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Abstract. In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface
in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle
Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems
where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation
of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method,
the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the
derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the
nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in
comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and
benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge. 

Keywords: gas-liquid interface; discontinuous derivative; underwater explosion; smoothed particle
hydrodynamics; moving least squares.

1. Introduction

High accurate analyses of mechanical interaction between different phases, for example, fluid-

structure interaction (FSI), soil-structure interaction, two-phase flow, interfacial behavior of a

composite material, tool-rock interaction, etc., are important research subjects in order to elucidate

complex physical phenomena. In recent years, various simulation approaches have been developed

and applied for each interaction analysis (see de Borst et al. 2008, Jahromi et al. 2008, Rojek and

Oñate 2008). The present paper focuses on gas-liquid phase flow problems, especially underwater

explosion (UNDEX) problems. The UNDEX is caused by the detonation of a high explosive

charge. First the detonation-produced explosive gas expands into the surrounding water. Then

underwater shock wave arises and propagates in the water. Finally the underwater shock wave
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interacts with the nearby structure. It is very difficult to implement mesh-based method to analyze

the UNDEX problem because large deformation and inhomogeneity occur in the whole analysis

domain (see Liu and Liu 2003). On the other hand, the particle-based Smoothed Particle

Hydrodynamics (SPH) method by Lucy (1977) and Gingold and Monaghan (1977) has been applied

to UNDEX problems and its effectiveness has been shown by Liu et al. (2002), Liu et al. (2003)

and Kobashi and Matsuo (2005). However, the standard SPH method has two serious problems.

Firstly, the standard SPH method does not guarantee consistency when reproducing a polynomial

function. This often results in a severe accuracy reduction due to the boundary deficiency or

unbalanced particle distribution in a support domain (see Liu and Liu 2003). Secondly, when using

the SPH method to analyze UNDEX problems, numerical pressure oscillation arises in the domain

close to the gas-liquid interface. This oscillation is caused by the discontinuous derivative of

pressure at the gas-liquid interface. 

In this study, the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method

originally proposed in Dilts (1999, 2000) is applied to analyze UNDEX problems. The MLS

approximation can be found in Lancaster (1981) and is often used as an approximation in

methfree methods, such as Element-free Galerkin (EFG) method by Belytschko et al. (1994). The

MLS approximation with a linear basis function has 1st order consistency that is not always

maintained in the standard SPH method. In addition, Discontinuous-derivative Basis Function

(DBF) by Masuda and Noguchi (2006) is employed to introduce derivative discontinuity to the

MLS approximation. Although the normal velocity and the pressure are initially discontinuous on

the gas-liquid interface, they become continuous and only their derivatives become discontinuous

when the expansion process of gas begins. Therefore it is effective to use the MLS approximation

with DBF that is able to express derivative discontinuity of the physical quantities at the gas-

liquid interface. 

On the other hand, in order to deal with shock waves, Liu et al. (2003) proposed using the

Discontinuous SPH (DSPH) method, which was developed from the basis of Corrective Smoothed

Particle Method (CSPM) by Chen, Beraun and Carrney (1999). The Taylor series expansion in the

piecewise continuous subdomains on both sides of discontinuity is utilized in the formulation. Liu et

al. verified the effectiveness in one-dimensional shock problems, such as shock tube and

trinitrotoluene (TNT) slab detonation. However the extension to two-dimensional or three-

dimensional problems was referred as a future work and has not been seen yet. 

This paper is organized as follows: In Chapter 2, the governing equations for inviscid and

adiabatic flow are described. In Chapter 3, the MLS approximation with DBF is introduced briefly

along with the conventional approximation. It is also demonstrated that the MLS with DBF has a

remarkable capacity for reproducing a field function with derivative-discontinuity. In Chapter 4, the

MLS-SPH formulation and the leap-frog time marching are given. In Chapter 5, we deal with one-

dimensional shock tube problem to examine application of the DBF to the domain close to the

contact discontinuity of ideal gas. Though the velocity and the pressure are discontinuous at the

contact discontinuous face initially, only the derivatives become discontinuous as well as in the gas-

liquid interface case after the computation starts. In Chapter 6, we analyze one-dimensional

UNDEX of a TNT slab charge and two-dimensional UNDEX of a square TNT charge in a rigid

container to investigate the application of DBF to the domain near the gas-liquid interface. Finally,

This paper is concluded in Chapter 7. 



