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Abstract.  We present a full energy and force formulation of the quasicontinuum method with non-local 

and local transition elements. Non-local transition elements are developed to transmit inhomogeneity from 

the atomistic to the continuum regions. Local transition elements are developed to resolve the mathematical 

mismatch between non-local atoms and the local continuum. The rationale behind these transition elements 

is provided by analyzing the energy and force transitions between atoms and continuum under the 

Cauchy-Born rule. We show that breakdown of the Cauchy-Born rule occurs for slaved atoms of local 

elements within the cutoff of non-local atoms. The inadequacy of the Cauchy-Born rule at the transition 

region naturally leads to the need of atomistic treatment of transition slaved and transition representative 

atoms. Such an atomistic treatment together with a full or cutoff sampling allows non-local transition 

elements containing these transition entities to transmit inhomogeneity. Different force formulations for 

transition representative atoms and pure local representative atoms allow the local transition elements to 

resolve non-local and local mismatches. The method presented herein is validated by force calculations in an 

unstressed perfect crystal as well as an unrelaxed grain boundary model. A nanoindentation simulation in 3D 

is conducted to demonstrate the accuracy and efficiency of the proposed method. 
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1. Introduction 
 
Atomistic modeling has been used to address a wide variety of deformation processes in solids 

recently (Chen et al. 2008, Chan et al. 2011, Lai and Chen 2013, Chen and Lee 2010, Jeong et al. 

2011, Shen 2013, Teng et al. 2011, Wang et al. 2013, Zhao and Aluru 2008). The advantage of 

fully atomistic modeling is its capability to provide desirable resolution that accounts for highly 

inhomogeneous deformations caused by lattice defects in materials. On the other hand, the 

weakness of the atomistic approach is that it must incorporate a significant number of redundant 

degrees of freedom for atoms that are relatively far away from the defects. Thus, the application of 

fully atomistic modeling is limited by available computing resources. This limitation often 

prevents researchers from modeling realistic structures for sizes that exceed a few hundred 

nanometers. 
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The resulting length scale restriction represents a substantial obstacle in the use of a fully 

atomistic model in order to make useful predictions. In recent years, a very promising method 

known as the quasicontinuum (QC) method has been developed to circumvent this length scale 

problem (Tadmor et al. 1996, Shenoy et al. 1999a, Knap and Ortiz, 2001, Miller and Tadmor 

2003). By using kinematic constraints through finite element interpolation, the method allows for 

developing atomic-scale resolution near defects while exploiting coarser description further away 

in order to reduce redundant degrees of freedom. This allows for an accurate description of a 

system while using less computational resources than a fully atomistic model. 

The QC method has received broad attention since its debut, due to its theoretical elegance in 

thinning redundant degrees of freedom as well as its computational generality in treating a wide 

range of problems relating to defect nucleation and evolution in solids. For example, the method 

has been used to study nanoindentation (Tadmor et al. 1999, Shenoy et al. 2000), fracture (Miller 

et al., 1998a; Miller et al. 1998b), grain boundaries (Shenoy et al. 1998), dislocations (Rodney and 

Phillips 1999) and phase transformation (Tadmor et al. 2002). These examples all share a common 

feature that the collective behavior of defects occurs at an intermediate length scale, often beyond 

the reach of atomistic modeling. Conversely, this collective behavior is difficult to resolve 

accurately using a continuum description alone. The QC method was originally developed for 

solving static equilibrium problems but has recently been extended to treat coarse-grained finite 

temperature problems (Shenoy et al. 1999b, Kulkarni 2007). 

In spite of its success, the formulation of QC conceived and developed by Tadmor et al. (1996) 

and Shenoy et al. (1999a) has an inherent inadequacy in the calculation of forces in the area of 

transition between the fully atomistic and continuum regions. Due to the mismatch between 

non-local atoms and local continuum, non-physical forces (a.k.a. ghost forces) arise even for an 

unstressed perfect crystal, let alone for more demanding inhomogeneous phenomena. Ghost forces 

can be partially corrected by adding dead loads to the energy functional. However, such treatment 

might lead to additional spurious effects if the initial deformation across the local and non-local 

interface is non-uniform (Curtin and Miller 2003). The non-uniformity can easily occur when the 

neighboring non-local atoms are perturbed from their periodical configurations. 

