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Abstract. In this paper, thermodynamical properties of crystalline silicon under strain are calculated
using classical molecular dynamics (MD) simulations based on the Tersoff interatomic potential. The
Helmholtz free energy of the silicon crystal under strain is calculated by using the ensemble method
developed by Frenkel and Ladd (1984). To account for quantum corrections under strain in the classical
MD simulations, we propose an approach where the quantum corrections to the internal energy and the
Helmholtz free energy are obtained by using the corresponding energy deviation between the classical and
quantum harmonic oscillators. We calculate the variation of thermodynamic properties with temperature and
strain and compare them with results obtained by using the quasi-harmonic model in the reciprocal space.

Keywords: modeling of materials; silicon; finite temperature; thermodynamical properties; strain
effects; Molecular Dynamics; Tersoff potential.

1. Introduction

Nanoelectromechanical systems (NEMS) are sensors, actuators, devices and systems with a
critical dimension ranging from a few nanometers to several tens of nanometers. They find wide-
spread applications as nanoactuators (Chau et al. 2003), nanotweezers (Boggild et al. 2001),
electrostatic switches (Li et al. 2007), etc. Even though NEMS can be designed using a variety of
materials, silicon is one of the most popularly used materials both as a substrate and as a key device
component because of its high stability under different conditions. Since NEMS can attain high
frequencies, undergo large deformations and operate under high temperature conditions, it is
important to clearly understand the thermodynamical and mechanical properties of silicon under
various conditions including variations in temperature, strain, etc. These studies can not only lead to
a better understanding of NEMS but also enable design optimization.

Various physical models and simulation techniques have been developed to understand the
material properties of nanostructures. First-principles quantum-mechanical method such as ab initio

local density functional technique (Wei et al. 1994) is one of the most accurate methods to predict
the material properties. However, the method is restricted to small system sizes and short simulation
times. Another class of methods that can be used to compute thermodynamical and mechanical
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properties are based on the theory of lattice dynamics. LeSar et al. (1989) proposed a local quasi-
harmonic model, which is a simple and an elegant model but neglects the interactions between
atoms. Based on the harmonic approximation of the Tersoff interatomic potential (Tersoff 1988), a
quasi-harmonic model in the reciprocal space (QHMK model, Zhao et al. 2006) has been used to
predict the thermodynamical properties of silicon at different temperature and strain conditions.
Since the method relies on a periodic boundary condition and harmonic approximation, the method
can be limited to bulk structures and moderate temperatures. Molecular dynamics (MD) method
relying on interatomic potential is one of the robust techniques to understand material behavior
because of its simplicity and universality. Even though MD simulations can be expensive compared
to lattice dynamics theories, when interatomic potentials are sufficiently well-calibrated and
accurate, MD can be a reliable method and is often used to understand fundamental issues
governing material behavior and response.

In this paper, thermodynamical properties such as the Helmholtz free energy and internal energy
when the silicon crystal is subjected to a compression/tension and a shear deformation are
calculated using classical MD open source code LAMMPS (Plimpton 1995) with the Tersoff
interatomic potential. As MD simulations obey the rules of classical statistical mechanics, they can
not accurately capture quantum effects, particularly at low temperatures. As a result, quantum
corrections are necessary to MD simulations in order to compare with experimental data and
quantum-mechanical calculations. We investigated the extensively used temperature rescaling
method (Wang et al. 1990) and found that although this technique can accurately predict the internal
energy and Helmholtz free energy for the quantum system under zero pressure conditions, it can not
directly capture all the quantum effects in the Helmholtz free energy at low temperature under
general strain conditions. We suggest an approach where the quantum corrections to the internal
energy and the Helmholtz free energy are obtained by investigating the corresponding energy
differences between the classical and quantum harmonic oscillators. The Helmholtz free energy is
then computed by the ensemble method (Frenkel and Ladd 1984).

The rest of the paper is organized as follows: in section 2, we describe MD simulations, free
energy calculations using the ensemble method, calculation of quantum corrections and the MD
simulations under strain. In section 3, thermodynamical properties of bulk silicon are presented. In
section 4, Helmholtz free energy and internal energy calculations of bulk silicon under two types of
strain are presented. The variation of pressure with temperature and strain is also shown. Finally,
conclusions are presented in section 5.