Gas-liquid interface treatment in underwater explosion problem 253

2. Governing equations

The fluid is assumed to be inviscid and adiabatic. The conservation laws of mass, momentum and

internal energy, and the equation of state are written as follows: 

Continuity equation: 

(1a)

Equations of motion: 

 (1b)

Energy Equation: 

 (1c)

Equation of state: 

p = p(ρ, e)  (1d)

where d / dt is the material time-derivative, ρ is the density,  is the gradient operator taken with

respect to the spatial coordinates, ν is the velocity, p is the pressure, e is the specific internal energy.

3. MLS approximation

3.1 Conventional MLS approximation

A support domain  of a filed point x is defined (see Fig. 1 (a)). The conventional MLS

approximation can be written as follows: 

 

  

=  (2)

where  is the field function,  is the approximate field function of  is the value

of node  is the coordinates of position vector, h corresponds to the smoothing

length in the SPH method, the radius of the influence domain is  is the weight

function,  is the polynomial basis vector,  is the MLS shape function and A(x) is the
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 (3)

The weight function  used in this study is the cubic spline function ( ) written as

dρ

dt
------ ρ∇ ν⋅–=

ρ
dν

dt
------ ∇ρ–=

ρ
de

dt
------ p∇ ν⋅–=

∇

Λ x( )

u x( ) uh x( )≅ w x x
J

h
J,–( )pT

x( )A 1–
x( )p x

J( ){ }u
J

J Λ x( )∈
∑=

φ
J
x( )uJ

J Λ x( )∈

∑

u x( ) uh x( ) u x( ) u
J,

J J 1 2 … N, , ,=( ) x
J,

κh
J

w x h,( ),
p x( ) φ

J
x( )

A x( ) w x x
J

h
J,–( )p x

J( )pT
x
J( )

J Λ x( )∈

∑=

w x h,( ) κ 2=



254 Gaku Hashimoto and Hirohisa Noguchi

 (4)w x h,( )

2

3
--- x

h
-----⎝ ⎠
⎛ ⎞

2 1

2
---

x

h
-----⎝ ⎠
⎛ ⎞

3

+–
x

h
----- 1≤⎝ ⎠
⎛ ⎞

1

6
--- 2

x

h
-----⎝ ⎠
⎛ ⎞–

⎩ ⎭
⎨ ⎬
⎧ ⎫

3

1
x

h
----- 2≤<⎝ ⎠

⎛ ⎞

0 2
x

h
-----<⎝ ⎠

⎛ ⎞
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=

Fig. 1 Support domains for a field point x
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The two-dimensional linear polynomial basis vector is expressed as

 

(5)

Moreover, by using the definition of  and , the xi-

derivative is written as

=

=  (6)

3.2 MLS approximation with DBF

The MLS approximation with DBF was initially proposed by Masuda and Noguchi (2006) to

express derivative discontinuity. In the paper, solid problems with material discontinuity were

analyzed using the EFG method. Fig. 1 (b) shows a discontinuous derivative surface in a support

domain  of a field point x.  is a point on the surface and the nearest to x. The tangent plane

 at the point  can be defined. By the tangent plane , the support domain  is

divided into two subdomains,  and  defined as 

     for  (7a)

     for  (7b)

c is the unit vector normal to the tangent plane  and located at the point . The tangent plane

f (y) can be written as 

 (8)

where the unit normal vector c is always chosen to satisfy the condition as

 (9)
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=  (10)

where the moment matrix  is

(11)

In this study, the transformation of coordinates is utilized in a two-dimensional problem to simplify

the algorithm and written as the following equation. 
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(15)

3.3 Comparison of MLS approximation with conventional SPH approximation

The above MLS approximations and the SPH approximation are compared to investiate the

reproducibility of a function with discontinuous derivative at a point x1 = 0.5. 

