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Abstract. A brief review of the research works on ground vibrations caused by trains moving in
underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel
interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a
homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite
harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio
and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground
vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to
excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the
ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence
of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion. 
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1. Introduction

With the rapidly growing population in metropolitan areas, mass rapid transit systems built

underground have emerged as an effective transportation tool for relieving the saturated ground

traffic in different parts of the world. However, the vibration resulting from the trains moving

underground, propagating through the soils to the ground, has sometimes reached the level which

can hardly be tolerated by the neighboring residents. As such, the problem of train-induced
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vibrations has received increasing attention from both engineers and researchers. For example, a

project named CONVURT (Clouteau 2005) was conducted by the European Union recently, aimed

at controlling vibrations from underground rail traffic. Within the frame of this project, Chatterjee et

al. (2003) and Degrande et al. (2006a) performed in-situ vibration measurements in Paris and

London, respectively. Meanwhile, a periodic coupled finite element-boundary element formulation

was proposed by Degrande et al. (2006b) for predicting free-field vibrations caused by metro trains

moving through the tunnel. By considering the periodicity of the geometry in the longitudinal

direction of the tunnel, the discretization of the elements is limited to a single-bounded cell. 

Previous researches conducted along these lines can be generally classified into four categories as

the analytical approach, field measurement, empirical prediction models and numerical simulation.

A lot of researches on the ground-borne vibrations due to trains moving in underground tunnels

were conducted by field measurement (Pan and Xie 1990) and empirical prediction models

(Kurzweil 1979, Melke 1988, Trochides 1991, Hood et al. 1996), due to the fact that field

measurement is the most reliable means for predicting absolute vibration levels in real situations

and that empirical prediction models provide easier and cheaper ways for estimating the emission of

vibration for underground railways in planning. However, neither of these approaches is suitable for

the parametric study of different situations. 

In contrast, analytical approaches can be employed to conduct a parametric study once the model is

established. However, owing to existence of the tunnel structure and variations in soil layers, the classical

elastic wave theory is not considered as an effective tool for treating the ground-borne vibrations

associated with the underground railway traffic. Earlier related works performed by analytical approaches

were usually conducted in the two-dimensional format, such as Balendra et al. (1991), Metrikine and

Vrouwenvelder (2000), among others. Recently, Forrest and Hunt (2006a,b) proposed a three-dimensional

analytical model for studying the train-induced ground vibration from a deep underground railway tunnel

of circular cross-section. The tunnel is assumed to be an infinitely long, thin cylindrical shell, whereas the

surrounding soil is modeled by means of the wave equations for an elastic continuum. 

Concerning the vibrations due to trains moving in underground tunnels embedded by multi layers

of soil deposits, numerical methods, such as finite element method, that are capable of simulating

the tunnel structure and variations in soil layers appears to be most favored by engineers. However,

traditional finite elements suffer from the drawback that the geometric radiation effect of the half

space cannot be properly modeled. Thus, other schemes have to be incorporated to simulate such an

effect. The viscous boundaries were used by Balendra et al. (1989) along with the finite elements to

investigate the vibration of a subway-soil-building system in Singapore. Thiede and Natke (1991)

used a similar scheme to study the influence of thickness variation of subway walls. Later, Chua et

al. (1995) used a 2D finite-element idealization with the assumption of plain strain to reanalyze the

same subway- soil-building system. The other popular scheme for modeling boundaries is the

boundary element method. Andersen and Jones (2006) used coupled finite element-boundary

element method to investigate the quality of the results gained from a two-dimensional model of a

railway tunnel through comparison with those gained from a three-dimensional model. Degrande et

al. (2006b) used a 3D periodic coupled finite element-boundary element formulation to study the

dynamic interaction between a tunnel and a layered soil due to a harmonic excitation on the tunnel

invert. In addition, Gardien and Stuit (2003) presented a finite element based modular model for

predicting the vibrations induced by underground railway traffic. Such a model consists of three

sub-models: the static deflection model, the track model and the propagation model. A parametric

study was also performed to identify several factors that may affect the accuracy of the proposed
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method. Another scheme for simulating the semi-infinite boundary is the infinite element method,

which has been successfully applied to problems related to ground vibration induced by traveling

trains on the ground surface (Yang et al. 1996, Yang and Hung 2001).

