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Large-scale and small-scale self-excited torsional 
vibrations of homogeneous and sectional drill strings
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Abstract. To simulate the self excited torsional vibrations of rotating drill strings (DSs) in vertical
bore-holes, the nonlinear wave models of homogeneous and sectional torsional pendulums are formulated.
The stated problem is shown to be of singularly perturbed type because the coefficient appearing before
the second derivative of the constitutive nonlinear differential equation is small. The diapasons ωb ≤ ω ≤ωl

of angular velocity ω of the DS rotation are found, where the torsional auto-oscillations (of limit cycles)
of the DS bit are generated. The variation of the limit cycle states, i.e. birth (ω = ωb), evolution
(ωb < ω < ωl) and loss (ω = ωl), with the increase in angular velocity ω is analyzed. It is observed that
firstly, at birth state of bifurcation of the limit cycle, the auto-oscillation generated proceeds in the regime
of fast and slow motions (multiscale motion) with very small amplitude and it has a relaxation mode with
nearly discontinuous angular velocities of elastic twisting. The vibration amplitude increases as ω
increases, and then it decreases as ω approaches ωl. Sectional drill strings are also considered, and the
conditions of the solution at the point of the upper and lower section joints are deduced. Besides, the
peculiarities of the auto-oscillations of the sectional DSs are discussed.

Keywords: drill strings; multiscale dynamics; relaxation vibration; singularly perturbed problem; torsional
vibration.

1. Introduction

At the present time, the main sources of energy are oil and gas heat carriers whose cost grows

steeply in connection with their approaching depletion. Nevertheless, reconnaissance of new oil and

gas reserves and progressively increasing rate of their extraction continue. In so doing, the principal

technological component of these processes is the drilling of new oil and gas holes. Nowadays even

though their depths can reach several kilometers, the problem of oil and gas mining from deeper

tectonic levels becomes more challenging.

When the fuel extraction is realized from great depths, the drill efficiency is associated with the

problem of exposure to the emergency regimes of the DS functioning. Among these are the DS

stability loss at its lower part, following the buckling mode typical for a rectilinear rod stretched,

compressed and twisted simultaneously (Gulyayev et al. 2009) and the frictional seizure of the DS

inside the curvilinear bore-hole (Gulyayev et al. 2011).
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One of the dynamic phenomena resulting in the occurrence of emergency situation during drilling

is the self-excitation of torsional vibrations of the rotating drill strings (Brett 1992, Challamel 2000,

Leine et al. 2002, Mihajlovic et al. 2006, Tucker and Wang 1999, Zamanian et al. 2007). Inasmuch

as a drill string represents a torsional pendulum (Fig. 1(a)) with energy outflow due to the

dissipative interaction between the bit and broken rock at its lower part, it can transit from the

stationary rotational state to the mode of torsional auto-oscillation. These vibrations are considered

to be the most detrimental type to the service life of the drill string and downhole equipment,

because they may induce large cyclic stresses, reduction of the bit life, unexpected changes in

drilling direction, and even result in failure of the drill string. 

The aforementioned phenomenon can be described by complicated non-linear differential

equations, belonging to the so called singularly perturbed type (Gulyaev et al. 2010). Many

mathematical models adequately describe the physical processes by the differential equation terms,

involving (implicitly or explicitly) different parameters affecting the solution mode. 

Beginning from the classic works by A. Poincare and A.M. Liapunov, the so called regular type

of equations

     ( )  (1)

was profoundly studied. Here the right-hand part regularly (continuously, smoothly, analytically)

depends on the parameter  in the vicinity of  and the solutions were studied inside the finite

region  of the independent variable t.

x″ F t x x′ ε, , ,( )= 0 t 1≤ ≤

ε ε 0=

0 t 1≤ ≤

Fig. 1 Schematic of the drill string: (a) coordinate systems and (b) propagation of torsional waves
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But the situation is widely diversified and complicated when the small parameter 0 < << 1

appears before the second derivative

     ( ) (2)

In this case, the influence of the left-hand part on the solution becomes significant only for large

values of , related to the states of fast change in the system motion.

