater is significant. 

Membrane separation method is a physical separation 

technology which includes microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis  
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(RO). It is a powerful approach for separating diverse types 
of particles and molecules with different molecular weights. 
Microfiltration is the very popular membrane technology to 
remove dispersed particles during wastewater treatment 
processes. It is pressure driven separation process with 
membrane pore diameter in range of about 0.1 to 10 µm. 
Microfiltration performance is generally expressed in terms 
of the filtrate flux i.e. the volume of filtrate that passes 
through unit membrane area in unit time, as it is the case for 
all filtration processes. During the microfiltration permeate 
flux declines under the influence of many phenomena. One 
of them is the formation of a cake layer on the membrane 
surface that is usually the cause of the steep decline in 
filtrate flux; however other phenomena such as the plugging 
of the membrane pores by particles, infiltration of fines into 
the filter cake or membrane fouling by macrosolutes can 
also contribute to flux decline. These phenomena are 
referred to as fouling, where fouling is any phenomenon, 
other than pure cake formation, that contributes to flux 
decline (Tanaka et al. 1994). The flux decline is then the 
result of superposition of numerous mechanisms of 
membrane fouling. Flux decline is a limiting factor in the 
industrialization of membrane processes (Nourbakhsh et al. 
2014). It is number of techniques to reduce cake formation 
as well as the membrane fouling such as backflushing, gas 
sparging, turbulence promoters or static mixers and many 
others. The use of turbulence promoters or inserts in the 
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Abstract.  Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat 

starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range 

of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of 1 × 

10
5
 to 3 × 10

5
 Pa. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two 

different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, 

neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to 

be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as 

training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function 

transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good 

agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration 

without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of 

filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to 

increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of 

transmembrane pressure and feed flow rate increased for about 30%. 
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tubular membrane is one of the technique applying 
hydrodynamic methods in reducing permeate flux decrease 
i.e., controlling membrane fouling. Turbulence promoters or 
inserts have many shapes and sizes. There are static rods, 
Kenics static turbulence promoters, metal grills, spiral wire, 
cone shape inserts, disc and doughnut shape inserts (Jokić et 
al. 2010, Popović et al. 2013). 

Number of different models have been proposed in the 

literature to predict permeate flux decline based on the 

theory using physical, chemical, and hydrodynamic 

modelling parameters such as particle size, zeta potential, 

temperature, solution pH, ionic strength, transmembrane 

pressure, shear rate, etc. (Hermia 1985, Bowen and Jenner 

1995). The disadvantage theoretical modelling is in their 

accuracy due to the fact of insufficient knowledge regarding 

the complexity of the microscale phenomena occurring 

during the filtration processes. This lack of knowledge is 

avoided by using assumptions; resulting in models which 

are only valid under certain conditions. On the other side, 

empirical models are built upon specific experimental 

observations and then used to predict the filtration system 

performance and can be used as alternative to the 

theoretical models. Artificial neural network (ANN) 

approach is one such method. ANN develops a model based 

on raw data and uses them to generate an initial network 

(training). The network is tested with new data but can 

continually input data to refine the model. Compared to 

theoretical models, ANNs are a black box technique. 
Researchers have applied ANN to diverse fields such as 

spray drying process (Aghbashlo et al. 2012), soil water 
retention curve (Bayat et al. 2013), red plum juice permeate 
flux (Nourbakhsh et al. 2014), optimizing control system 
for a seawater-desalination solar-powered membrane 
distillation unit (Porrazzo et al. 2013), etc. Applications of 
ANN for the prediction of membrane separation processes 
have been reported in a number of papers. ANNs have 
attracted a lot of interests for the past decade in certain 
membrane processes. In most of previous studies, the ANN 
models have been proved to perform better than the 
conventional modelling methods (Nourbakhsh et al. 2014). 
Dornier et al. (1995) presented a possibility for dynamic 
modelling cross-flow microfiltration of a raw cane sugar 
suspension using neural networks. Results of the study 
showed a good convergence (97%) was obtained with 5 
neurones in the first hidden layer and 3 neurones in the 
second hidden layer. 

Al-Abri and Hilal (2008) implemented artificial neural 
network model to predict combined humic substance 
coagulation and membrane filtration. The difference 
between predicted and experimental data was lower than 
5%. Flux declines versus time during cross-flow 
microfiltration of a mixture that contains phosphate and fly 
ash was modelled and compared by using an artificial 
neural network (Aydiner et al. 2005). The experiments were 
carried out by varying conditions of fly ash dosages, 
phosphate concentrations, transmembrane pressures and 
two membrane types. It was shown that all of the 
experimental conditions can be modelled as a whole or 
separately, and the model results obtained for one 
experiment can be used for others at the same conditions 
with an acceptable correlation level by ANNs. 