From the review given above, we realize that the previous studies on ground-borne vibrations

associated with the underground railway traffic are voluminous. However, most of these studies

were performed for a specific case, rather than on the fundamental effects of soil and tunnel

properties on ground vibrations. To fill such a gap, an extensive parametric study will be conducted

in this paper to identify the key parameters that may affect the ground vibrations caused by trains

moving through the underground tunnels. 

Basically, there are three ways for modeling the half-space problems: three-dimensional (3D)

modeling, 2D modeling, and 2.5D modeling. According to the research done by Andersen and Jones

(2006) for 2D and 3D combined finite element and boundary element analyses for railway tunnel

structures, although 3D models are required for absolute predictions, the two-dimensional model

provides results that qualitatively agree with those of three-dimensional models at most frequencies.

Consequently, for the soil-tunnel interaction problems of which the qualitative behavior, rather than the

quantitative behavior, is of primary concern, a 2D model is considered sufficient. For the above

reasons, as well as for the sake of reducing computational time, the 2D finite/infinite element approach

proposed by Yang et al. (1996) will be adopted to investigate the wave propagation behavior of a soil-

tunnel interaction system due to trains moving in underground tunnels in the present study. With this

approach, the soil-tunnel system is divided into two regions, i.e., the near field and far field (Fig. 1).

The near field, including the loads and other geometric/material properties, is simulated by finite (Q8)

elements, and the far field covering the soils with infinite boundary by infinite elements. By such a

combination, the inherent drawback of the finite element method in simulating the radiation damping

for waves traveling to infinity can be overcome. Moreover, the infinite elements can be easily

incorporated in existing finite element programs for structures, which, therefore, is likely to be favored

by most practicing engineers. Factors to be considered in the present parametric study include the soil

stratum depth, damping ratio and shear modulus of the soil with or without the existence of a tunnel,

and the properties and location of the tunnel structure. The results to be presented are the vibrations in

frequency domain for different locations.

2. Problem formulation and basic assumptions

The problem to be considered is schematically shown in Fig. 1. The near field enclosing the

Fig. 1 Schematic of the finite/infinite element approach
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tunnel is represented by finite elements, and the far field with infinity boundary by infinite elements

to be summarized below. Plane strain conditions are assumed for the two-dimensional profile, and

the train loads moving in the tunnel are modeled as harmonic line loads. Besides, hysteretic

damping is assumed for the soil that is modeled as an isotropic viscoelastic medium.

Owing to the fact that finite elements are available in most textbooks, only the infinite element to

be used will be summarized herein. The infinite element shown in Fig. 2 with the global

coordinates (x, y) and local coordinates (ξ, η) can be regarded as a variant of the quadratic 8-node

(Q8) element. The coordinates (x, y) of a point within the element can be related to those of the

nodal points as:

(1)

where the shape functions N' are assumed to be linear in ξ and quadratic in η, i.e.,

(2)

Similarly, the displacements (u, v) of a point within the element can be interpolated from the

nodal displacements of the element as:

(3)

where the shape functions Ni are

(4)

The function P(ξ) in Eq. (4) is known as the propagation function, 
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Fig. 2 Infinite element: (a) global coordinates, (b) local coordinates
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where αL denotes the displacement amplitude decay factor to account for the geometric attenuation,

and kL the wave number of the waves traveling outward. 

The propagation function P(ξ) is the quintessence of infinite element, which allows the wave to

travel through the boundary and decay geometrically. Some guidelines for determining the wave

number kL and the amplitude decay factor αL for infinite elements located in different regions of the

half space under different types of loadings, as well as the dynamic condensation procedure that

makes the finite/infinite element mesh frequency-independent, are available in Yang et al. (1996).

By assuming both the loading and displacement to be of the harmonic type, one can derive the

equation of motion for the finite/infinite element system under a particular excitation frequency ω as

 (6)

where {∆} and {F} denote the amplitudes of the nodal displacements and applied loads,

respectively, and [M] and [K] are the stiffness and mass matrices of the system. As was stated

previously, the near field of the half space, including the tunnel structure, is modeled by the finite

(Q8) elements and the far field with infinite domain by the infinite elements. By the conditions of

compatibility and equilibrium at the nodal points of the system, the mass and stiffness matrices for

all the finite and infinite elements can be assembled to form the structural matrices and thus the

equations of motion for the entire soil-tunnel system can be established and solved. 