2. Methodology

2.1 MD setup

In this paper, all the MD simulations are carried out using the open source molecular dynamics
simulator LAMMPS. Tersoff interatomic potential is employed to determine the interactions
between silicon atoms. For both non-strain and strain cases, a silicon cubic structure of 216 atoms
(3 × 3 × 3 unit cells) with periodic boundary conditions is used. No significant size effects are found
when the results are compared with those from a silicon cubic structure of 512 or 1024 atoms.
Nose-Hoover thermostat (Hoover 1985) is employed to maintain the prescribed system temperature
for both NPT and NVT ensembles. The velocity-Verlet time stepping scheme is used with an
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integration time step of 1.0 fs. The center of mass of the system is fixed during the simulation to
neglect any translational movements. For each specified temperature, we first perform NPT
ensemble simulations to determine the zero pressure lattice constant. The simulations are run for
0.5 ~ 1.0 ns to obtain an equilibrium state and an additional 4.0 ~ 6.0 ns of simulations are
performed for time averaging. Next, NVT ensemble simulations are also performed using the lattice
constant obtained from NPT simulations for validation as the average pressure is approximately zero
within the statistical error. As a final step, NVT ensemble simulations are performed to compute the
Helmholtz free energy. The simulation time is around 5.0 ns with the starting 1.0 ns used for
equilibration of the system.

2.2 Free energy calculations

The basic output of most MD simulations is the phase-space trajectory {r N(t), p N(t)}, where r N(t)
and p N(t) are the time-dependent position and momentum vectors of each atom, respectively. The
physical properties of the system which are functions of r N(t) and p N(t), i.e., f (r N(t), p N(t)), can be
computed directly by evaluating their time averages. However, not all the properties of the system
can be measured directly from the phase-space trajectory e.g., free energy, entropy, chemical
potential, etc. can not be computed directly as these quantities are formally related to the accessible
phase-space volume and not the phase-space trajectory. One alternative is to transform these
properties, for example, free energy, into a function which can be evaluated using the phase-space
trajectory.

At zero pressure conditions, the Helmholtz free energy A is equal to the Gibbs free energy G and
the enthalpy H is equal to the internal energy E. Since the Gibbs free energy can be obtained by
directly integrating the thermodynamic relation

 (1)

the Helmholtz free energy can be easily computed. But this method is no longer valid under finite
pressure condition, e.g., when the system is under strain.

The ensemble method proposed by Frenkel and Ladd (1984) has been shown to be an accurate
and a robust method for free energy calculations (Lutsko et al. 1988). It is restricted to
homogeneous solid systems but does yield absolute free energies. The basic idea in the ensemble
method is to construct a reversible path from a state of known free energy to the solid phase under
consideration. The reference state adopted here is a collection of identical independent harmonic
oscillators (Einstein crystal) with the same structure as the solid under consideration. In this paper,
we consider the diamond structure crystalline silicon. In the ensemble method, the potential energy
of the system is modified by adding a parameter λ with the potential energy UE for the Einstein
crystal, i.e.,

Uλ = (1 − λ)U + λUE (2)

where  is the Tersoff potential energy computed by using the current atom positions of the

N atom system, α denotes the atom number, and Uα is the Tersoff potential energy for atom α. UE =
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oscillator strength. By slowly varying the parameter λ from 0 to 1, the modified potential energy Uλ

is switched from the Tersoff potential energy to the Einstein potential energy. The λ-dependent
Hamiltonian is then defined as

(3)

where pn is the momentum of the n-th atom and m is the atom mass. The derivative of the free
energy of the system with respect to the coupling constant λ is given by

(4)

where kB is Boltzmann’s constant, T is temperature,  is an average over the ensemble
generated by H(λ). By integrating Eq. (4), we obtain

(5)

where A1  Aλ = 1 is the analytical free energy of the reference Einstein crystal given by

(6)

and  is the Planck’s constant.
In this paper, we use Eq. (5) to calculate the Helmholtz free energy. The integration in Eq. (5) is

carried out using the 3-point Gaussian quadrature rule i.e., by numerically evaluating the ensemble
average via MD simulation at 3 different Gaussian points. We have verified that 3-point Gaussian
quadrature rule for this problem can provide reasonable accuracy. The oscillator strength κ can be
chosen as any constant value. However, a proper value of κ can ensure a small variance in free
energy and can also lead the system to reach its equilibrium state quickly (Lutsko et al. 1988). In
this paper, the oscillator strength κ is chosen such that the oscillation of the atoms from their
equilibrium lattice positions is approximately constant (Almarza 2007). Specifically, we use
κ = m 2, where  is the mean frequency obtained from the local quasi-harmonic model (LeSar et

al. 1989).

