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Abstract. A multiscale method is presented for analysis of thin slab structures in which the
microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional
treatment of microstructures is necessary. This method is based on the classical asymptotic expansion
multiscale approach but with consideration of the special geometric characteristics of the slab structures.
This is achieved via a special form of multiscale asymptotic expansion of displacement field. The
expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is
in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global
macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is
noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction
free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element
implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response
is systematically characterized via homogenization analysis of the proposed special unit cell problem for
different microstructures and the reasoning of the present method is justified. Moreover the present
multiscale analysis procedure is illustrated through a plane stress beam example. 
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1. Introduction

Thin heterogeneous slab structures such as fiber reinforced plates are commonly employed in

engineering practice. Due to the fact of the distinct ratio between the in-plane and out of plane

dimensions of this type of structures it is quite reasonable to efficiently analyze these problems

based on the conventional plane stress condition when in-plane loads are considered. However

because of the significant scale difference between the local microstructures and global structures it

is not practical to model the structures simultaneously with local and global details. On the other

hand for heterogeneous slab structures the in-plane material response may be obtained first through

a homogenization procedure and then the global analysis is carried out under the plane stress

circumstance. For analytical homogenization methods it is often difficult to consider the interaction

between the inclusions (Mura 1987, Nemat-Nasser and Hori 1993), while the rapidly developed

computational multiscale analysis methods provide a very robust way to obtain the homogenized
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material properties for efficient global structural analysis and meanwhile the desired detailed local

information can also be extracted conveniently (Sanchez-Palebncia and Zaoui 1987, Ponte

Castaneda and Suquet 1998, Hassani and Hinton 1998, Mang et al. 2009).

Among the various existing computational homogenization methods, the asymptotic expansion

method (Bensoussan et al. 1978) offers a rational multiscale framework to carry out the

homogenization analysis as well as the localization analysis. Consequently the asymptotic expansion

method has received considerable research attention and wide applications. An adaptive finite

element homogenization analysis was introduced for composite materials by Guedes and Kikuchi

(1989). Swan (1994) presented the stress- and strain-controlled homogenization methods in a very

systematic manner. Fish et al. (1997) analyzed plasticity of composites by employing the method of

asymptotic expansion homogenization. The asymptotic expansion method was also used to complete

multiple scale model reduction by Yuan and Fish (2009). Ghosh and Moorthy (1995) and Ghosh et

al. (2009) combined the vornoi cell finite element method and asymptotic expansion method to

formulate the multiscale analysis of elastic-plastic and ductile fracture problems. Takanoa et al.

(2000) developed a large deformation asymptotic expansion formulation for composites and the

micro-to-macro scale transitions was discussed by Miehe and Koch (2002) and Kaczmarczyk et al.

(2008). Cao et al. (2002) presented a multiscale asymptotic analysis and numerical simulation for

the second order Helmholtz equation with oscillating coefficients. Chung and Namburu (2003) also

proposed an asymptotic expansion formulation for multiscale atomistic-continuum homogenization.

Chen and Mehraeen (2004, 2005) developed a variationally consistent multiscale asymptotic

expansion method for modeling stressed grain growth. Zhang et al. (2006) proposed a total

Lagrangian multiscale formulation to analyze dislocation-induced plastic deformation in polycrystalline

materials. The thermo-mechanical analysis of periodic multiphase materials using asymptotic

expansion multiscale method was discussed by Zhang et al. (2006). Han et al. (2008) proposed a

statistical two-order and two-scale method for predicting the mechanics parameters of core-shell

particle-filled polymer composites. Moreover an iterative asymptotic expansion method for elliptic

eigenvalue problems with oscillating coefficients was presented by Mehraeen et al. (2009). In the

context of meshfree methods, Wang et al. (2003) developed an enriched interface meshfree method

for large deformation homogenization analysis of magnetostrictive particle-filled elastomers. More

recently Wu and Koishi (2009) introduced a meshfree procedure for the microscopic analysis of

particle-reinforced rubber compounds. A comprehensive review of multiscale asymptotic expansion

methods may be found from the recent monograph edited by Fish (2008).