 (16)

The standard SPH approximation is written as follows: 

(17)

 (18)

where m is the mass, ρ is the density, W(x, h) is the smoothing function. In this study, the two-

dimensional smoothing function with the cubic spline weight function w(x, h) as written in Eq. (4)

is employed (see Liu and Liu 2003)

 (19)

Uniform nodal distribution ( ) is used (see Fig. 2). The smoothing lengths are

set to  ( ). Fig. 3 shows the conventional MLS shape function while

Fig. 4 shows the MLS shape function with DBF. These shape functions are defined at the node

x45 where the Cartesian coordinates are expressed as . Comparing with the

conventional MLS method, it is shown that the MLS shape function with DBF has the derivative

discontinuity on the straight line x1 = 0.5. 
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shown in Fig. 5 (a) with the exact values, while the approximate values of the x1-derivative 

are shown in Fig. 5 (b). The conventional SPH approximation gives poor accuracy due to the

truncation of the smoothing function by the boundary as mentioned in the textbook by Liu and Liu

(2003). Both results of the conventional SPH and the conventional MLS yield excessively smooth
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x1-derivative . 
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4. MLS-SPH (Moving Least Squares-Smoothed Particle Hydrodynamics) 

4.1 MLS-SPH formulations

When the MLS approximate equation is substituted for the governing equations in Eqs. (1a-d), the

following discretized equations at particles xI  are obtained. 

Continuity equation: 

 (20a)

Equations of motion: 

 (20b)

Energy equation: 

 (20c)

Equation of state: 

 (20d)

where  is the support domain of the particle. In addition,  corresponds to the Monaghan type

artificial viscosity in the SPH paper by Monaghan (1992), 
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Fig. 2 Distribution of nodes xI (I = 1, 2, …, 100) and derivative discontinuous line
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(21b)
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velocity between two particles, , , , ,

 and . 

 

4.2 Time marching

In this study, the leapfrog method is implemented because its efficiency is reasonable with respect

to accuracy and memory capacity in the time integration. At the first step the following equations at

particles xI  are computed. 

Update of density: 
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Fig. 4 Two-dimensional MLS Shape function with DBF and the derivative at xI (I = 45)
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Update of velocity: 

 (22b)

Update of specific internal energy: 

(22c)

Update of particle position: 

 

(22d)

 (22e)

where  is the time increment. At the n-th step the following equations at particles xI

 are computed and approximate solutions at each time step are obtained. 

Update of density: 
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Fig. 5 SPH approximation and MLS approximations of function and the derivative
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Update of particle position: 

 (23d)

 (23e)

5. Shock-tube problems (Contact discontinuity face of gas)

Shock-tube problems of ideal gas (air) with analysis domain  as shown in Fig.

6 are handled in order to investigate the effectiveness of the MLS-SPH method with DBF for the

contact discontinuity face. The equation of state for ideal gas is expressed as follows: 

 (24)
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are used in Case 1 and Case 2. Case 1 has been solved by several SPH researchers such as

Hernquist and Katz (1989), Liu et al. (2003), Hongbin and Xin (2005) and Sigalotti et al. (2006) for

verification of the method. On the other hand, Case 2 was initially solved by Sod (1978) and is

rarely solved by particle methods because of a more severe initial condition than Case 1. The total
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number of particles is 400 × 9 and the initial particle spacing is set to .

The time increment  and the smoothing lengths hI (I = 1, 2, , 3600) are constant throughout

the computation, and they are set to  (Case 1) and  (Case 2) and

 (I = 1, 2, , N) respectively. The artificial viscosity parameters are set as 

and . In this analysis, three different computational methods, i.e., the standard SPH

method, the conventional MLS-SPH method and the MLS-SPH method with DBF are compared.

The standard SPH formulation has symmetric property and has been utilized by Monaghan (1994),

Morris and Monaghan (1997), Liu et al. (2003), etc. The discontinuous derivative face as shown in

Fig. 1 (b) is assumed to be located in the middle of the edge particles with higher density and those

with lower density.