An effort to regularize Eq. (2) with small  by discarding the term  leads to the regular

differential equation

     ( ) (3)

which, nevertheless, is of lower order and, for this reason, loses the basic features of the original

Eq. (2).

Replacing the independent variable t with the substitutions  and , which

enables us to exclude parameter 

(4)

which is just the same, causing enlargement of the integration domain  in comparison

with the initial domain .

The problems of the theory of differential equations with a small parameter appearing before the

senior derivatives were given the title of singularly perturbed ones (Chang and Howes 1984,

Shishkin and Shishkina 2009). As a rule, they have irregular solutions with nearly discontinuous

derivatives. It is believed that L. Prandle was the first one to attract attention to this scientific

direction in connection with the applied problem of boundary layers in hydrodynamics in 1904.

Subsequently, the singularly perturbed problems emerged repeatedly in physics, mechanics and

technology. Their distinguishing feature for the oscillatory systems is that they have periodic

solutions in the shape of broken straight lines (Fig. 2) with rectangular phase portraits (Fig. 3). The

vibrations of this type are called relaxation (Mishchenko and Rozov 1975). Among these are the

periodic motions occurring under the action of nonlinear dissipative perturbations in autovibrational

systems with small inertance. 

In mechanical systems, these perturbations are the forces of internal and external friction, in

electric systems the electric resistance. Every period of the relaxation vibrations can be divided into

several separate segments corresponding to slow and fast changes of the system states, interpreted

as multiscale ones. The nature of these vibrations is connected with small masses of the oscillatory

systems (characterized by the small ), which gives the condition for small inertance of the

oscillators and the possibility of nearly instantaneous change of their velocities.

Simplified consideration of the relaxation vibration emergence is achieved by ignoring the system

parameters affecting the character of fast motions, based on the so called degenerated type of

equations as given in Eq. (3). Their use leads to distortion of the periodic motion mode.

Relaxation vibrations in electric systems are widely employed in measuring the devices,

telecontrol, automatics and other divisions of electronics. Different generators, such as the blocking

generators, multivibrators, RC-generators and others, are used for their excitations.

Their investigation was begun in the 20-th years of the last century in the works by Van-Der-Pole.

Relaxation vibrations of this direction are profoundly studied owing to the possibility of application
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of the analogue simulation method to their analysis.

In mechanics, the small inertance vibrational systems are rarely met. There are no universal

methods for their investigation, because of this, they are poorly understood. An example of the

singularly perturbed problems in mechanics, which plays a large role in practical applications, is the

problem about the torsional auto-oscillations of long drill strings at their rotation with angular

velocity ω. Such vibrations are generated as a consequence of nonlinear frictional interaction of

their bits with the bore-hole bottom surfaces at the rock cutting. By virtue of the fact that the bit

mass is much less than the drill string mass, the coefficient before the inertia member (the second

derivative) of the appropriate vibration equation is very small and its solution has the shape of a

broken line. In connection with the discontinuous character of the relaxation vibrations, they are

dangerous for the strength of the bit and drill string.

In the paper by Gulyaev et al. (2010), the theoretical simulation of the homogeneous drill string

auto-oscillation excitation was presented on the basis of the wave model of a torsion pendulum. It is

observed that zones of change in parameter ω, where the auto-oscillations are excited, are bordered

by the states of the limit cycle birth ωb and loss ωl. The vibrations are shown to be of the relaxation

type and, what is more, have the character quantized in time with large- and small-scale regimes of

motions. Similar phenomena are discussed by Kaczmarek (2010) and Wang and Fang (2010). The

present paper is devoted to the analysis of the features of the auto-oscillation mode evolution in the

vicinities of the bifurcational states and inside of the diapason . Homogeneous and

sectional drill strings are under consideration.

2. Constitutive equation of torsional vibrations of a homogeneous drill string

For the purpose of theoretically simulating the phenomenon of self-excitation of the torsional

vibration of a drill string, the wave model of a torsional pendulum is used (Gulyaev et al. 2010). It

is assumed that in the considered case the DS top end is driven with constant angular velocity ω

relative to the inertial coordinate system OXYZ whose axis OZ is in line with the DS axis (Fig. 1(a)).