2.3 Quantum corrections for the classical MD simulations

Classical MD simulations obey the rules of classical statistical mechanics. Quantum corrections
are necessary when results from MD simulations are compared with results from experiments and
quantum simulations, especially for low temperature conditions. Considering a simple 1-D Einstein
oscillator as an example, Table 1 lists the expressions for various thermodynamical properties when
the oscillator is treated both as a quantum and as a classical model. It is clear from Table 1 that at T
= 0 K both the Helmholtz free energy AC and the internal energy EC of the classical model are zero.
However, the corresponding quantum energies AQ and EQ are not zero because of the quantum
effects at zero temperature. As a result, in order to compare the thermodynamical properties
predicted by classical MD simulations with quantum simulations, quantum corrections are required.
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Typically a temperature rescaling method (Wang et al. 1990) is employed to account for quantum
corrections in classical MD simulations. The basic idea in this method is to calculate a simulation
temperature TMD based on the real (given) temperature Treal such that the internal energy of the
classical system at TMD is equal to the internal energy of the quantum system at Treal. To account for
quantum corrections, classical MD simulations are then performed at TMD instead of Treal.
Considering a 1-D Einstein oscillator as an example, with the expressions for internal energy as
listed in Table 1, the temperature rescaling relation between TMD and Treal is given by

(7)

where  is the normal mode of the oscillator. The scaling relation between TMD and Treal
with / Å2 is plotted in the inset of Fig. 1. The results for the internal energy and the
Helmholtz free energy obtained with the quantum model, classical model and the classical model
with temperature rescaling are shown in Fig. 1 and Fig. 2. The results indicate that the internal
energy of the classical model with temperature rescaling matches with the quantum result. However,
in the case of Helmholtz free energy, a small deviation between the quantum result and the classical
result with temperature rescaling is observed at low temperatures. The temperature rescaling method
works effectively for internal energy as there exists a one to one mapping of the internal energy
between the classical model and the quantum model. However, in the case of the Helmholtz free
energy (see inset, Fig. 2), the maximum value predicted by the classical model is smaller than the
maximum value predicted by the quantum model. This means that a one-to-one mapping for
temperature rescaling does not exist for the Helmholtz free energy, especially in the low temperature
region. Even though the above discussion is based on a 1-D Einstein oscillator, we can expect
similar behavior when the temperature rescaling method is used to account for quantum corrections
in MD simulations of silicon structures based on the Tersoff interatomic potential.

At zero pressure condition, internal energy for the quantum system can be accurately obtained
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from the classical MD simulation with temperature rescaling method. The Helmholtz free energy
can then be calculated from the thermodynamic relation, Eq. (1). However, Eq. (1) is not suitable
when the material is under strain. As pointed out above, the Helmholtz free energy can not be
accurately predicted from classical MD simulation with temperature rescaling technique. In this
paper, we extract the quantum correction terms for both the internal energy and the Helmholtz free
energy from the energy deviation between the classical model and the quantum model of the
harmonic oscillators with the required normal modes obtained from the quasi-harmonic
approximation of the Tersoff potential (Zhao et al. 2006). With a quasi-harmonic approximation, 3N

normal modes ωn of the N atom system can be obtained by diagonalizing the 3N × 3N force

Fig. 1 Internal energy of a 1-D Einstein oscillator obtained with the quantum model EQ(Treal) (circle solid
line), the classical model EC(Treal) (diamond dash line) and the classical model with temperature
rescaling EC(TMD) (star solid line) (inset) Temperature rescaling relation

Fig. 2 Helmholtz free energy of a 1-D Einstein oscillator obtained with the quantum model AQ(Treal) (circle
solid line), the classical model AC(Treal) (diamond dash line) and the classical model with temperature
rescaling AC(TMD) (star solid line). (inset) Enlarged view of free energy at low temperatures
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constant matrix