3. Basic considerations in parametric studies

In our analysis, a unit harmonic line load exp(iω t) will be applied at a certain depth below the surface

to simulate the action of the moving train. With the finite/infinite method described, the influence of

varying parameters upon the vibration of soils and tunnel will be studied. To focus on the effect of the

tunnel structure, two structural configurations will be considered, namely, a half space without a tunnel

(Fig. 3a), and a half space with a circular tunnel of concrete lining (Fig. 3b). Later, a third configuration

will be added by letting the tunnel consist of material same as the surrounding soil, resulting in the so-

called “circular hole”. For each configuration, two different soil conditions will be considered, i.e., a

homogeneous half-space and a soil deposit overlying an elastic half-space or a bedrock. 

The properties adopted for the top soil layer of both structural configurations are: elastic modulus Es =

3 × 107 N/m2, Poisson’s ratio υ = 0.3, density ρ = 1,900 kg/m3, and material damping ratio β = 0.05.

Accordingly, the shear wave velocity of the soil is Cs = 77.93 m/s, and the compressional wave velocity

ω
2

M[ ]– K[ ]+( ) ∆{ } F{ }=

Fig. 3 Schematic of problem: (a) with no tunnel, (b) with a tunnel
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is Cp = 145.79 m/s. For the configuration in Fig. 3(b), the material properties of the concrete tunnel

lining are: elastic modulus Ec= 2.5 × 1010 N/m2, Poisson’s ratio υc = 0.2, density ρc = 2,400 kg/m3, and

material damping ratio βc = 0.02. The centroid of the tunnel is 15 m below the ground surface. The

inner diameter of the tunnel is 5.5 m and the thickness of the tunnel lining is 0.25 m. The properties

of the soil and tunnel adopted herein are obtained from one site of the Taipei MRT System.

The mesh to be used in this paper is shown in Fig. 4, in which only half of the system

(width = 30 m, depth = 32 m) is modeled due to symmetry. The far field is modeled by infinite

elements and the near field by Q8 elements. The element sizes shown in Fig. 4 were generated to

meet the requirements for simulating the highest frequency of loading considered (20 Hz), namely,

the maximum element size (L) and minimum mesh extent (R) were selected such that L ≤ λs / 6 and

R  0.5λs, where λs is the shear wave length of soil corresponding to the highest frequency

considered (Yang et al. 1996). In terms of the accuracy and efficiency of computation, modeling

with such meshes appears to be most economic, which thus will be adopted throughout the

numerical studies. Since the vertical displacements are much higher than the horizontal

displacements for most cases studied, only the vertical displacements V will be presented, which

will be multiplied by the shear modulus G of the soil to make the results independent of the latter.

The frequency range considered in current study is from 0 to 20 Hz because for vibrations with

frequencies higher than 20 Hz, their high attenuation rate will make their amplitudes on the far-field

ground surface negligible as compared with those of lower frequencies. However, the results to be

presented may cover a range of frequencies smaller than 20 Hz to make the graphs more legible.

4. Ground vibrations due to an underground line load

The first problem considered is an elastic half-space subjected to a unit harmonic line load

exp(iωt) acting at a depth h (m) from the surface as shown in Fig. 3(a). 

4.1 Effect of loading depths for homogeneous elastic half-space

The vertical displacements of various points on the ground surface due to different loading depths

Fig. 4 Finite and infinite element mesh: (a) with no tunnel, (b) with tunnel
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were first conducted. Fig. 5 shows the responses for various observation points on the ground

surface vs. the excitation frequency f = ω / 2π of the harmonic line load applied at different depths

h. As can be seen, for the case with the load applied on the ground surface (h = 0 m), as indicated

by Fig. 5(a), larger decaying rate can be observed for observation points closer to the source. For

the cases with the load applied underground (h > 0), the decaying rate of the maximum ground

displacement at each point becomes generally mild. In addition, some higher frequency vibrations

can be observed for farther observation points, especially for larger loading depths h. As such, for

the case with h > 0, the increase in distance x does not always lead to a decrease in the vibration

amplitude for some frequencies. The other observation is that when the loading is located at h = 10

m below the ground surface, the amplitude of the response at the origin reduces by more than 50%,

compared with the case where the load is applied at the origin, as revealed by Figs. 5(a) and (b).