The DS is considered as an elastic rod in torsion. The twist vibrations of the system are excited

through the frictional interaction of the DS bit with the broken rock at the bore-hole bottom.

Assume that the moment of these forces far exceeds the distributed friction moments induced by

viscous friction interaction of the DS body with ambient mud. So the last-mentioned ones can be

neglected in analysis.

ωb ω ω l< <

Fig. 2 Typical mode of relaxation vibration
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To describe the bit twist, let us introduce also the coordinate system Oxyz rotating with speed ω.

Then the angle of the bit rotation relative to system OXYZ is , where  is the angle

of the DS top end rotation; t is the time;  is the angle of the elastic twist of the DS

element with respect to the Oxyz system.

By treating the elongated body of the DS rod as an elastic waveguide, its torsional vibrations can

be modeled by the wave equation

(5)

where  is the inertia moment of the DS cross-section area,  is the material density, and G is the

shear modulus of the DS.

The solution to Eq. (5) is

 (6)

expressed through the phase variables  and . In Eq. (6),  is the

torsional wave emanating upward from the bit,  is the torsional wave descending to the bit

from the top end of the DS (Fig. 1(b)), and  is the torsion wave velocity.

The boundary condition at the top end  of the DS is regarded as a clamping end, i.e.

 or  (7)

Meanwhile, the boundary condition at the lower end of the bit rotating can be represented in the

following form

 (8)

Here,  is the moment of inertia forces acting on the bit;  is the

moment of elastic forces acting on the bit;  is the cutting moment or the

moment of friction forces formed between the bit and broken rock. Inasmuch as independent

variables z and t are connected by phase variables u and w, the partial derivative  can be

expressed through the  derivative. Indeed, it follows from Eq. (6)

(9)

Comparing the right-hand sides of these equalities, one can write

and express the  moment in terms of the variable t. After some substitutions and

rearrangements, Eq. (8) can be changed to the following form (Gulyaev et al. 2010)

(10)
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where , . The function  will be constructed later.

The solutions of the equation possess a series of features derived from the structure of the

function . First and foremost, it has a stationary solution f (t) = const or 

for any value of . Besides, a diapason  exists, where stable non-stationary periodic

solutions occur in addition to constant ones, which become unstable. Outside this diapason, the

stationary solutions in the form of balanced rotation ,  are stable. The states

, , where the stationary rotation is changed by autovibration and vice versa, are

called the bifurcations of limit cycle birth and limit cycle loss or the Hopf bifurcations.

The second peculiarity of Eq. (10) is associated with small values of inertia moment J of the bit

in comparison with values  and . So, as indicated above, the problem of integrating this

equation is singularly perturbed, the autovibrations are of relaxation type and have nearly

discontinuous velocities.

Finally, a further trait of Eq. (10) is that it contains the delay argument . Owing to

this, the system remembers the perturbations imposed previously on it with the  delay and is

tuned to quantized vibrations with time quantum  (Gulyaev et al. 2010). So, it is of

interest to trace the evolution of the autovibration modes with the change in parameter ω.

3. Evolution of autovibration modes with the drill string rotation velocity change

One of the basic peculiarities, making critical impact on the process of the torsional vibration self-

excitation and its peculiarities, is the law of cutting (friction) moment  dependence on the total

angular velocity  of the bit rotation.

The shape of function  is determined by many factors, including the bit

structure and its diameter, the bit chisel material (high-strength steel or diamonds) and wear of the

chisels, the force of the bit pressure on the bore-hole bottom, mechanical properties of the rock

drilled (strength, plasticity, brittleness, etc), as well as composition of the washing liquid. The

presented factors are not only extremely diversified, but their numerical values vary during the

drilling process. So, it is evident that there are no universally valid friction moment functions, and

what is more, they even cannot be constructed with sufficient accuracy.

Consequently, it is conceivable that the universal functions of this kind are not necessary and it is
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Fig. 3 Typical phase portrait of relaxation vibration
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sufficient to consider only some general and typical phenomena encountered by the drilling

processes and to find conditions and limits of their existence. As it will be shown below, usually

only the extremum points of these functions are of primary interest for the stability analysis.