Chellam (2005) reported results of highly accurate 

simulations using artificial neural network in prediction of 

time-variant specific fluxes for several feed suspensions 

under a wide range of hydrodynamic parameters. It was 

found that only one hidden layer was to be sufficient; whilst 

with increasing number of hidden neurons the error initially 

decreased due to increasing number of weights and later 

increased probably due to overfitting. The higher number of 

hidden neurons necessary for was necessary for some 

suspensions microfiltration simulations suggests that their 

underlying mechanisms contributing to flux decline were 

more complicated than others taking into account feed 

suspensions particle size distributions. 

Artificial neural network model can be developed for 

turbulence promoter-assisted cross-flow microfiltration of 

particulate suspensions (Liu et al. 2014). The inlet velocity, 

transmembrane pressure and feed concentration were taken 

as inputs, and the flux improvement efficiency by 

turbulence promoter was taken as output. Results of the 

study suggest that an ANN model with one single hidden 

layer is sufficient to accurately represent experimental data. 

The trial-and-error method was implemented to determine 

the number of neurons in the hidden layer; and it was found 

that 12 hidden neurons is optimal configuration to avoid 

overfitting. 

Although, ANNs can be considered as black box 

models, some researchers reported an important 

contribution that demonstrated that ANNs need not be used 

simply as black boxes but can be used in combination with 

the connection weight partitioning methodology to 

determinate cause-effect information that can be 

quantitatively extracted from network connection weights 

(Chellam 2005, Liu et al. 2014). This method was initially 

proposed by Garson (1991). 

The main objective of the present study was to develop 

an ANN based model to simulate flux reduction during 

microfiltration of starch industry wastewater generated 

during the process of wet-production of wheat starch and 

vital wheat gluten, in single channel ceramic membrane 

with and without static turbulence promoter. 
 

 

2. Materıal and methods 
 

Experiments were conducted on the samples of decanted 

wastewater after sedimentation in predefined time periods 

in range 2 to 4 h. The dry matter content of the wastewater 

varied between 1.2% and 0.85%; the chemical oxygen 

demand ranged from 23 000 to 20 000 mgO2/L, and the 

suspended matter was between 8000 and 4000 mg, for 

sedimentation times of 2 and 4 h, respectively. 
 

2.1 Microfiltration experiments 
 

The microfiltration experiments were done according to 
full 2

3
 factorial experimental design with added central 

point, making in total 10 experiments. Lower levels of 
experimental design were transmembrane pressure 1 × 10

5
 

Pa, sedimentation time 2 h and feed flow rate 50 L/h. Upper 
level values were 3×10

5
 Pa, 4 h and feed flow rate 150 L/h, 

for transmembrane pressure, sedimentation and feed flow 
rate, respectively. Values of mean level were 2×10

5
 Pa, 3 h 

and feed flow rate 100 L/h. All flux measurements i.e.,  
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Fig. 1 Laboratory setup for cross-flow microfiltration: 1-

feed tank, 2-thermostat, 3-pump (0.25 kW), 4-module 

with membrane, 5-vessel for permeate, 6-vessel for 

retentate, 7, 8, 9-valves, 10-thermometer, 11, 12-

manometer, 13-rotameter 
 

 

experiments in this study were carried out in triplicate and 
the results averaged. The reproducibility of these 
measurements were good, the deviation between parallel 
experiments were in the range of ±6.2%. All experiments 
were carried out at the room temperature (25

o
C). The 

laboratory apparatus for microfiltration is shown in Fig. 1. 
The single channel ceramic aluminium silicate and 

titanium oxide membrane (GEA, Germany) had a nominal 

pore size 200 nm with the length of 250 mm and 

inner/external diameter of 7/10 mm. The useful membrane 

surface was 5.00×10
−3

 m
2
. After the working parameters 

have been set, the filtration of wastewater was initiated. 

Over a predetermined time periods the permeate volume 

was recorded, based on which the permeate flux is 

calculated. 