The aforementioned works mainly concern three dimensional or two dimensional plane strain/

plane stress continuum problems. In this work the slab structure as shown in Fig. 1 is considered.

This type of structure only exhibits the in-plane periodicity and along the thickness direction there

are the traction free boundary conditions on the upper and bottom surfaces. It is noted although in

the global scale the slab can be treated as a plane stress state while in the local scale the

microstructure like the unit cell is completely three dimensional and consequently the local problem

can not be reasonably modeled under either plane stress or plane strain conditions which were well

discussed in existing literature (Hassani and Hinton 1998). Furthermore even the three dimensional

asymptotic multiscale modeling is also problematic since there is no periodicity in the thickness

direction and actually the thickness coordinate is in the global scale. Thus a consistent asymptotic

expansion multiscale method is necessary for this class of structures. In this study a special form of

asymptotic expansion is proposed for the asymptotic expression of displacement field. Subsequently

within the multiscale expansion framework the governing equations at macroscale and microscale
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are derived consistently and rationally. This formulation fully incorporates the in-plane periodicity

characteristic and free surface boundary conditions of the unit cell. Several typical examples are

considered to validate the proposed method. 

The layout of this paper is as follows. The formulation of the proposed multiscale method is

presented in section 2. In section 3 the variational formulation of the proposed unit cell problem and

its finite element discretization are discussed. Subsequently in section 4 the algorithm verification

and homogenization analyses are performed for various slab microstructures and the mutiscale

procedure is illustrated through a cantilever beam problem. Finally conclusions are drawn in section 5.

2. Multiscale formulation for slab structure

2.1 Asymptotic expansion of displacement field

In multiscale analysis the length scales associated with the macroscopic and microscopic material

behaviors need to be considered. Let’s denote the local (microscopic) coordinate system by

 and global (macroscopic) coordinate system by  which are shown in

Figs. 1 and 2, respectively. For convenience the planes of y1y2 and x1x2 are set to be the mid-plane

of the slab, while y3 and x3 denote the thickness direction. Thus for the slab structure considered

herein, the local and global coordinates are related as

(1)

where ε is a very small positive real number. It is noted that since the periodicity only occurs in the

in-plane dimensions and thus the out of plane direction, i.e., y3, is kept at the global scale, or there

are no distinction between the global and local scales in the thickness direction, say, x3 = y3. 

According to the multiscale theory by asymptotic expansion method (Bensoussan et al. 1978,

Hassani and Hinton 1998), the homogenization and localization process can be carried out within a

representative volume element, or a unit cell. As shown in Fig. 2 the definition of a unit cell is not

unique, i.e., unit cells I and II both are properly defined unit cells of the slab structure as shown in

Fig. 1. Here a unit cell of microstructure can be defined as

(2)
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Fig. 1 A slab structure with three dimensional heterogeneities
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where  and  denote the in-plane  and  dimensions of the unit cell and h is the thickness

of the slab. It is noted that the unit cell  and  and  denote the material

domains of inclusion and matrix, respectively. The boundary of the unit cell, i.e, , is the union of

three surface pairs  in each yi
-direction as shown in Fig. 2. 

To represent the in-plane only periodicity relationship, herein the following asymptotic expansion

of displacement field is proposed

;     (3)

where for brevity only first order expansion is considered without loss of generality. Thus according

to Eqs. (1) and (3), one has 

(4)

where the following relationship is used

(5)

Eq. (5) is exact in case that the fluctuating displacement  varies linearly with the thickness

coordinate y3 and this is a very reasonable hypothesis for slab or plate structures. It is also noted
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Fig. 2 Notations for unit cells



A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures 217

that Eq. (4) states that the gradient of a displacement component  with respect to the thickness

coordinate y3 all falls into the global scale, which perfectly represents the physical periodicity

happens only in the y1 and y2 directions.