The most commonly encountered relationships between  and  are represented by the

Coulomb friction law (Tucker and Wang, 1999). It is used in our investigation for analysis of

general regularities of autovibration proceedings. In its diagram (Fig. 4), the vertical segment

determines the static friction moment , it is realized in the absence of sliding between bodies.

After achieving some limit value , the static friction moment  is replaced by the dynamic

friction moment , which is accompanied by sliding between rubbing surfaces.

As our calculations will testify, during the auto-oscillation only the lower parts of these functions

are involved in the friction process. So, the bit vibrations do not depend on the static segment

existing in the  function and the dynamic friction moment  can be represented with the

aid of the following approximate function 

(11)

Here, the viscous component is approximated by the expression

(12)

where the coefficients ai  are found by the trial-and-error method. This type of

friction is inherent in the cases when sliding between the bodies begins under certain limit value of

the applied moment.
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In calculation, the following values are used for the characteristic parameters: 

Pa, , , . External and internal diameters of the

tube cross-section are , , so . In Eq. (11), the

coefficients of the function of the  moment shown in Fig. 4 have the following values

, , , , ,

a9 = , , , , ,

.

In the process of functioning, the DS can be either in the states of stationary rotation or of

torsional self-excited elastic oscillation, depending on the chosen regime of drilling. Types of these

states are dictated by the Eq. (10) solutions, which are primarily determined by the function in Eq.

(11) and angular velocity , as compared with the value  of the  minimum, whose position

is determined by the values of parameter k.

The investigation was performed by integrating Eq. (10) by the Runge-Kutta method with the

initial conditions ,  for different values of . The integration step is selected

to be .

The results of the numerical investigation are presented in Table 1. Their analysis permits us to

formulate some regularities. The most important conclusion is that the value  of the angular

velocity  corresponding to the bifurcation state of the limit cycle birth equals the value

, which conforms to the minimum point of the  diagram. The

regimes of motion with  are characterized by the stationary rotation without any oscillation

when the system changes from its initial state ,  to some quasi-static

equilibrious state ,  and self-excited vibrations do not take place. But during

the system transition from outside to inside this diapason through the value , the Hopf

bifurcation occurs and limit cycles appear together with the unstable stationary solutions

, . The autovibrations occur relative to some mean (averaged) value 

with swing D and period T. Stability of the born limit cycles was confirmed by immediate computer

simulation.

Figs. 5-7 illustrate the torsional oscillations of the DS bit at the state of the limit cycle birth

(ω = 2.85 rad / s). Firstly, they vibrate with small swing  and period .

Their progression from the initial state ,  is shown in Fig. 5. Large scale of

these vibrations (Fig. 6) allows us to conclude that they have the relaxation mode with nearly

discontinuous angular velocity  (Fig. 7). It is interesting to note that they are realized in a small
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Table 1 Values of parameters of the homogeneous drill string auto-oscillations

 ( )

ω
(rad / s)

ωb < ω < ωl

2.85 2.86 2.87 6 10 15 17 18 19 19.6 19.9

ϕst

(rad)
-32.68 -32.69 -32.71 -32.32 -32.25 -34.51 -35.82 -29.65 -29.65 -29.67 -29.68

ϕav

(rad)
-32.61 -32.58 -29.43 -29.25 -29.49 -30.38 -31.03 -29.44 -29.49 -29.53 -29.55

D
(rad)

0.16 0.24 6.61 6.12 5.53 8.25 9.55 0.43 0.33 0.29 0.27

T
(s)

1.28 1.27 2.91 1.86 1.25 1.26 1.28 1.31 1.25 1.25 1.19

Mmin

 fr
82500–  N m⋅ k, 0.025 c, 1= = =
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vicinity of the extremum point  in the  diagram. In Fig. 4 it is separated by small

segment of solid line.