The static turbulence promoter used throughout 

experiments was the Kenics static turbulence promoter 

(MX8124-AC, Omega, USA). The main geometrical 

characteristics of the static mixer are: the diameter of the 

static turbulence promoter is 6.35 mm, its length equals 

190.5 mm and the number of elements is 30. The static 

turbulence promoter was inserted inside the whole 

membrane tube and was fixed appropriately to avoid any 

movement due to the fluid flow. It consists of a series of 

helical mixing elements made from thin, flat strips, twisted 

through 180° to form helices. Helices are turned around 

their main axis by 90° against the next element. Its 

characteristic geometric design produces the unique patterns 

of flow division and radial mixing simultaneously. 

Additionally, the Kenics static turbulence promoter has 

“streamlined” shape which presents minimal surface area in 

the plane normal to the tube axis and prevents the creation 

of stagnation regions where impurities may collect and 

eventually foul the membrane. These features strongly 

favoured the Kenics static turbulence promoter in respect to 

other commercial static turbulence promoter for cross-flow 

filtration applications (Krstić et al. 2004). 
 
 

2.2 Data compilation 
 

Reliable experimental data for training of the ANN 

models is of utmost importance. Total data for changing 

flux during microfiltration experiments are divided into two 

groups: first one microfiltration without static mixer and the 

second group data of experiments done with static 

turbulence promoter inserted into membrane channel. In the 

case of microfiltration without static turbulence promoter 

data consisted of 646 data points while in the case of 

microfiltration with static turbulence promoter there is 550 

data points. Prior to the artificial network training data sets 

were normalized; scaling or normalized; that brings all data 

within a specific range. Min–Max normalization was used 

i.e., subtracts the minimum value of an attribute from each 

value of the attribute and then divides the difference by the 

range of the attribute. It has the advantage of preserving 

exactly all relationship in the data, without adding any bias. 

The values predicted by the ANN during the simulation 

must be de-normalized to generate data in the original 

range.  

Operation conditions including feed flow rate, 

transmembrane pressure and wastewater sedimentation time 

were taken as the input variables of ANN model in this 

study. Additional input variable was microfiltration time. As 

output, permeate flux values for specific filtration times 

were selected. 

 

 

2.3 Artificial neural network modelling 
 

Feed-forward neural networks are the most popular and 

most widely used models in many practical applications and 

in this study it was used with backpropagation training 

algorithm. Feed-forward neural networks are made of many 

computing elements, called neurons, which are connected 

by weights, which are allowed to be adapted through a 

learning process. The hyperbolic tangent sigmoid function 

is the transfer function employed in the hidden and output 

layers. Among the many backpropagation training methods 

the Levenberg-Marquardt training algorithm and Bayesian 

regularization are selected. MATLAB R2012b neural 

network toolbox was used to implement ANN modelling. 

The standard statistical indicators are employed in order to 

determine the best ANN architecture the mean square error 

(MSE) and the coefficient of determination (R
2
) between 

the experimental and calculated values. 
The multi-layer feed-forward network was used in this 

study. Internal ANN factors such as number of hidden 

layers, number of neurons in each layer, epoch size, 

momentum factor, learning rate, transfer functions, and 

initial weight distribution have great impact on model 

building. Default values were selected for some of these 

factors (momentum factor and learning rate), since they 

only affect the training time (Bayar et al. 2009). In our 

study, the maximum number of epochs, target error goal 

MSE, and minimum performance gradient are set to 1000, 

0, and 10
–10

, respectively. Training stops when the 

maximum number of epochs is reached or when either the 

MSE or performance gradient is minimized to arrive at the 

pre-determined goal. Since the neural network is highly 

dependent upon the initial weight values and in order to 

achieve the best results, the neural networks were run ten 

times and the average values of statistical indicators, the 

mean square error (MSE) and the coefficient of 
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determination (R
2
), are used for comparing of network 

performances (Ghandehari et al. 2011, Saghatoleslami et al. 

2011). 
 

2.3.1 Selection of learning algorithm 
The Lavenberg-Marquardt and Bayesian regularization 

are selected as training algorithms. The Lavenberg-

Marquardt algorithm uses an early stopping criterion to 

improve network training speed and efficiency. To 

determine the criterion, all the data for both microfiltration 

modes (without or with static turbulence promoter) are 

divided into three sets. The first set is the training set for 

determining the weights and biases of the network and it 

consists of 80% of all data. The second set is the validation 

set (10% of data) for evaluating the weights and biases and 

for deciding when to stop training. The validation error 

generally decreases at the beginning of the training process, 

but when the network starts to over-fit the data, the 

validation error begins to increase. The training is stopped 

when the validation error begins to increase and the weights 

and biases will then be derived at the minimum error. A 

maximum validation failure is set to default value of five. 