Moreover from Eq. (1), one knows that if a function  depends on both the local and global

coordinates, i.e., , the following relationship holds

;     (6)

Subsequently by using Eqs. (4) and (6) the following equations of displacement gradients can be

readily obtained

;     (7)

2.2 Derivation of local and global problems

The local and global problems can be rationally derived from the three dimensional equilibrium

equation of heterogeneous media

;     (8)

where  denotes the stress tensor and the body force is ignored. The constitutive relationship is given by

(9)

with  being the fourth order elasticity tensor.

Substituting Eq. (7) into Eq. (9) yields

 ;

 (10)
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;     (14)

Due to the fact of , Eq. (14) implies the following three equations

;     (15)

;     (16)

;     (17)

From the positive definite property of the elasticity tensor and by using Eq. (11), Eq. (15) yields

(18)

Moreover, through substitution of Eq. (18) into Eq. (16) the local unit cell problem can be obtained

(19)

This unit cell problem is subjected to the periodic boundary conditions on the surrounding surfaces

(20)

and the traction free boundary conditions on the upper and lower surfaces

     on     (21)

with  being the outward surface normal of the corresponding upper and lower surfaces.  in Eq.

(20) represents the displacement of a specific reference material point, i.e., the surface centroid, on the

surrounding surfaces . Consequently the periodicity condition of Eq. (20) reduces to

the following constraints on the fluctuating displacement 

(22)

Finally a volume average of Eq. (17) over the unit cell gives the global equilibrium equation
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where <•> = (•)dΩ and the periodic properties and free boundary conditions over the
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3. Variational formulation and discretization of local problem

The variational form corresponding to the local unit cell problem of Eq. (19) can be stated as

(24)

with  denoting the virtual displacement. After the operation of integration by parts, Eq. (24) becomes

(25)

where use is made of the following relationship

(26)

Note here the traction free boundary conditions on the upper and lower surfaces are embedded into

the present formulation. Further substitution of Eq. (12) into Eq. (25) gives
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(30)

With Eqs. (28)-(30), Eq. (27) can be rewritten as

(31)

Introducing a standard finite element approximation with the three dimensional eight-node

hexahedral elements

     (32)

where , , are the conventional tri-linear shape functions (Hughes 2000), 
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plane shear mode. Subsequently one can solve the averaged stress field from the local problem of

Eq. (33) and obtain the macroscopic effective in-plane material properties

(37)

Remarks: The unit cell analysis discussed here can be combined with the conventional global

structural analysis to perform multiscale analysis. The global analysis is carried out by using the

standard finite element procedure based on the macroscopic equilibrium equation of (23) and the

homogenized material properties in Eq. (37), subsequently the macroscopic strain fields at given

positions can be passed into the unit cell to get the desired local information. 
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Fig. 3 Finite element discretizations for unit cells
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4. Numerical examples

4.1 Algorithm verification for homogeneous slab

To verify the proposed method, a homogeneous slab structure with the unit cell as shown in Figs.

1 and 2 is first considered. The material and geometry properties for this problem are:

EM = EI = 10 GPa, λ1 = λ2 = 0.2 m, h = 0.08 m, l = 0.04 m, and the Poisson’s ratio for both materials

is . Here the unit cell problem is analyzed to obtain the homogenized material

properties. Obviously the homogenized material constants for this problem should follow the plane

stress constitutive relationship. In this analysis the unit cells are dicretized with 

conventional eight-node tri-linear finite elements that are depicted in Fig. 3. The fluctuating and

total microscopic deformations of the unit cells are plotted in Figs. 4-6, which are obtained via three

strain-controlled analyses corresponding to the three deformation modes defined in Eq. (36). It is

noted that as expected the results show no difference between the unit cells I and II in this case.