These difficulties motivate us to develop a quasicontinuum method to transmit inhomogeneity 

from the atomistic to the continuum regions and to resolve the mathematical mismatch between 

non-local atoms and local continuum. In particular, we are interested in developing the correct 

energy and force formulation for the Cauchy-Born based QC method. To this end, errors due to an 

improper application of the Cauchy-Born rule at the non-local and local interface are analyzed. 

The analysis naturally leads to the need of a new class of transition entities if the QC method is to 

be applied.  

In the next section of the paper, energy and force calculations solely under the kinematic 

constraint assumption are provided; these calculations serve as a desirable benchmark to be 

reproduced by their calculations using a reduced number of degrees of freedom. Energy and force 

calculations to cope with non-local and local transition elements in order to reproduce this 

benchmark are derived in Section 3. In addition, a cutoff sampling method is derived to identify 

and elucidate the root of non-locality in the transition region. The major roles of transition 

elements in the QC method are analyzed in detail in Section 4. Finally, numerical examples in two 

and three dimensional systems are given to demonstrate the accuracy and possible applications of 

the proposed method.  
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2. The kinematic constraint assumption 
 
The basic machinery for the QC method is the concept of kinematic constraints through finite 

element interpolation. Consider a set of n atoms   with the Cartesian positions 
1 2, , , nr r r  in 

space (Fig. 1(a)). In the classical molecular dynamics (MD) or static molecular analysis, the total 

potential energy MDE , in the absence of external potential, can be calculated through the 

summation of the energy of each individual atom so that  

1 2( , , , )MD i n

i

E E


 r r r                          (1) 

Here iE  is the energy of an atom i. The basic assumption for the QC method is to assert that 

some atoms are kinematically constrained by the others and dubbed “slaved” atoms herein. The 

position of a slaved atom sr  can be represented by the positions of a set of representative atoms 

r  through a finite element shape function 

( )
s

s s

L

N 



 r r r                              (2) 

where s  and   denote the slaved and representative atoms, sL  denotes the set of 

representative atoms for the slaved atom s , and ( )sN r  are the shape function values at sr . 

For example, consider a slaved atom d in Fig. 1(b). In the QC method the slaved atom d  can be 

represented by the representative atoms a , b , c  where  ,  ,  dL a b c . 

Under the kinematic constraint assumption, the total energy of   for the QC method can be 

written as 

1 2 1 1 1 2( , , , ( ) , ( )) ( , , , )KC i m m m n n i m

i i

E E L L E 

 

  r r r r r r r r           (3) 

Here 1 2, , mr r r  denote the positions of the representative atoms m n . The force for a 

representative atom   can be obtained by taking the negative derivative of the total energy 

KC MDKC KC i i
i

i ii

E E


   

    
           

 
r r

f f
r r r r

. 

Using Eq. (2), the force for a representative atom   then becomes 

 ( )KC MD

i i

i

N 


f f r                           (4) 

It is worth noting that the energy and force calculations in Eqs. (3) and (4) are a sum over the 

total n atoms, so further approximation is always needed to reduce the sum. Nevertheless, these are 

the solutions that result directly from kinematically constrained MD and serve as a desirable 

benchmark for different variants of QC formulations to be reproduced upon. The formulation by  
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d d

c

a ba b

c

 
Fig. 1 (a) The n atom configuration in MD and (b) the m atom configuration in QC 

 

 

Tadmor et al. (1996) and Shenoy et al. (1999a) used the Cauchy-Born rule to reduce the sum 

while Knap and Ortiz (2001) applied the cluster sampling and summation rules. In this work, we 

shall mainly focus on how to reproduce the energy and force calculations given in Eqs. (3) and (4) 

under the framework of the Cauchy-Born rule. 

 
3. Energy and force calculations with transition elements 
 

3.1 Energy calculations 
 

Two related issues on energy calculations are discussed in this section. The first concerns the 

error resulting from an improper application of the Cauchy-Born rule at the local and non-local 

interface. The second deals with the correction of the error and the reproduction of Eq. (3) with 

transition elements.  

Consider a typical set of representative and slaved atoms, as shown in Fig. 2, where 

deformation gradients are uniform in the local region and are non-uniform in the non-local region. 