Further increase in the depth of the loading point results only in slight difference in the surface

response, as can be seen from Figs. 5(b)-(d).

The frequency contents at the origin and loading point for different depths of loading were plotted

in Figs. 6(a) and (b), respectively. From Fig. 6(a), we observe that the response amplitude decreases

with the increase in the depth of loading for frequencies less than 6 Hz. For frequencies higher than

6 Hz, the response is rather insensitive to the variation in the depth h of loading. For the responses

at the loading point, as indicated by Fig. 6(b), a clear resonance frequency can be observed for the

case with h > 0, and the resonance frequency decreases as the loading depth h increases.

Fig. 5 Vertical displacements of ground surface for various loading depths (homogeneous half-space) for: (a)
h = 0 m, (b) h = 10 m, (c) h = 15 m, (d) h = 20 m
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4.2 Effect of shear modulus ratio of soil layers

Consider the case of a soil layer with thickness H = 30 m and shear modulus G1 superposed on an

elastic half space with shear modulus G2, where G1 is calculated from the standard soil properties

given previously. Assume that the load is applied at a depth of h = 15 m. The surface responses

computed for the origin O and a point with distance x = 30 m have been plotted in Figs. 7(a) and

(b), respectively, for different shear modulus ratios: G1/G2 = 1.0, 0.5, 0.25, 0.05, 0.0, where the

condition G1/G2 = 0 implies that a soil layer is deposited on the top of the bedrock, and the

condition G1/G2 = 1, a homogeneous half space. The other conditions with G1/G2 < 1 imply that the

upper layer soil is softer than the lower one. The results indicate that there is no resonance for the

homogeneous case (G1/G2 = 1), but some resonance takes place as the shear modulus ratio G1/G2

decreases and approaches zero.

The above phenomenon can be explained as follows. For the case with a bedrock, incident body

waves (i.e., compressional waves and shear waves) will be reflected by the rock surface. As a

result, resonance occurs when the frequency of the soil layer equals that of the excitational force.

According to Wolf (1985), for a single homogeneous soil layer, the resonance frequency of the

Fig. 7 Vertical displacements of surface points vs. shear modulus ratio of soil layer (h = 15 m): (a) at origin
O, (b) at x = 30 m

Fig. 6 Vertical displacements of soils due to loads acting at various depths (homogeneous half-space): (a) at
origin O, (b) at the loading point
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vertical incident compressional waves is:

(8)

and the resonance frequency of the vertical incident shear waves is:

(9)

where Cs and Cp denote the velocities of the shear waves and compressional waves, respectively,

and H is the thickness of the soil layer. The vertical vibration concerned herein results mainly from

the compressional waves, for which the resonance frequency should be slightly smaller than fp and

greater than fs. As shown in Fig. 7(a) for the origin, the primary resonance frequency for the case

G1/G2 = 0 is about 1.2 Hz, which is close to the value predicted using Eq. (8) by letting n = 1.

Although a secondary resonance can be observed for the frequency near 3.6 Hz, the resonance peak

is rather small compared with the primary resonance peak. For observation points with larger

distances, e.g., for x = 30 m as shown in Fig. 7(b), the cutoff frequency of 1.2 Hz can be clearly

observed, i.e., no waves with a frequency lower than 1.2 Hz can propagate outward to such a

distance as x = 30 m for the case with a bedrock (G1/G2 = 0.0). Other resonance frequencies around

3.6 Hz and 6 Hz can also be clearly observed from Fig.7 (b).

Another observation from Fig. 7 is that resonance becomes more pronounced as the shear

modulus ratio G1/G2 decreases, as indicated by the increasing peak amplitude. This is due to the

difference in the energy proportions of refracting and reflecting waves on the interface caused by

impedance mismatch of adjacent soil layers. For the case with G1/G2 = 0.0, the peak amplitude

reaches the highest due to total reflection. 

4.3 Effect of loading depth for the case of a soil layer resting on a bedrock

For a soil stratum of thickness H = 30 m, Figs. 8 (a)-(d) show the surface displacements for

different loading depths h. Except for the occurrence of the first resonance frequency, the trend of

variation of the surface displacement is similar to that for the homogeneous half space in Fig. 5.