The mode of self-excited vibrations of the bit evolves as the  value increases. In so doing, the

ωb M
 fr

ω ϕ·+( )

ω

Fig. 5 Torsional auto-oscillation excitation of the bit at the state of limit cycle birth ( ,
, , )

Mmin

 fr
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k 0.025= c 1= ω 2.85 rad s⁄=

Fig. 6 Torsional auto-oscillation on a large scale ( , , , )Mmin

 fr
82500 N– m⋅= k 0.025= c 1= ω 2.85 rad s⁄=
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parameter D also increases but the period T practically remains unchanged (see Table 1). The

function  for ω = 2.87 rad / s can be seen in Fig. 8, with the quantized segments of the ϕ t( ) ϕ· t( )

Fig. 7 Angular velocity  of the bit versus time t ( , , , 2.85
rad / s)

ϕ· Mmin

 fr
82500 N– m⋅= k 0.025= c 1= ω =

Fig. 8 Elastic torsional angle  versus time t ( , , , 2.87 rad / s)ϕ Mmin

 fr
82500 N– m⋅= k 0.025= c 1= ω =
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function shown in Fig. 9. In this case, the motion is not periodic and the segment of total angular

velocity  covers the longer part of the  diagram (Fig. 10).ω ϕ·+ M
 fr

ω ϕ·+( )

Fig. 9 Large-scale view of quantized change of the bit’s torsional velocity ( , = 0.025,
, )

Mmin

 fr
82500 N– m⋅= k

c 1= ω 2.87 rad s⁄=

Fig. 10 Domain of auto-oscillation on  diagram ( , , ,
)
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The relaxation mode of vibrations acquires more distinct character for ω = 17 rad / s. The function

 gains the shape of triangular sine (Fig. 11), while the function  becomes nearly as the

rectangular cosine (Fig. 12). The phase portrait also assumes appropriate outline (compare Figs. 13

and 3).

At the state of bifurcation of the limit cycle loss (ωl = 19.9 rad / s in the Table 1), the auto-

ϕ t( ) ϕ· t( )

Fig. 11 Elastic torsional angle  versus time t ( , , , = )ϕ Mmin

 fr
82500 N– m⋅= k 0.025= c 1= ω 17 rad s⁄

Fig. 12 Angular velocity  of the bit versus time t ( , , , =
)

ϕ· Mmin

 fr
82500 N– m⋅= k 0.025= c 1= ω

17 rad s⁄
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oscillations again proceed with small swings (Fig. 14), but the function  became nearly

discontinuous with large values of angular velocity . So, in the diagram for , the

ϕ t( )
ϕ· t( ) M

 fr
ω ϕ·+( )

Fig. 13 Phase portrait of torsional auto-oscillation ( , , , =
)

Mmin

 fr
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17 rad s⁄

Fig. 14 Elastic torsion auto-oscillation at the state of limit cycle loss ( , ,
, )

Mmin
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segment of auto-oscillations covers a larger part of the curve (compare Fig. 15 for the limit cycle

loss bifurcation with Fig. 4 for the limit cycle birth bifurcation).

Besides, as shown by Gulyaev et al. (2010), in the considered examples, the auto-oscillations are

quantized in time with the time quantum . Inside this segment of time, the

angular velocity  is nearly constant.

It is of interest to trace the change of the autovibration process parameters for various values k,

, c, and comparing the function  calculated by Eqs. (11) and (12). In Table 2, the

calculation results are represented for the cases , ,  and

, , . They testify that a fourfold increase of k to the value

 leads to nearly a fourfold decrease of the  value and eightfold reduction of 

(compare Tables 1 and 2).
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Table 2 Values of parameters of the homogeneous drill string auto-oscillations

(  and )

ω (ραδ / σ)
ωb ωl ωb ωl

0.71 3.775 0.71 3.775

ϕst (rad) -32.63 -33.27 -78.75 -79.58

ϕav (rad) -30.56 -31.19 -74.28 -74.42

D (rad) 4.13 4.17 8.95 10.33

T (s) 13.64 2.49 34.33 6.59

k 0.1 Mmin
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, 82500–  N m⋅= = Mmin
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k 0.1 c, 1= =
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The limit cycles of the torsion wave pendulum vibrations do not depend on the initial conditions,

so the self-excitation has the soft character.