Let   denote the set of total atoms and R  denote the set of representative atoms. The set R  

can be further decomposed into two sets L  and A , where L  denotes the set of local 

representative atoms and A  denotes non-local representative atoms. The set of slaved atoms is 

defined by the difference of   and R , such that \S R . Eq. (3) can thus be rewritten as 

1 2 1 2 1 2( , , ) ( , , ) ( , , )KC m m s m

A L s S

E E E E 

   

    r r r r r r r r r           (5) 

Here the first term is the energy of non-local representative atoms which should be calculated 

using an atomistic method. The second and third terms are the energies of the local region 

contributed from the local representative atoms and slaved atoms, respectively. Under the 

framework of the Cauchy-Born rule, the energy of the slaved atoms in the QC method can be 

represented by the local representative atoms 

s

L s S L

E E n E  

   

                             (6) 
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d

Local representative atom
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Slaved atom
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Fig. 2 Representative and slaved atoms at the transition region in the conventional QC method 

 

 

where E  is calculated by the Cauchy-Born rule and n  is a weight function. Therefore, the 

total energy of the local region is only a sum over the elements. The energy of each element can be 

approximated to be ( )e ev  F , where )( eF  is the strain energy density on the basis of the 

element deformation gradient eF  and ev  is the volume of an element e (Shenoy et al., 1999a). If 

M  denotes the set of elements, Eq. (6) becomes 

( )e e

L e M

n E v 




 

  F                            (7) 

Therefore, the total energy in Eq. (5) is reduced to: 

( )KC QC e e

e M A

E E v E




 

   F                    (8) 

All the energies of slaved atoms are calculated by the Cauchy-Born rule in this approximation, 

regardless of whether a slaved atom is close to or far away from the non-local region. That is, 

energies of two atoms d  and g  shown in Fig. 2 have the same atomic energy, both calculated 

by the Cauchy-Born rule. It is thus evident that such approximation is not correct for the slaved 

atom g.  

The energy for a slaved atom near the non-local region cannot be satisfactorily approximated 

by the Cauchy-Born rule and needs to be resolved using atomistic calculations. To this end, slaved 

atoms are decomposed into two sets: pure slaved atoms 
PS  whose energies can be computed by 

the Cauchy-Born rule and transition slaved atoms 
TS  whose energies need to be computed 

individually. That is 

S
T
={ SS and A

SJ J                           (9) 

where 
A

sJ  denotes for the subset of non-local representative atoms A  within the cutoff of the 
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transition slaved atom s . The pure slaved atoms can then be defined by the difference of S  and 
TS , i.e. \P TS S S .  

The separation of slaved atoms naturally leads to two types of local representative atoms. One 

is the transition representative atoms T  that are either within the cutoff of non-local 

representative atoms or representing some transition slaved atoms such that 

        and        s.t.  and A T

s sT L J s L s S                (10) 

The other is the pure local representative atoms 
PL  that are the difference of  L  and T , i.e. 

\PL L T . All the representative and slaved atoms resulting from transition slaved atoms are 

illustrated in Fig. 3. Similarly, elements are now divided into three kinds. The first is the non-local 

transition elements 
T

NLM  which are close to the non-local and local interface; these elements 

contain some transition slaved atoms. The second is the local transition elements 
T

LM  which are 

adjacent to the non-local transition elements; these elements contain no transition slaved atoms 

while at least one of the element’s nodes is a transition representative atom. The third is the pure 

local elements 
PM  found far away from the non-local region; these elements contain no 

transition slaved atoms and all of the element’s nodes are pure local representative atoms. 

In order to correct the error from an improper application of the Cauchy-Born rule at the local 

and non-local interface, the correct energy contribution from the transition slaved atoms need to be 

taken into account. The desirable reduced energy equations to reproduce Eq. (3) become 

( ) ( )
P T T T T

L NL

KC QC e e e e s

A e M M e M s S T

E E E v v E E 

 

 
     

          F F       (11) 
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c
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Pure local representative atom

Non-local representative atom

Pure slaved atom

Transition representative atom

Transition slaved atom
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cutoff

 
Fig. 3 Representative and slaved atoms resulting from transition slaved atoms 
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Pure local representative atom
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Fig. 4 Illustration of Sƞ for a transition representative atom ƞ 

 

g

d

c

Pure slaved atom

Transition slaved atom

 
Fig. 5 Pure slaved atoms d and transition slaved atoms g and their neighboring atoms’ 

 

 

where 
TT  is a subset of transition representative atoms lying within the cutoff of the non-local 

representative atoms. The first two terms in Eq. (11) are the conventional energy contributions 

from the non-local and local regions respectively (Shenoy et al., 1999a). The last three terms in 

Eq. (11) are the energies from the transition region. ev  is a modified volume term which subtracts 

out the volumetric contributions from the transition slaved atoms and transition representative 

atoms in an element e. The energies of transition slaved and transition representative atoms need to 

be resolved through atomistic calculations, looping through their neighboring atoms within the 

potential cutoff. 