For the loading point located beneath the surface, some higher frequencies of vibration can be

observed for points of observation with larger distances, i.e., with larger x. Besides, an increase in

the loading depth makes the higher mode resonance frequency of the soil layer more visible. The

same phenomena can also be observed from Fig. 9, which shows the frequency content at the origin

and at the loading point for the different depths of loading. As can be seen, the first resonance peak

of the soil layer decreases dramatically as the loading depth increases, for both the origin and the

loading point. On the contrary, as the loading gets deeper, the amplitude for the higher frequencies

becomes more significant compared with that of the first peak. The difference in resonance peaks

for different loading points can be partly attributed to the fact that the loading applied at certain

depths may activate soil layer vibration of some specific frequencies easier than the others.

4.4 Effect of depth of soil stratum

Consider the case where the load is applied at the depth of h = 15 m, but with different depths H

for the underlying rock. The maximum surface displacements computed have been plotted with

fp 2n 1–( )
Cp

4H
-------=

fs 2n 1–( )
Cs

4H
-------=
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respect to the frequency for different depths H and different surface points x in Figs. 10. As can be

seen, a deeper bedrock is accompanied by a smaller resonance frequency, but a larger peak.

Moreover, the resonance frequency of each point on ground surface is the same for the bedrock of

the same depth. For the current case with h = 15 m, the primary resonance frequencies computed

from Eq. (8) for H = 20, 25, and 30 m are 1.8, 1.5, and 1.2 Hz, respectively, in close agreement

with those shown in Fig. 10. Another observation from Fig. 10 is that although the primary

resonance peak increases slightly as the rock depth increases, the secondary resonance frequency

becomes less visible. Besides, for an observation point at a larger distance, e.g., for x = 30 m as

Fig. 8 Vertical displacements of ground surface for various loading depths (stratum thickness H = 30 m) for:
(a) h = 0 m, (b) h = 10 m, (c) h = 15 m, (d) h = 20 m

Fig. 9 Vertical displacements of soils due to loads acting at various depths (stratum thickness H = 30 m): (a)
at origin O, (b) at the loading point
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shown in Fig. 10(d), the responses for the frequencies less than the first resonance frequency or

cutoff frequency become insignificant.

4.5 Effect of soil damping ratio 

With the load applied at the depth of h = 15 m, Figs. 11 and 12 show the effect of the soil damping

ratio on the surface displacement for a soil deposit overlying the bedrock (H = 30 m) and homogeneous

half-space, respectively. For the case of a bedrock (Fig. 11), a larger soil damping ratio is accompanied

by a smaller peak, but no change in the resonance frequency. Meanwhile, the resonance frequencies

predicted by Eq. (8) for n = 1 to 8 can all be observed from Fig. 11 for the case of zero damping. For

the case of homogeneous half-space (Fig. 12), no resonance frequency is observed for the soil, but a

larger damping ratio generally results in a smaller response. Another phenomenon to be noted in Fig. 12

is that although no natural frequency exists for a homogeneous half-space, some peaks can still be

observed in Fig. 12, especially for the case at x = 20 m and of zero damping.

5. Ground vibrations due to a line load acting in a tunnel

Consider the 2D soil-tunnel profile subjected to a unit harmonic line load exp(iωt) at the bottom

central point of the tunnel, which has a depth h from the ground surface (Fig. 3b).

Fig. 10 Vertical displacements of surface points for soil strata of various thicknesses: (a) at origin O, (b) at x
= 10 m, (c) at x = 20 m, (d) at x = 30 m
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5.1 Effect of existence of tunnel structure

The effect of tunnel structure on the ground vibrations will be investigated for the two cases: (a) a

homo-geneous half-space and (b) a soil layer overlying a bedrock. Three different configurations are

considered, i.e., without a tunnel (Fig. 3a), with a circular tunnel of a 5.5 m internal radius with

concrete lining (Fig. 3b), and with a circular tunnel of 5.5 m internal radius but no concrete lining

(referred to as a “circular hole”). For all these configurations, a unit harmonic line load is applied at

a depth of h = 17.75 m below the ground surface. The analysis results for a homogeneous half-space

and a soil layer with thickness H = 30 m overlying the bedrock are shown in Figs. 13 and 14,

respectively, where parts (a) to (c) show the results for three surface points and part (d) the loading

point. 