4. Statement of the problem about torsional auto-vibrations of sectional drill

strings

If mechanical characteristics of a DS change along its axial line, the waves  and

 transform in their propagation and Eq. (10) loses its meaning. To solve the problem, it is

necessary to build the function  at the lower end  for every specific case and to use

the appropriate functions ,  in Eq. (10), instead of the variables ,

.

Let, for example, the DS consists of two sections as shown in Fig. 16 with lengths  and

mechanical characteristics  and , respectively. Then, the components of the

 waves, propagating from the point  and reaching the point , will experience

the action of impact reflection-refraction (transmission). To calculate the intensities of the reflected

f z βt–( )
g z βt+( )

g 0 βt+( ) z 0=

g· βt( ) g·· βt( ) f
··

βt– 2L+( )
f
·

βt– 2L+( )
l1 l2,

β1 ρ1 I1, , β2 ρ2 I2, ,
f z βt–( ) z 0= z l1=

Fig. 16 Schematic of torsional wave propagation in a sectional drill string: (a) fragmentation of an incident
wave and (b) wave diffraction at the interface point
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and transmitted waves, consider the process of diffr  action of the wave component of length 

during the time interval . Separate the DS elements into the incident, reflected and transmitted

waves, which take part in this interaction and have the angular velocities  and lengths

, respectively (Fig. 16(a)). Here, the top indices  denote the incident,

reflected and transmitted waves, and the lower ciphers 1, 2 indicate the DS section number.

Considering the  velocities to be known, we can calculate the  velocities. For this purpose,

use the condition of conservation of the momentum of each separate element before and after

impact. One can write

(13)

where

 (14)

Supplementing Eq. (13) by the condition of angular velocity continuity

(15)

one obtains the system of two equations for calculation of  and . The solution is

 (16)

The torsional angles in the reflected and transmitted waves can be found from the conditions of

continuity for torques and torsional angles at . They are as follows

 (17)

Considering the diffraction of the  wave at the point , the  wave in

the second section, arriving at this point, is considered to be incident and known, but the reflected

 and transmitted  waves should be determined. Their

kinematical characteristics are calculated by the foregoing techniques through the use of the

formulae below
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 (18)

 (19)

The correlations (16), (17) and (18), (19) satisfy the obvious conditions occurring in marginal

cases. For example, Eqs. (16), (17) testify that, if two sections have the same geometrical and

mechanical properties, then ,  and , . When the second section is

absolutely rigid, its  and , , , . If the acoustic rigidity

of the second section reduces to zero, one has ,  and , .

As the result of diffractions of the waves  and , the superposition of the

transmitted  and reflected  waves will make up the  function in

the second section and the sum  will produce the  function in

the first one (Fig. 16(b)). With the allowance made for these rearranging, the initial conditions

−

−

(20)

can be formulated for the  wave at the boundary  of the domain , and

the initial conditions

+

+

 (21)
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for the  wave at the same point of the domain .

Eqs. (5), (6), together with boundary conditions (7), (8) and continuity conditions (20), (21),

describe the three-point boundary problem relative to the independent variable z with the boundary

conditions at the points ,  and . These equations, combined with appropriate

initial conditions, represent the Cauchy problem. It can be solved by the Runge - Kutta method.

5. Torsional autovibrations of sectional drill strings

To embrace more emphatically the stated questions and to test the proposed approach, the

relationship between the modes of the drill string autovibration and the existence of sections with

different mechanical properties in the drill string was analyzed. Four cases were considered for the

drill string of L = 1000 m with two sections of the following lengths: 1) , ; 2)

, ; 3) , ; 4) , . The tube of the first

section has the geometrical and mechanical parameters assumed in Section 3. The second section

tube has diameters , , so its .

First of all, it is necessary to stress that in all the cases considered, the states of the autovibration

birth do not depend on the drill string structure and occur at .