The last data set is for testing (10% of data), the weights 

and biases are used to verify the capability of the stopping 

criterion and to estimate the expected network operation on 

new data sets. 

Another approach to solve overfitting issue is Bayesian 

regularization algorithm (trainbr) which is adjusting the 

optimal regularization parameters in an automated fashion 

(Demuth and Beale, 1998). Bayesian regularization is a 

modification of the Levenberg-Marquardt training 

algorithm to improve the model’s generalization. Over-

fitting problem or reduced generalization ability occurs 

when an artificial neural network over learns during a 

training period. Due to its lack of generalization ability such 

a too well trained model may not perform well on unseen 

data set (new data presented to ANN). This approach 

involves modifying the performance function, which is 

normally chosen to be the sum of squares of the network 

errors on the training set (MSE). It is assumed that the 

weights and biases of the network are random variables 

following specified distributions and the parameters are 

related to the unknown variances associated with these 

distributions. Then, these parameters can be estimated using 

statistical techniques (Demuth and Beale, 2004). Using this 

performance function will cause the network to have 

smaller weights and biases, and this will force the network 

response to be smoother and less likely to over-fitting. In 

comparison, the accuracy of the trainbr algorithm is 

approximately five times more than early stopping method 

(Demuth and Beale, 1998). The complete data sets for both 

microfiltration modes were divided into two sets according 

to software default algorithm values; for training 80% and 

the remaining 20% for testing. 

 

2.3.2 The number of hidden layer neurons 
The optimal number of hidden layer neurons is case 

dependent and there is no straightforward method to adjust 
it (Ghafari-Nazari and Mozafari 2012). Increase in the 
number of the hidden layer neurons leads to enhancement 
of the approximation ability of the neural networks. 

Nevertheless, when that number exceeds an optimum, the 
overfitting problem may occur. In these circumstances, 
although the statistical indicators of the network are very 
suitable for training data, its predictions deteriorate for 
points not included for training. 
 

 

3. Results and discussion 
 

3.1 Effect of learning algorithm 
 

The network was trained firstly through feed forward of 

the input training pattern and then the associated error was 

calculated (back propagation); finally, the weights and 

biases of network were adjusted. The ANN outputs 

corresponding to its own input were compared with the 

target values and the weights and biases were adjusted to 

reduce the mean square errors (MSE) The Levenberg–

Marquardt and Bayesian regularization are selected as 

training algorithms. The neural network implemented in this 

work has four inputs and one output. In order to select the 

best training algorithm neural network with three hidden 

layer neurons is investigated, so the architecture of the 

network is 4-3-1.  
The Levenberg-Marquardt training algorithm (trainlm) 

in case of microfiltration without static turbulence promoter 

yields MSE value 5.82×10
-3

. For the same data sets 

coefficient of determination was for training data 0.952 and 

for testing data 0.927. For the experimental data for 

microfiltration with static turbulence promoter MSE value 

is 2.63×10
-3

, whilst coefficient of determination are 0.968 

and 0.942 are for training and testing data sets, respectively. 
Bayesian regularization showed better results of network 

performance (MSE) compared to Levenberg-Marquardt 

training algorithm. In the case of microfiltration without 

presence of static turbulence promoter the value of MSE is 

2.23×10
-3

, whilst in case of microfiltration enhanced by use 

of static mixer as turbulence promoter that value is 1.54×10
-

3
. For data sets of microfiltration without static mixer 

coefficient of determination for training data is 0.968 and 

for testing data 0.936. The experimental data for 

microfiltration with static turbulence promoter, ANN model 

yielded coefficient of determination of 0.989 and 0.978, for 

training and testing data sets, respectively. 

In this study for further ANN model development 

automated Bayesian regularization is selected, as better 

generalized neural network model for this data. 
 

3.2 Number of hidden layer neurons 
 

A trial and error based method was selected for defining 

the number of neurons in the hidden layer. Fig. 2 shows the 

variation of squared correlation coefficient and MSE versus 

the number of neurons in the hidden layer for 

microfiltration experiments without static turbulence 

promoter (NSM mode). 
In this figure, the horizontal axis displays the number of 

neurons in the hidden layer and the vertical axis denotes 

squared correlation coefficient for training and testing data 

sets (right) and the second (left) performance of the network 

i.e., MSE. It is obvious that increasing the number of hidden 

neurons from 1 to 10 increased the coefficient of  
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Fig. 2 The variation of squared correlation coefficient and 

MSE versus the number of neurons in the hidden layer 

for microfiltration experiments without static turbulence 

promoter(NSM mode) 