Fig. 7 shows the density distributions, the velocity distributions, and the pressure distributions at

t = 0.2s in Case 1. In the standard SPH method and the conventional MLS-SPH method, large

numerical oscillation arises in the domain near the contact discontinuity face. In the MLS-SPH

method with DBF, it is possible to suppress this numeric oscillation. Fig. 8 shows the particle

distributions in the interval  in the MLS-SPH method with DBF. It can be

confirmed that the particle distributions at t = 0.2s becomes dense in the compression part of gas
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Fig. 7 Density, velocity and pressure distributions at t = 0.2s in Case 1



264 Gaku Hashimoto and Hirohisa Noguchi

and sparse in the expansion part of gas. Fig. 9 shows the density distributions, the velocity

distributions, and the pressure distributions at t = 0.14s in Case 2. Only the results of the

conventional MLS-SPH method and the MLS-SPH method with DBF are compared because the

Fig. 8 Particle distributions in Case 1 (MLS-SPH with DBF)

Fig. 9 Density, velocity and pressure distributions at t = 0.14s in Case 2
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computation using the standard SPH method breaks down due to an enormous amplitude of

numerical oscillation. The MLS-SPH method with DBF can reasonably suppress the numerical

oscillation as well as in Case 1. Fig. 10 shows the particle distributions in the interval

 in the MLS-SPH method with DBF. The particle distributions at t = 0.14s form

sparse and dense domains in the expansion and compression part of gas respectively as well as in

Case 1. 

6. UNDEX problems (Gas-liquid interface)

UNDEX problems are analyzed in order to investigate the effectiveness of the MLS-SPH method

with DBF for discontinuous derivative on the gas-liquid interface. On the gas-liquid interface, it is

necessary to satisfy kinematical and dynamic conditions on the assumption of inviscid flow as

shown in Eq. (25). 

Kinematical condition: 

 (25a)

Dynamic condition (or traction equilibrium): 

 (25b)

where n is the unit vector normal to the gas-liquid interface. Because the normal component of

velocity is much larger than the tangent component near the gas-liquid interface, the velocity and

the pressure is assumed to be continuous in this study. However, the gradients of velocity and

pressure are discontinuous naturally. It is, therefore, effective to apply the MLS approximation with

DBF to the gradients of velocity and pressure in the governing equations. 

In this analysis, an artificial high explosive detonation model in Liu and Liu (2003) is adopted. In

this model, the detonation process is not directly considered and it is assumed that the gas begins to

expand when the computation starts. The initial difference of pressure at the interface between the

explosive gas and water is in the order of 109 Pa. 

0.1m x1 0.35m≤ ≤

n νgas⋅ n νl iquid⋅=

pgas pliquid=

Fig. 10 Particle distributions in Case 2 (MLS-SPH with DBF)
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The Jones-Wilkins-Lee (JWL) equation is used as the equation of state for explosive gas of TNT. 

 (26)

where η is the ratio of current density to initial density and it is defined as

 

(27)

The parameters in Eq. (26) are shown in Table 1. The following equation is also utilized as the

equation of state for water. 

 (28)

where µ is the ratio of current density variation to initial density and it is defined as

 (29)

Eq. (28) is applicable for η = 0.8 and the parameters are shown in Table 2. 

 The time increment ∆t is determined as the following equation with the Courant number C. 

 (30a)

 (30b)

where N is the total number of particles and  is defined as

 (31)

In this study, the Courant number is C = 0.3. The artificial viscosity parameters are set to αq = 1.0

and βq = 10.0. 
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Table 1 Parameters of equation of state for explosive gas (TNT)

Symbol Meaning Value

A Fitting coefficient 3.712 × 1011 Pa

B Fitting coefficient 3.21 × 109 Pa

R1 Fitting coefficient 4.15

R2 Fitting coefficient 0.95

ω Fitting coefficient 0.30
0
ρ Initial density 1.63 × 103 kg/m3
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6.1 UNDEX of a TNT slab charge

The analysis model of UNDEX of a TNT slab charge is shown in Fig. 11. The analysis domain is

defined as the interval of  with symmetric boundary at x1 = 0.0. A similar problem

using the same TNT slab, with a larger analysis domain of interval , was solved in

order to compare the pressure peak at different locations of the real and artificial detonation models

given in Liu and Liu (2003). In this study, the full interval of  is modeled in

order to avoid the treatment of symmetrical boundary condition. The total number of particles is

1000 × 9 and the minimum distance between neighboring particles is .

The smoothing lengths are constant and set to  in this analysis. Three different

computational methods, i.e., the standard SPH method, the conventional MLS-SPH method and the

MLS-SPH method with DBF are compared. In the MLS-SPH method with DBF,  on the gas and

liquid interface is defined as the midpoint between gas and liquid particles. 