 

3.2 Force calculations 
 

In this section, we discuss the force calculations of the representative atoms under the 

framework of Cauchy-Born rule with an aim to reproduce Eq. (4). To this end, we compare the 
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negative derivatives of QCE  from Eq. (11) with the forces evaluated from Eq. (4). As a result the 

derivatives reproduce the forces for the non-local and local representative atoms in Eq. (4). 

However this does not hold for the transition representative atoms; a new set of force calculations 

directly reduced from Eq. (4) for transition representative atoms must be derived. 

We start investigating the issues related to force calculations by taking the negative derivatives 

of Eq. (11) 

( ) ( )

P T T T T
L NL

QC e e s
e e

A e M M e M s S T

E E E E
v v

 

      

 

     

      
              

    
F F

r r r r r r
  (12) 

To evaluate whether Eq. (12) reproduces Eq. (4), we compare these two equations for non-local, 

local, and transition representative atoms, respectively. First, for a non-local representative atom 

 , the second and third terms vanish since they are not a function of non-local atoms. The 

remaining three terms are all calculated atomistically, thus only those atoms lying within  ’s 

cutoff remain in effect, so that 

QC jQC MD

j J

E EE





 

  

 
      

  
f f

r r r
                 (13) 

where J  denotes the set of atoms within the cutoff of the atom  . Let us now consider the 

force calculations from Eq. (4) for a non-local representative atom   

 ( )KC MD MD

i i

i

N  


 f f r f  

where we have used the fact that for a non-local representative atom  , ( )i iN r . Thus it is 

evident that the derivatives of QCE  have reproduced the forces in Eq. (4) for the non-local 

representative atoms. 

Second, we consider the case for a pure local representative atom 
PL  . Since, by definition, 

the pure local representative atom is far away from the transition region, it is obvious that only the 

second term in Eq. (12) remains in effect. The derivatives thus reduce to the well-known 

Cauchy-Born forces (Shenoy et al. 1999a) 

0( ) ( )
QCQC

e e e

e M

E
v N



 

 


    


f P F r

r
                  (14) 

where M  denotes  ’s adjacent elements, ( )eP F  is the first Piola-Kirchhoff stress and 0  

is the gradient with respect to a reference configuration. Since   is a pure local representative 

atom, the neighboring atomic configuration is, by definition, homogeneous. It is therefore, 

straightforward to show that Eq. (14) reproduces Eq. (4). 

Finally, for a transition representative atom, the derivatives of QCE  given in Eq. (12) are not 

sufficient to reproduce the results in Eq. (4). This is due to two facts: mathematical mismatch and 
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physical non-locality. The mathematical mismatch occurs due to the well-known incompatibility 

between local continuum and non-local atoms (Curtin and Miller 2003). The issue associated with 

physical non-locality is caused by the breakdown of the Cauchy-Born rule in a similar way to that 

in the energy calculations. In short, the forces for the transition slaved atoms cannot be 

satisfactorily computed by the Cauchy-Born rule; they must be resolved atomistically. We shall 

revisit these two facts in Section 4 and discuss the roles played by the non-local transition 

elements, local transition elements and transition representative atoms in resolving the issues.  

To this end, we use Eq. (4) directly to evaluate the forces for transition representative atoms. To 

simplify Eq. (4) for a transition representative atom  , the delta function is introduced 

( )KC MD MD MD

s s

A L s S

N     
 

 
  

    f f f f r  

For the transition representative atom, the first summation vanishes and only one term in the 

second summation remains in effect. The force calculations for a transition representative atom   

thus become 

( )QC MD MD

s s

s S

N


  


 f f f r                        (15) 

where S  is the set of slaved atoms that have   as one of their representative atoms (Fig. 4).  

Two further remarks are given. First, the force of a transition representative atom is obtained 

from summing the atomic forces of the corresponding slaved atoms weighted by their shape 

function values. Second, although calculating force on a transition representative atom   

requires looping through all the slaved atoms represented by it, such computation is relatively 

inexpensive due to the fact that the number of transition representative atoms is far less than those 

of non-local and local representative atoms.  