 

 

Fig. 3 The variation of squared correlation coefficient and 

MSE versus the number of neurons in the hidden layer 

for microfiltration experiments with static turbulence 

promoter(SM mode) 

 

 

Fig. 4 The scatter plots of predicted and actual output 

values for all data points 
 
 

determination; for both data sets, training as well as testing. 
Further increase in hidden layer neurons resulted in 
coefficient of determination rise but only for the training 
data, while for testing data decrease of coefficient values 
can be seen. In the same time MSE decreased for the all 
selected hidden neuron numbers up to 12. The reason for 
this may be found in the fact that although network  

Table 1 Absolute relative error distribution of ANN 

predictions for all experiments 

Absolute relative error <1 <5 <10 <15 <20 >20 Total 

NSM 

mode 

Number of 

observations 
70 250 183 90 40 13 646 

% 11 39 28 14 6 2 100 

SM 

mode 

Number of 

observations 
72 280 138 41 11 8 550 

% 13 51 25 8 2 1 100 

 

 

performance is improving, over-fitting problem or reduced 

generalization ability occurs because an artificial neural 

network over learns during a training period and in testing 

data lower value of coefficient of determination is achieved. 

So for data regarding the microfiltration without static 

turbulence promoter, the optimal number of hidden layer 

neurons is ten as the network has coefficient of 

determination 0.982 and 0.969, for training and testing data, 

respectively. In the same time MSE is 7.03×10
-4

. This 

results show that the network, besides having grate fitting 

capabilities, has generalization ability. 

In Fig. 3, the variation of squared correlation coefficient 

and MSE versus the number of neurons in the hidden layer 

for microfiltration experiments with static turbulence 

promoter (SM mode) is shown. Same as previous figure the 

horizontal axis displays the number of neurons in the 

hidden layer and the vertical axis denotes squared 

correlation coefficient for training and testing data sets 

(right) and the second (left) performance of the network i.e., 

MSE. 

Once again it can be seen that coefficient of 

determination is increasing with the rise in number of 

hidden layer neurons. Nevertheless, in the case of 

experimental data obtained for microfiltration of starch 

industry wastewater, coefficient of determination values are 

slightly higher compared to the data retrieved from the 

microfiltration experiments without static turbulence 

promoter. In the SM mode similar ANN results are obtained 

as for NSM mode. In this case ten hidden neurons are also 

sufficient for the ANN simulation. The network has 

coefficient of determination 0.996 and 0.992, for training 

and testing data, respectively. In the same time MSE is 

6.06×10
-4

. 

The experimental results versus neural network 

predictions are depicted in Fig. 4. It can be found that there 

are very close agreement between the experimental data and 

predicted curves for the great majority of cases. Error 

analysis was carried out for better comparison and 

understanding of each model results. As summarized in 

Table 1, ANNs model developed herein were able to predict 

the great majority of observations with <15% absolute 

relative error for NSM data. For the data collected during 

microfiltration without static turbulence promoter 92% of 

observations were predicted with the absolute relative error 

less than 15% in the same time almost 50% of predicted 

data had absolute relative error less than 5%. In the same 

time only 13 (2%) data points had absolute relative error 

greater than 20%. 

In the case of microfiltration with static turbulence 

promoter, SM mode, even more accurate predictions were  
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Fig. 5 Flux values for verification data sets using 

optimized ANN architecture 

 
 

achieved, 97% of predicted data points had absolute relative 

error less than 15%; whilst absolute relative error less than 

5% was achieved in 64% of observations. 

According to absolute relative error of the ANN 

simulation results (Table 1), network with selected 

architecture demonstrated the advantage in highly accurate 

predictions of instantaneous permeate flux under an 

experimental range of feed rates, sedimentation times and 

transmembrane pressures.  

These flux predictions indicates that ANNs can 

potentially reduce the number of expensive, pilot-scale tests 

often conducted in support of membrane system design. 

 

3.3 Model verification 
 
To evaluate the generalization capacity of ANN, new 

experimental data were presented to the neural networks. It 

is good to emphasize that these data were unknown to the 

ANN. The input variables used for the verification of the 

developed model were transmembrane pressure 

1.5 × 10
5
 Pa, sedimentation time 2.5 h and feed flow rate 

120 L/h. The microfiltration experiments were done in two 

modes, NSM and SM. Results of model verification are 

presented in Fig. 5. 
A good correlation among the input and output data 

could be observed for the additional test set. As shown in 

Fig. 5, membrane fouling occurred at the initial stage of 

starch wastewater, consequently flux decline rapidly 

followed by slow decline of flux values till the end of 

microfiltration run. At the simulated curves, this problem 

can be detected. It can be observed that static turbulence 

promoter increased permeate flux from around 6 L/m
2
h in 

NSM mode to around 15 L/m
2
h in SM mode. Dynamic 

behaviour of permeate flux during starch industry 

wastewater has been successfully predicted with good 

accuracy by developed ANN. 
 