The results of calculation for the angular velocity value  picked from the segment

 are given in Table 3. They are grouped into four columns corresponding to the four

cases considered. Recall the designations used. Here,  is the torsional angle of the drill string at

its limit state of quasi-static equilibrium;  is the averaged elastic torsional angle; D is the swing

of the autovibration angle; and T is the autovibration period. The variation of the torsional angle

with respect to time for the drill column with sections ,  is shown in Fig. 17.

g1 z β1t+( ) 0 z l1≤ ≤

z 0= z l1= z L=

l1 L= l2 0=

l1 2L 3⁄= l2 L 3⁄= l1 L 2⁄= l2 L 2⁄= l1 L 3⁄= l2 2L 3⁄=

d1 0,08898 m= d2 0,10098 m= Iz 3.12 10
5–
 m

4⋅=

ωb 0.71 rad s⁄≈
ω 2 rad s⁄=

ωb ω ω l< <
ϕst

ϕav

l1 L 3⁄= l2 2L 3⁄=

Fig. 17 Torsional auto-oscillation excitation of the bit at the state of limit cycle birth
( , , , )Mmin

 fr
82500 N– m⋅= k 0.1= c 1= ω 2 rad s⁄=
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Referring to Table 3, one can see that all the dynamic characteristics have the tendency to

increase with the enlargement in . This is attributed to the fact that the total torsional stiffness of

the drill string decreases as the segment  grows.

At the same time, substitution of the sectional drill columns for the homogeneous ones entails also

essential change of their vibration modes due to the additional destruction effect of the torsional

wave profile at the point of discontinuity of the torsion waveguide stiffness. To gain more insight

into this phenomenon, the variation of the bit angular velocity  with respect to time t is shown in

Fig. 18, which differs from the functions  displayed in Figs. 7 and 12 and is distinguished by

the sharp change of slow and fast motions. Part of this diagram is enlarged in Fig. 19. In this case,

the motion is also quantized with respect to time with quantum duration , but the

velocity - time portions are fragmented and less regularized, because inside every global quantum,

there are three additional subquanta. They are conditioned by additional diffraction of the wave at

the internal interface point.

l2

l2

ϕ·

ϕ· t( )

∆τ 0.6125 s=

Table 3 Values of parameters of the sectional drill string auto-oscillations 

( , )

1 2 3 4

ϕst (rad) -33.02 -105.23 -142.05 -178.75

ϕav (rad) -30.97 -100.24 -134.79 -169.42

D (rad) 4.11 9.95 14.53 18.65

T (s) 2.78 8.33 11.63 14.95

Mmin

 fr
82500–  N m⋅= k 0.1 c, 1= =

l1 L l2, 0= = l1 2L 3⁄ l2, L 3⁄= = l1 L 2⁄ l2, L 2⁄= = l1 L 3⁄ l2, 2L 3⁄= =

Fig. 18 Angular velocity  of the bit versus time t ( , , , 2 rad / s)ϕ· Mmin

 fr
82500 N– m⋅= k 0.1= c 1= ω =
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The interface point is also the basic cause of the torsional wave transmission along the DS axis,

which is illustrated in Fig. 20. Brocken curves 1, 2, 3 correspond to states 1, 2, 3 in Fig. 17.

Additional breaks of the DS twist angle resulting from the quantized character of the vibrations are

very small and are not discernible in the scale used.

Fig. 19 Large-scale view of fragmented quantized change of the bit’s torsional velocity ( ,
, , 2 rad / s)

Mmin

 fr
82500 N– m⋅=

k 0.1= c 1= ω =

Fig. 20 Modes of the DS twist
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6. Conclusions

The analysis of the limit cycle birth bifurcations in the torsional wave models of homogeneous and

sectional drill strings is presented in this paper. The constitutive differential equations with delay

argument are constructed, which is shown to be singularly perturbed. Based on analysis of their solutions,

one can draw the following conclusions for the torsional oscillation self-excitation of the drill string:

1. The auto-oscillations of homogeneous and sectional DSs prevail at low values of their angular

velocity ω, the boundaries of the ω segments of their self-excitation do not depend on the number

of the DS sections and are determined by the outline of the friction moment function.

2. The autovibrations are of the relaxation type and contain fast and slow motions (multiscale motion).

3. The self-excited oscillations proceed in the manner of quantized time. The time quantum

durations equal the time of the torsional wave propagating through the doubled length of the DS.

4. The velocity - time quanta in sectional drill strings have additional fragmentations caused by

the multiple diffractions of the torsional waves at the points of the section joints.
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