The resulting homogenized material properties are obtained as

υ
M

υ
I

0.3= =

20 20× 8×

Fig. 5 Microscopic y2-tension deformations for homogenous material: (a) local fluctuating deformation, 
(b) total deformation 

Fig. 4 Microscopic y1-tension deformations for homogenous material: (a) local fluctuating deformation, 
(b) total deformation 
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(38)

Clearly the proposed method perfectly reproduces the analytical expressions for homogeneous plane

stress constitutive relationship.

4.2 Homogenization analysis for heterogeneous slab

The heterogeneous slab structure as shown in Fig. 1 is again considered. The geometric

information of the unit cells for this problem is the same as the previous example while the material

properties for the matrix and inclusion are: , , . The

corresponding volume fraction is 18%. The unit cells are also shown in Fig. 2 which have the finite

element partition listed in Fig. 3. The microscopic fluctuating and total deformations of the unit cell

I resulting from the prescribed in-plane tension and shear modes given in Eq. (36) are depicted in

Figs. 7-9, respectively. From the local fluctuating deformations of Figs. 7-9 it can be clearly seen

that the periodic characteristics of local fluctuating deformation occurs on the surrounding surfaces.

The computed homogenized material properties are

(39)

Moreover to examine the fact that the homogenized material properties are independent on the

choice of unit cells, the unit cell II as shown in Figs. 2 and 3 is also selected for homogenization

analysis. The corresponding local fluctuating deformations and the total deformations are plotted in

Figs. 10-12. The homogenized material constants are exactly the same as those in Eq. (39), i.e.,

. This confirms the fact that for different choice of unit cells gives no influence on the

homogenized material constants although the respective local fluctuating deformations are different.
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Fig. 6 Microscopic in-plane shear deformations for homogenous material: (a) local fluctuating deformation,
(b) total deformation 
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Fig. 7 Microscopic y1-tension deformations for unit cell I: (a) local fluctuating deformation, 
(b) total deformation

Fig. 8 Microscopic y2-tension deformations for unit cell I: (a) local fluctuating deformation, 
(b) total deformation 

Fig. 9 Microscopic in-plane shear deformations for unit cell I: (a) local fluctuating deformation, 
(b) total deformation 
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Fig. 10 Microscopic y1-tension deformations for unit cell II: (a) local fluctuating deformation, 
(b) total deformation 

Fig. 11 Microscopic y2-tension deformations for unit cell II: (a) local fluctuating deformation, 
(b) total deformation

Fig. 12 Microscopic in-plane shear deformations for unit cell II: (a) local fluctuating deformation, 
(b) total deformation 
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4.3 Homogenization analysis for heterogeneous slab with two-layer reinforcement

In this sub-section the thin slab structure with two-layer fiber reinforcement as shown in Fig. 13 is

considered. The geometric details of the selected unit cell are also listed in Fig. 13, where

 and this corresponds a volume fraction of 18% as well. The material properties are:

, , . The unit cell finite element mesh for this

problem is shown in Fig. 14. The local fluctuating deformations and total combined deformations

l 0.02m=

E
M

10GPa= E
I

100GPa= υ1 υ2 0.3= =

Fig. 13 Slab structure with two-layer reinforcement: (a) slab structure, (b) unit cell 

Fig. 14 Finite element unit cell discretization of the slab structure with two-layer reinforcement
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corresponding to the in-plane tension and shear modes are illustrated in Figs. 15-17. The

homogenized material constants for this type of microstructure are given by

Fig. 15 Microscopic y1-tension deformations for unit cell of the slab structure with two-layer reinforcement:
(a) local fluctuating deformation, (b) total deformation 

Fig. 16 Microscopic y2-tension deformations for unit cell of the slab structure with two-layer reinforcement:
(a) local fluctuating deformation, (b) total deformation 

Fig. 17 Microscopic in-plane shear deformations for unit cell of the slab structure with two-layer
reinforcement: (a) local fluctuating deformation, (b) total deformation 
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(40)

A comparison between Eq. (39) and Eq. (40) shows that although these two kinds of inclusion

have the same volume fraction but they yields different material properties due to the different

characteristics of the microstructures.