3.4 Relative importance of the input variables 
 
ANNs need not be used simply as black boxes and 

cause-effect information can be quantitatively extracted 
from network connection weights to assist in model 
development and experimental design (Chellam 2005). The 
method for ranking the relative importance of input  

Table 2 Relative importance of each input variable to 

instantaneous specific flux 

Input 

NSM mode SM mode 

Importance (%) Rank Importance (%) Rank 

Transmembrane pressure (Pa) 11 4 16.8 3 

Feed flow rate (L/h) 12.6 3 18.3 2 

Sedimentation time (h) 11.4 2 13.1 4 

Filtration time (h) 66 1 51.8 1 

Total 100 100 

 

 

variables was first proposed by Garson (1991). This method 
involves partitioning the connection weights absolute values 
(the hidden output connection weights) of each hidden 
neuron into components associated with each input to the 
neural network. Relative importance of input variable is 
calculated according to Eq. (1) 
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(1) 

where nv is the number of input neurons, nH the number of 

hidden neurons, ij the absolute value of connection weights 

between the input and hidden layers, and Ojis the absolute 

value of connection weights between the hidden and output 

layers. 

As seen in Table 2, in all cases time played an important 

role in determining permeates flux (66.0% in NSM mode 

and 51.8% in SM mode, decrease for 27%). Similar results 

were reported by Aydiner et al. (2005); the contribution of 

filtration time as input variable to flux values provided by 

ANNs during cross-flow microfiltration of a mixture that 

contains phosphate and fly ash, was determined in an 

important level at the range of 40-50% due to increasing in 

membrane fouling by the time. 

The other system parameters (transmembrane pressure, 

feed flow rate and sedimentation time) investigated in the 

study have a contribution of about 11-12.6% in NSM mode, 

whilst in SM mode contribution range is 13.1-18.3%. After 

filtration time, feed flow rate has the greatest contribution to 

ANN model of dynamic flux behaviour in both modes of 

microfiltration. Influence of feed flow rate increased for 

around 30% when static turbulence promoter is placed into 

the membrane channel. The reason can be found in the fact 

that flow pattern in the membrane channel is changed so the 

membrane fouling is reduced (Krstić et al. 2004). The same 

explanation may be applied also to the increase (around 

35%) in relative importance of transmembrane pressure in 

SM mode compared to NSM mode. 
In the case of sedimentation time the increase in relative 

importance in SM mode is about 13% compared to NSM 
mode. During sedimentation, the largest particles are 
removed, with the only small particles remaining in 
suspension, these particles can settle on the membrane 
surface or within the pores of the membrane. The larger 
particles still in solution concentrate near the membrane and 
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function as a prefilter, preventing the obstruction of the 
membrane pores by smaller particles (Cancino-Madariaga 
and Aguirre 2011). For this reason in the case of 
microfiltration with static turbulence promoter with 
changed feed flow patterns hindered influence of 
sedimentation time compared to the transmembrane 
pressure influence. 
 
 

4. Conclusions 
 

The present work was focused on the application of 

ANN on the modelling microfiltration of wheat starch 

industry wastewaters. The dynamics of the rate of specific 

flux decline during cross-flow microfiltration with and 

without static turbulence promoter of wheat starch industry 

wastewaters was captured accurately by ANNs. Bayesian 

regularization showed better results of network performance 

(MSE) compared to Levenberg-Marquardt training 

algorithm. The optimal number of hidden layer neurons is 

ten, the networks have coefficient of determination for 

testing data 0.969 and 0.992, for the NSM as well as SM 

mode, respectively. Absolute relative error analysis showed 

satisfactory predictions of permeate flux with more than 

90% of data were predicted with error less than 15%. The 

relative importance of input variables was investigated by 

applying the Garson equation. The model finding revealed 

that filtration time has the most significant effect on 

permeate flux. In SM mode the relative importance of time 

was lower by 27%, when compared to NSM mode. As for 

other input variables the increase in their importance was 

35, 31 and 13% for transmembrane pressure, feed flow rate 

and sedimentation time, respectively. 
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