We now proceed to show that a synthesis exists for the energy and force calculations in the 

transition region. That is, all the non-locality is induced from the neighboring non-local 

representative atoms near the transition region. Let us decompose S  into two subsets: pure 

slaved atoms 
PS  and transition slaved atoms 

TS  (Fig. 5). Eq. (15) thus becomes 

( ) ( )
T P

QC MD MD

s s s s

s S s S

N N

 

   

 

   f f f r f r                  (16) 

In the last term of Eq. (16), the summation is carried over all the pure slaved atoms. By definition, 

the pure slaved atoms should have the same periodical environment under the Cauchy-Born rule. 

For example, pure slaved atoms g  and h  in Fig. 5 have the same neighboring environment, 

i.e., g hf f . Thus, Eq. (16) reduces to 

( ) ( )
T P

QC MD MD

s s s

s S s S

N N

 

    

 

   f f f r f r ,                (17) 

where   is an arbitrary atom in 
PS . Eq. (17) offers very important implications for developing 

an effective scheme to compute forces using the QC method in general. For the case of radially 
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symmetric potentials in the homogeneous region, we simply have  f 0 . Thus the last term 

vanishes and Eq. (16) reduces to 

( )
T

QC MD

s s

s S

N



  



 f f f r                         (18) 

Since the sampling atoms only lie within a potential cutoff distance from non-local representative 

atoms, the force formulation given in Eq. (18) is referred to as the “cutoff sampling method” 

herein. Meanwhile, the formulation given in Eq. (15) is referred to as the “fully sampling method.” 

The force formulation in Eq. (18) offers a clear physical insight; all the non-locality originates 

from the fact that the transition representative atoms and transition slaved atoms both require 

atomistic treatment since they are within the cutoff of non-local representative atoms. By taking 

such non-locality into account, we can satisfactorily reproduce the energy and force evaluated 

from kinematically constrained MD under the framework of the Cauchy-Born rule.  

 
 
4. Analysis of transition elements 

 

An illustrative analysis of the two roles of transition elements in QC analysis is given in this 

section. The first is to resolve the mathematical mismatch between the regions that are calculated 

atomistically and as a continuum using local transition elements while the second is to transit 

inhomogeneity from atomistic to continuum using non-local transition elements. Two distinct 

atomic configurations are used herein to demonstrate the roles. One configuration is an unstressed 

perfect crystal as shown in Fig. 6(a) with underlining atoms being arranged periodically in their 

equilibrium positions. Thus, the net force on each atom is zero. The other configuration contains 

an irregular arrangement of non-local representative atoms shown in Fig. 6(c); such irregular 

configuration is often encountered in QC practice.  

First, an analysis of how the mathematical mismatch between the atomistic and continuum 

region is resolved by using force formulations is derived. The force of transition representative 

atom “a” shown in Fig. 6(a), is computed using Eq. (15) or (18). That is, the force of the transition 

representative atom “a” is obtained from the summation and weighting of the atomic forces of the 

slaved atoms highlighted in Fig. 6(b). For the pure local representative atom “b,” Eq. (14) is 

employed; all its adjacent elements are approximated as continuum elements. It is then obvious 

that local transition elements 1-4 in Fig. 6(a) and Fig. 6(b) have dual features. For transition 

representative atoms, the local transition elements serve as a convenient “holder” that contains a 

group of kinematically constrained atoms. For pure local representative atoms, the local transition 

elements possess Cauchy-Born behavior. As a result of these two features, the transition 

representative atom “a” can “see” the slaved atoms of the local transition elements while the pure 

local representative atoms cannot. Such treatments resolve the mathematical mismatch between 

atomistic and continuum, i.e. no ghost forces exist. Conceptually, the mismatch treatments given 

herein are similar to the ghost force correction method developed and discussed by Tadmor et al. 

(1996), Shenoy et al. (1999a) and Curtin and Miller (2003). 