Fig. 12 shows the density distributions, the velocity distributions, and the pressure distributions at

 and the gas-liquid interface exists at . The numerical pressure

oscillation arises at the gas-liquid interface in the result of the standard SPH method and the

conventional MLS-SPH method. Comparing the conventional MLS-SPH with the SPH, the

conventional MLS-SPH gives even worse results regarding the density and velocity. This results from

averaging or smoothing the physical quantities of particles on both sides of the interface in the SPH

formulation. On the other hand, the MLS-SPH method with DBF is able to remarkably suppress the

pressure oscillation caused by the interface as shown in Fig. 12 (c). However, slight numerical

oscillation near the underwater shock wave arises because the pressure discontinuity is not considered

there. It is necessary to investigate the use of a jump function for the shock wave in order to analyze

problems with a large pressure difference between the front and the rear of shock wave more

accurately. Fig. 13 shows particle distribution in the interval  in the MLS-SPH

0.0 x1 1.0m≤ ≤
0.0 x1 1.0m≤ ≤

1.0m– x1 1.0m≤ ≤

∆x1 ∆x2 .1.0 500⁄ m= =

h
I

2∆x1=

xd

I

t 1.2 10
4–×= x1 0.201m=

1.0m x1 1.6m≤ ≤

Table 2 Parameters of equation of state for water (µ < 0.8)

Symbol Meaning Value

α1 Fitting coefficient 2.19 × 109 Pa

α2 Fitting coefficient 9.224 × 109 Pa

α3 Fitting coefficient 8.767 × 109 Pa

b0 Fitting coefficient 0.4934

b1 Fitting coefficient 1.3937
0
ρ Initial density 1.0 × 103 kg/m3

Fig. 11 Analysis model of underwater explosion of a TNT slab charge
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method with DBF. The particle distributions at  form sparse and dense domains in the

gas expansion and water compression part of gas respectively. 

6.2 UNDEX of a square TNT charge

Fig. 14 shows an analysis model of UNDEX of a square TNT charge in a rigid container. The

effectiveness is verified in the two-dimensional problem. Fig. 15 shows liquid particles and virtual

fixed particles arranged near the rigid wall. When a liquid particle  approaches this virtual

particle , the repulsive force  is exerted on the liquid particle to prevent the liquid particle

from penetrating the rigid wall. The repulsive force  is the same as Liu et al. (2003) and defined as

 (32)

t 1.2 10
4–×=

x
I

x
J

fr

 I

fr

 I

fr

 I νa

2 rw

r
IJ

-----⎝ ⎠
⎛ ⎞ 12 rw

r
IJ

-----⎝ ⎠
⎛ ⎞ 6

–
⎩ ⎭
⎨ ⎬
⎧ ⎫xI

x
J

–

r
IJ( )

2
---------------      r

IJ
rw≥( )

0      r
IJ

rw<( )⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Fig. 12 Density, velocity and pressure distributions at t = 1.2 × 10−4s
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where , , and  is the average of the absolute value of velocities

expressed as

 (33)

r
IJ
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–= rw 0.5∆x1= νa

νa

ν
I

I 1=

N

∑

N
----------------=

Fig. 13 Particle distributions (MLS-SPH with DBF)

Fig. 14 Analysis model of underwater explosion problem of a square TNT charge
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where N is the total number of the gas particles, the liquid particles and the virtual particles. Fig. 16

also shows gas particles, liquid particles and interface nodes  located near the

gas-liquid interface. The interface node has connectivity between other nodes and represents the

geometry of the gas-liquid interface. When the DBF is applied to the domain near the gas-liquid

interface, it is necessary to find a point  and a normal vector cJ for a particle xJ. In this paper,

the interface node  that is the nearest from a particle xJ is regarded as . The positions of the

interface nodes are updated in according to the following equation. 

 (34a)

(34b)

where  is the support domain at the interface node . The unit normal vector  at the interface
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Fig. 15 Particle distribution near rigid wall
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node  is obtained from weighted average (see Fig. 17).

 (35)

The unit normal vector c J is defined as 

 (36)

where . 