 (8)

where U is the Tersoff potential energy for the whole system, α and β denote atom numbers, and i
and j denote Cartesian components. The Hamiltonian of the system can then be expressed as the
sum of the energies of 3N independent harmonic oscillators. Using the notation shown in Table 1,
when the silicon system is treated as the classical system, the Helmholtz free energy and the internal

energy can be defined as  and , respectively. When the silicon system is treated

as the quantum-mechanical system, the Helmholtz free energy and the internal energy can be defined

as  and , respectively. The quantum corrections for the Helmholtz free energy

Aqc and the internal energy Eqc are then obtained from the deviation between the two systems, i.e.,

(9)

 (10)

In this paper, we use the temperature rescaling method in classical MD simulations to obtain the
lattice constants. After the lattice constants are determined, we run the classical MD simulations for
each specified temperature. The Helmholtz free energy is computed by adding the quantum
correction obtained from Eq. (10) to the energy obtained from Eq. (5), which does not include
quantum effects. The internal energy is obtained from the time average of the total energy of the
system with the quantum correction given by Eq. (9).

2.4 Molecular dynamics simulations under strain

We perform MD simulations of bulk silicon under two types of strain: compression/tension and
shear. The strain is assigned to the system by modifying the initial configuration of the system with
the relation 

n
= FR

n
, where 

n
 is the atom coordinate with the specified strain, and F is the

deformation gradient. For example, as shown in Fig. 3 (a), the lattice with big symbols is the
configuration of the system with F11 = 1.15. In Fig. 3 (b), the lattice with big symbols is the
configuration of the system with F12 = 0.15. The lattice with small symbols in both figures is the
equilibrium configuration of the silicon structure without strain. Note that the deformed
configuration is no longer a cubic structure, but a parallelepiped structure. LAMMPS employs the
Parrinello-Rahman method (1980) to maintain both the volume and the shape of the parallelepiped
simulation box within the NVT ensemble simulations. The pressure component applied to the
system can be calculated as
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 (11)

where m is the atom mass, Ω is the system volume, D is the dimensionality of the system, i and j
denote the Cartesian components, and vα, rα and fα denote the velocity, position and force vectors
of atom α , respectively.

3. Results: bulk properties

In this section, we calculate several thermodynamical properties of bulk silicon using the MD
simulation technique described in the previous section. After the Helmholtz free energy is
calculated, the entropy can be computed using the expression S = (E − A) / T. Table 2 summarizes
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Fig. 3 (a) (001) projection of silicon structure under tensile deformation, F11 = 1.15 (large particle lattice) (b)
(001) projection of silicon structure with shear deformation, F12 = 0.15 (large particle lattice) The
lattice with smaller particles is the lattice free of deformation

Table 2 Thermodynamical properties of bulk silicon at different temperatures

Temperature (K)
Lattice Constant 

(Å)
Internal Energy 

(eV/atom)
Free Energy 
(eV/atom)

Entropy 
(J/mol-K)

0

This work 5.441 −4.564 −4.563 80.0

QHMKa 5.443 −4.563 −4.563 80.0

Ref MDb 5.440 −4.562 −4.552

300

This work 5.445 −4.530 −4.580 16.125

QHMK 5.446 −4.531 −4.584 17.125

Ref MD 5.449 −4.535 −4.590 19.048c

1500

This work 5.483 −4.228 −5.102 55.657

QHMK 5.489 −4.232 −5.083 54.732

Ref MD 5.479 −4.221 −5.112 58.1c

aQHMK Data from Zhao et al. (2006)
bMD Data from Porter et al. (1997)
cExperimental data from Barin and Knake (1973)
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the results obtained from MD simulations at 0 K, 300 K, and 1500 K. Two sets of comparison data
are also presented in the table. The lattice constants predicted in this work match with the published
MD data quite well. The maximum error is about 0.2%, which is within the statistical error.
Accounting for quantum corrections via Eqs. (9) and (10), we observe that at low temperatures, the
internal energy and the free energy match with the QHMK results quite well. At high temperature,
the anharmonicity becomes important. Since QHMK method can not capture any anharmonicity, but
MD can, we see a small deviation between the MD results with QHMK results at T = 1500 K.