In addition to local transition element which resolves the mathematical mismatch between the 

atomistic and continuum regions, non-local transition elements serve as a bridge to transmit 

inhomogeneity from the former region to the latter. In Fig. 6(c), transition slaved atoms such as the 
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4

 
         (a) (b) (c) 

Fig. 6 Atomic and element configurations in (a) an unstressed perfect crystal with transition 

elements, (b) slaved atoms and elements for force calculations of transition representative 

atoms and pure local representative atoms, and (c) an inhomogeneous arrangement at the 

non-local region. Yellow atoms represent non-local representative atoms, green atoms 

represent transition representative atoms, red atoms represent pure local representative atoms, 

light blue atoms represent transition slaved atoms and light red atoms represent pure slaved 

atoms 

 

 

atom “c” are treated atomistically. Such treatment is associated with the physical argument given 

in the aforementioned section; the forces on the transition slaved atoms cannot be satisfactorily 

computed by the Cauchy-Born rule as they must be resolved atomistically. The force of the 

transition representative atom “a” in Fig. 6(c) is again obtained from the summation and weighting 

of the atomic forces of the slaved atoms, but now contains the proper inhomogeneity induced by 

the non-local representative atoms. 

 

 

5. Results and discussion 
 
Three examples are used to demonstrate the accuracy and applicability of the proposed method. 

In the first two examples, we aim to verify the accuracy of the force formulation presented in the 

previous sections for various interatomic potentials and atomic configurations. The salient features 

of the transition entities are emphasized. In the last example, a 3D nanoindentation simulation is 
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conducted based on the adaptive procedure proposed in Shenoy et al. (1999a). Simulation results 

are compared with static equilibrium results from MD to validate the proposed method. 

 
5.1 Force analysis using a Lennard-jones potential in 2D 

 
We first use a 2D example to show that the ghost force problem is satisfactorily solved with the 

transition elements. To this end, three different QC models with a square lattice as shown in Fig. 7 

are considered. Fig. 7(a) shows a conventional QC model with only local and non-local 

representative atoms. Fig. 7(b) and Fig. 7(c) show the QC models with transition elements. Force 

formulations given in Eq. (15) (the fully sampling method) and Eq. (18) (the cutoff sampling 

method) were adopted for the QC models in Fig. 7(b) and Fig. 7(c), respectively.  

For simplicity, the 6-12 Lennard-Jones potential ( )r  was used 

12 6

( ) 4r
r r

 
 

    
     

     

, 

where   and   are adjustable parameters to characterize the length and energy scales, 

respectively. A 2.5 potential cutoff was used. The forces on the representative atoms were 

calculated based on these configurations. As all underlining atoms have been arranged in their 

equilibrium positions, the total force on each atom should be zero for the unstressed perfect 

crystal.  

Computed forces resulting from these models are plotted in Fig. 8. The results confirm the 

existence of non-zero ghost forces in the conventional QC model where the transition formulation 

is not considered. As expected, the ghost force problem is satisfactorily solved for the QC models 

when transition elements are employed. Furthermore, the cutoff sampling method yields identical 

results to the fully sampling method. 
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   (a) 

Fig. 7 Square lattice QC models using a (a) convention layout, (b) layout for fully sampling 

method, and (c) layout for cutoff sampling method. The light blue atoms correspond to the 

transition slaved atoms used in these methods 
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    (b) 

X

Y

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

Frame 001  24 Oct 2007  Example: FE-Volume Tetrahedral Data

 
   (c) 

Fig. 7 Continued 
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Fig. 8 Y-direction force for different QC models in an unstressed perfect crystal 
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5.2 Force analysis for a grain boundary in 3D using an EAM potential 
 

We next consider a simple tilt grain boundary in 3D to demonstrate the inhomogeneity induced 

from non-local representative atoms. In addition, forces of the transition slaved atoms and 

transition representative atoms need to be resolved atomistically within these non-local 

representative atoms’ cutoff. 

A tilt grain boundary model of face-centered cubic (FCC) aluminum is shown in Fig. 9. The 

model was constructed by rotating the right part of the grain by 45 degrees around the Y axis. The 

lattice spacing is 4.032 Å . A cross section of the {001} plane is shown in Fig. 9(b). 

Aluminum was modeled using the embedded-atom potential developed by Ercolessi and 

Adams (1994). Fig. 10 plots the forces of representative atoms in the X-direction marked in Fig. 

9(b). It shows again that those forces obtained from the fully sampling method (Eq. (15)) and the 

cutoff sampling method (Eq. (18)) yield identical results.  

 

 

 

(a) 

 
Fig. 9. (a) Layout of an unrelaxed grain boundary model and (b) atomic configurations from 

top view of the model. Orange and light blue atoms correspond to the non-local representative 

atoms and transition slaved atoms, respectively 
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Fig. 10 X-directional forces across the unrelaxed grain boundary 
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Fig. 11 Highlights of non-zero force field (indicated by black dots) from a fully atomistic model 

 

 

Finally, non-localities that occur at the transition region in the QC method are studied. To this 

end, a fully atomistic model was constructed and the atomic forces were calculated using MD. Fig. 