The total number of internal particles is 200 × 200, the total number of virtual particles 1600 and

the total number of interface nodes is 160. The initial minimum distance between internal
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Fig. 16 Particle distribution near gas-liquid interface
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neighboring particles is set to . In this problem, as the density of the

particle distribution changes largely, the smoothing length changes according to the equation by

Benz (1989) at each time step. The Benz’s equation defines the material time-derivative of the

smoothing length as 

 (37)

where D is the dimension number and it is set up as D = 2 in this study. In this equation, the third

∆x1 ∆x2 1.0 200⁄ m= =

d h
I

dt
---------
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Fig. 17 Calculation of unit normal vector at an interface node xc
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Fig. 18 Time histories of gas bubble size
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invariant of the deformation gradient F is

approximated by the ratio of the current smoothing length h to the initial smoothing length 0h. 

 (38)det F
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Fig. 19 Particle distributions and pressure distributions (standard SPH) 
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The time marching of the smoothing length is based on the forward Euler scheme and written as
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Fig. 20 Particle distributions and pressure distributions (MLS-SPH with DBF)
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The initial smoothing lengths are set to . In this analysis, the standard SPH

method and the MLS-SPH method with DBF are compared because the computation of

conventional MLS-SPH method fails when an underwater shock wave reflects from the rigid wall. 

Fig. 18 shows the time histories of bubble size with the approximate solutions of MSC/Dytran

code in Liu, Liu, Lam and Zong (2003). The bubble size is the maximum value of the distances

between the center of analysis domain and each gas particle. The MSC/Dytran is a grid-based code

and the numerical solutions are obtained by the interpolation in cells. The gas bubble pulsation can

be confirmed in Fig. 18. The results of the standard SPH and the MLS-SPH with DBF are close to

that of the MSC/Dytran. Fig. 19 and 20 show the pressure distributions and the particle distributions

at ten representative instants until  in the underwater explosion process. The results

of the standard SPH and the MLS-SPH with DBF are shown in Fig. 19 and Fig. 20 respectively.

The interface nodes and the connectivity are also depicted to make the shape of the gas-liquid

interface clear in Fig. 20. When the underwater shock wave propagates, the gas particles are

distributed sparsely in the gas domain and the water particles become dense near the interface. As

results, large inhomogeneity arises in the gas and liquid domains near the interface. The internal gas

particles in the standard SPH is irregular, while those in the MLS-DBF is quite regular and stable

h
0 I

2 ∆x1 2 ∆x2= =

t 1.0 10
3–
s×=

Fig. 21 Pressure distributions (standard SPH)
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throughout the computation. The pressure oscillates near the interface in the standard SPH, while

the pressure changes smoothly there in the MLS-SPH with DBF. The shock wave reaches the

surrounding rigid wall at around the instant of . After the wave is reflected from the

rigid wall, the explosive gas bubble repeats the expansion and contraction. Similar results can be

found in Liu, Liu, Lam and Zong (2003). Figs 21 and 22 show the pressure distributions of the

standard SPH and the MLS-SPH with DBF at four representative instants until 

respectively. The pressure oscillation with relative large peak arises near the interface in the

standard SPH as shown in Fig. 21, where the nonphysical peak does not become small. On the

other hand, such nonphysical pressure is not seen and the pressure distribution remains smooth in

the MLS-SPH with DBF as shown in Fig. 22. 

7. Conclusions

In the present study, UNDEX problems were analyzed using the MLS-SPH method with DBF for

t 2.0 10
4–
s×=

t 4.0 10
4–
s×=

Fig. 22 Pressure distributions (MLS-SPH with DBF)
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the domain near to the gas-liquid interface in order to investigate discontinuous derivative on the

interface. In the analysis using the MLS-SPH with DBF, the numerical oscillation of pressure that

appeared in the standard SPH and the conventional MLS-SPH was suppressed sufficiently. The

effectiveness of using the MLS-SPH with DBF method for solving UNDEX problems can be

concluded because it was shown that solutions obtained when using the MLS-SPH with DBF

method were more accurate and stable near the gas-liquid interface as compared to using the

standard SPH or the conventional MLS-SPH. Extension to the three-dimensional analysis and

application to triple solid-liquid-gas interaction problems are future works to be conducted. 
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