4.4 Multiscale analysis of cantilever beam problem

The cantilever beam problem as shown in Fig. 18 is analyzed here to illustrate the proposed

multiscale procedure. The cantilever beam is assumed to have the microstructure described in Fig. 2

with a thickness of  and thus the homogenized material constants in Eq. (39) are

employed for global structural analysis. Other geometric properties of the beam problem are taken

as follows: length , height . The beam is subjected to a parabolic vertical

traction with a total value of  at the free end. The uniform  finite element mesh

as shown in Fig. 19 is used to solve the global homogenized problem under plane stress assumption

and the stress results are plotted in Fig. 20. Subsequently the proposed multiscale method with unit

cell analysis is used to extract the detailed local stress information. The corresponding local stress

results at the four given locations, i.e., A, B, C, D points as indicated in Fig. 20 are clearly shown

in Figs. 21-26, where in each figure the first row shows the unit cell stress distribution and the

second row lists the stress solution of the half unit cell to gain a more clear looking at the stress

distribution in the inclusions. The results in Figs. 21-26 evince that much higher stress occurs in the

inclusion phase which can not be directly observed from the global structural analysis results as

shown in Fig. 20.

D
eff

2.2163 0.4975 0.0000

0.4975 2.2163 0.0000

0.0000 0.0000 0.5517

10GPa×=

h 0.08m=

L 20m= H 4m=

P 100KN= 20 4×

Fig. 18 Description of elastic cantilever beam problem

Fig. 19 Finite meshes for the cantilever beam problem
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Fig. 20 Global stress distributions for the cantilever beam problem: (a) σ11, (b) σ22, (c) σ12

Fig. 21 Local unit cell stress distribution of σ11 at points A and B
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Fig. 22 Local unit cell stress distribution of σ11 at points C and D

Fig. 23 Local unit cell stress distribution of σ22 at points A and B
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Fig. 24 Local unit cell stress distribution of σ22 at points C and D

Fig. 25 Local unit cell stress distribution of σ12 at points A and B
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5. Conclusions

An asymptotic expansion-based multiscale method was presented for analysis of thin slab or plate

structures which have irreducible three dimensional structures. The proposed method adopted a

special asymptotic expansion of the displacement field. The proposed asymptotic expansion of the

displacement field takes into account the in-plane periodicity and yields a rational and clean

formulation in which the thickness direction is treated globally. Thereafter the global and local

problems were deduced in a very consistent manner under the asymptotic expansion theoretical

framework. The global in-plane problem is the standard two dimensional plane stress problem while

the local unit cell problem is completely three dimensional and it represents the physics of the slab

structure, i.e., the thickness of the unit cell is the same as that of the structure. The local unit cell is

subjected to periodic boundary conditions on the in-plane surfaces and the free surface conditions

on the out of plane surfaces. Thereafter a variational formulation for the unit cell problem was

presented where the free surface conditions are imposed naturally. Moreover the strain-controlled

homogenization and the multiscale analysis procedure were discussed. 

To verify the proposed method, an example with homogeneous materials was first analyzed

through the present homogenization procedure and this led to a standard plan stress constitutive

relationship as expected. Subsequently the homogenization analysis of a two-phase fiber reinforced

slab structure was presented and the local fluctuating deformations and the combined total

deformations were also shown in details. Meanwhile it was shown that different choices of unit

cells yields identical homogenized material properties despite of the distinct local deformation

Fig. 26 Local unit cell stress distribution of σ12 at points C and D
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behaviors. Therefater a two-layer reinforced slab structure that has the same volume fraction with

the one-layer heterogeneous slab structure was studied and different material properties were

observed due to the different characteristics of respective microstructures. Finally the proposed

multiscale method was illustrated by solving a plane stress cantilever beam problem with heterogeneous

microstructures. 
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