11 highlights the non-zero forces for the atoms on the z=0 plane. In the QC model we observe that 

non-zero atomic forces occur at the non-local region and at the transition region within a cutoff 

distance of non-local atoms. It is evident that the Cauchy-Born rule is no longer valid for these 

atoms. Thus, we conclude that transition treatments formalized in this study are needed in order to 

take these inhomogeneities into account. 

 
5.3 Nanoindentation simulation in 3D 

 
Nanoindentation simulations in 3D using the MD and QC methods were carried out in parallel 

to illustrate the accuracy of the transition formulation proposed herein. A thin film FCC aluminum  
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Fig. 12 QC initial model: the yellow atoms are non-local representative atoms and the green 

atoms are transition representative atoms 
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Fig. 13 Load-displacement curves for nanoindentation simulation 
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sample was modeled by a 50
o

Α × 50
o

Α × 80
o

Α  box. Periodic boundary conditions along the X and 

Y directions were applied in the MD model and in the non-local and transition regions in the QC 

model. Fixed boundary conditions at the bottom were applied in both models. The number of 

atoms in the MD model was 20,480. The initial QC model is shown in Fig. 12(a) in which a block 

of fully-refined non-local representative atoms were constructed in the vicinity of the indentation 

region to capture surface effects. The total number of representative atoms in the initial QC model 

was 4,313.  

Nanoindentation simulations were carried out by driving a spherical indenter into the simulated 

sample along the Z direction. The embedded-atom potential developed by Ercolessi and Adams 

(1994) was used to model the aluminum thin film. In addition, the force relationship between the 

atoms of the aluminum sample and the indenter was described by an indenter-sample interaction 

potential given by 

2( ) ( )f r A R r                              (19) 

where R is the radius of the spherical indenter, r is the distance from the center of the indenter to 

an atom in the sample and A is a force coefficient. This example used a radius R of 12.5
o

Α  and a 

coefficient A of 10.  

The simulation was performed by moving the indenter downward incrementally into the top 

surface of the samples. At each incremental step, an equilibrium configuration was obtained by 

using the Polak-Ribiere variation of the conjugate gradient method (Press et al., 2000). For the QC 

method, the adaptive remeshing scheme used by Shenoy et al. (1999a) was adopted. The variation 

of the deformation gradient was used as the adaptation indicator with a preset tolerance of 0.005. 

At each incremental step, the mesh in the QC model was continuously adapted until the tolerance 

was met.  

The computed load-displacement curves from the MD and QC methods are plotted in Fig. 13. 

An essentially elastic response is observed until dislocation nucleates at the first critical load. The 

MD model predicts the critical load of 34.81 nN at indentation depth of 4.6
o

Α  and the QC model 

predicts 34.58 nN at 4.5
o

Α . The difference between the two models is about 0.66% and we can 

conclude that, overall, the QC results agree very well with those from MD. Figure 14 plots the 

evolution of the total number of representative atoms used in QC. The initial QC model is capable 

of capturing induced deformation until the indentation depth exceeds 2
o

Α . Further mesh adaption 

is observed until the first critical load is reached. The total number of representative atoms in the 

final refined QC model is 7,186. 

 

 
6. Conclusions 
 

We have formalized a QC method with non-local and local transition elements. New forms of 

energy and force calculations are derived by considering non-locality in a non-local transition 

element induced within the cutoff of non-local representative atoms and by considering 

reproduction of fully atomistic formulation imposed with kinematic constraints. The proposed 

energy formulation properly corrects the error from applying the Cauchy-Born rule at the local and 

non-local interface. Through summing and weighting the atomic forces of the transition slaved 
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atoms into the transition representative atoms, the new description of the force formulation allows 

non-local transition elements to correctly transmit inhomogeneity from the atomistic to the 

continuum regions. In addition, dual features of local transition elements possessed by the 

proposed force formulation allow one to eliminate undesirable ghost forces caused by the inherent 

mathematical mismatch between non-local atoms and the local continuum. We conclude that 

energy and force calculations with transition entities are indispensable for the Cauchy-Born based 

QC method developed by Tadmor et al. (1996) and Shenoy et al. (1999a).  
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