4. Results: strain effects

In this section, we discuss the effect of strain on the thermodynamical and mechanical properties
of silicon by considering two types of strain. The first type of strain we consider is compression/
tension. To introduce compression/tension in the material along x-direction, the deformation gradient
F11 is varied from 0.85, which represents compression, to 1.15, which represents tension. Fig. 4 and
Fig. 5 show the variation of internal energy and Helmholtz free energy with temperature when the
silicon crystal is under compression/tension in the x-direction. The results from QHMK model are
also shown for comparison. We note that the MD results match well with the QHMK results. Fig. 6
shows the variation of pressure component Pxx with temperature when the crystal is under
compression/tension in the x-direction. For the temperature range considered, the absolute value of
Pxx appears to be smaller under tension than under compression, implying that silicon material is
softer under tension than under compression. When the material is under constant compression, the
value of Pxx decreases mildly with temperature indicating that the stiffness of silicon decreases at
high temperature under compression. Under tension, we observe that the stiffness of the material
does not change very much at high temperature. These observations are consistent with the results
presented earlier by Tang et al. (2006).

Fig. 4 Comparison of the internal energy with temperature for tension F11 = 1.15 (dash dot line, filled circle),
F11 = 1.075 (dash line, square) and compression F11 = 0.925 (solid line with a small filled circle,
diamond), F11 = 0.85 (dot line, triangle) of a bulk silicon crystal. The thick solid line is the internal
energy of bulk silicon without deformation. All the lines are from QHMK calculations All the symbols
are from MD calculations in this work. The error-bar from MD is within the symbol size
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The second type of strain we consider is shear. To subject the material under shear, the
deformation gradient F12 is varied from 0.0, implying no shear deformation, to 0.075 and 0.15,
which represent shear along the x-direction. Fig. 7 and Fig. 8 show the variation of the internal
energy and Helmholtz free energy with temperature when the crystal is under shear deformation.
The results from QHMK method are also shown for comparison. We again note that the results
from MD match quite well with the results from QHMK method. Fig. 9 shows the variation of
pressure component Pxy with temperature when the crystal is under shear deformation. We note that
Pxy decreases with the increase in temperature, implying that shear modulus of the material

Fig. 5 Comparison of the Helmholtz free energy with temperature for tension F11 = 1.15 (dash dot line, filled
circle), F11 = 1.075 (dash line, square) and compression F11 = 0.925 (solid line with a small filled circle,
diamond), F11 = 0.85 (dot line, triangle) of a bulk silicon crystal. The thick solid line is the Helmholtz
free energy of bulk silicon without deformation. All the lines are from QHMK calculations. All the
symbols are from MD calculations in this work. The error-bar from MD is within the symbol size

Fig. 6 Variation of pressure component Pxx with temperature for tension F11 = 1.15 (circle solid line),
F11 = 1.075 (square solid line) and compression F11 = 0.925 (diamond dash line), F11 = 0.85 (triangle
dash line). The error-bar is within the symbol size
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decreases with the increase in temperature. These observations are again consistent with those
reported in Tang et al. (2006).

5. Conclusions

In this paper, we presented results from MD simulations for Tersoff silicon at different
temperature and under two types of strain - compression/tension and shear. The Helmholtz free
energy is calculated by employing the ensemble method. We investigated the widely-used

Fig. 7 Comparison of the internal energy with temperature for shear F12 = 0.15 (dash dot line, circle) and
F12 = 0.075 (dash line, square). The thick solid line is the internal energy of bulk silicon without
deformation. All the lines are from QHMK calculations. All the symbols are from MD calculations in
this work. The error-bar from MD is within the symbol size

Fig. 8 Comparison of the Helmholtz free energy with temperature for shear F12 = 0.15 (dash dot line, circle)
and F12 = 0.075 (dash line, square). The thick solid line is the Helmholtz free energy of bulk silicon
without deformation. All the lines are from QHMK calculations. All the symbols are from MD
calculations in this work. The error-bar from MD is within the symbol size
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temperature rescaling method to account for quantum corrections in classical MD simulations and
we observed that it may not be accurate for Helmholtz free energy calculations at low temperatures.
We propose a method where the quantum corrections of both the internal energy and the Helmholtz
free energy are obtained from the deviation of the corresponding energy between the classical and
quantum harmonic oscillators with the required normal modes obtained from the quasi-harmonic
approximation of the Tersoff potential. We show that the computed Helmholtz free energies match
with the published QHMK results and the anharmonicity contribution is not significant on the
thermodynamial properties of bulk silicon at high temperature. Finally, using MD we also computed
the variation of different pressure components with temperature and strain and discussed how this
can effect the mechanical properties.
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