For both the homogeneous half space and a soil layer overlying the bedrock, only slight difference

can be observed for the surface displacements between the configurations of a circular tunnel and

no tunnel, but for the loading point, the displacement amplitudes for the configuration with tunnel

are much lower than that for the case with no tunnel. This reason for the similar surface responses

observed for both configurations with and without tunnel is that the stiffness of the tunnel lining

somehow compensates for the loss of stiffness due to excavation of the circular hole.

Fig. 11 Vertical displacements of surface points for various damping ratios (stratum thickness H = 30 m): (a)
at origin O, (b) at x = 20 m 

Fig. 12 Vertical displacements of surface points for various damping ratios (homogeneous half-space): (a) at
origin O, (b) at x = 20 m
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Concerning the effect of circular hole, for the homogeneous half space the existence of a circular

hole does not change the surface responses significantly (Fig. 13), However, for the case with a

bedrock (Fig. 14), the primary resonance peak of the surface displacement for the configuration

with a circular hole is much less than that with no tunnel. On the contrary, the displacement

amplitude at the loading point for the configuration with a circular hole is much higher than the

other two configurations. 

By comparing the vertical displacements at different points inside the tunnel, as indicated in Fig.

4(b), with that of the origin O in Fig. 15, the effect of the concrete tunnel becomes obvious. For the

case with a bedrock, as shown in Fig. 15(b), the response at the bottom C of the tunnel is

drastically amplified at the second resonance frequency near 3.6 Hz, compared with that at the

origin O. The response at Point B inside the tunnel also has a similar trend, but with a smaller

amplitude. Unlike Points B and C, the response at Point A (i.e. top of the tunnel) is generally

similar to that at the origin O. 

5.2 Effect of thickness of tunnel walls

By varying the thickness of concrete lining of the tunnel, the vertical displacements of Points O,

A, B and C are plotted in Figs. 16 (a)-(d), respectively. Obviously, the effect of thickness of tunnel

walls is drastically different for different observation points. For instance, for Points O (origin) and

A (top of tunnel), the increase in tunnel thickness will result in increase of the amplitude of vertical

Fig. 13 Vertical displacements for various structural configurations (homogeneous half-space): (a) at origin O,
(b) at x = 15 m, y  = 0 m, (c) at x = 30 m, y = 0 m, (d) at the loading point (x = 0 m, y = 17.75 m)
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displacement. However, for Point C (bottom of tunnel), the increase in tunnel thickness is

accompanied by a rather large reduction in displace-ment amplitude. For Point B (side of tunnel),

the first resonance peak increases with an increase in the tunnel thickness, while for the second

resonance peak, the reverse is true.

Fig. 14 Vertical displacements for various structural configurations (stratum thickness H = 30m): (a) at origin
O, (b) at x = 15 m, y = 0 m, (c) at x = 30 m, y = 0 m, (d) at the loading point (x = 0 m, y = 17.75 m)

Fig. 15 Vertical displacements of various observation points: (a) homogeneous half-space, (b) stratum
thickness H = 30 m
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5.3 Effect of shear modulus ratio of soil layers

Consider the case of a soil layer with thickness H = 30 m and shear modulus G1 superposed on an

elastic half space with shear modulus G2 as shown in Fig. 3(b). The vertical responses computed for

the ground surface at the origin O and at loading point (Point C) inside the tunnel have been plotted

in Figs. 17(a) and (b), respectively, for different shear modulus ratios. Again, the condition G1/

G2 = 0 implies a soil layer deposited over a bedrock, and the condition G1/G2 = 1, a homogeneous

half space. The other conditions with G1/G2 < 1 imply softer upper layers. 

Similar to the trend observed on Fig. 7(a) for the case with no tunnel, Fig. 17(a) reveals that no

resonance is observed at the origin O for the homogeneous case, i.e., with G1/G2 = 1, but as the

shear modulus ratio G1/G2 decreases and approaches zero, some resonance peaks may occur.

Similar phenomenon occurs at Point C, namely, the resonance is not obvious for the homogeneous

case with G1/G2 = 1. But as the shear modulus ratio G1/G2 decreases and approaches zero, meaning

that the upper soil layer is getting softer than the lower one, both the first and second resonances

become more pronounced.

5.4 Effect of depth of bedrock

Let us investigate the effect of depth H of the bedrock. From Fig. 18, we observe that for both the

origin O and at distance of x = 20 on the ground surface, the primary resonance peak increases as

the bedrock depth H increases, and the resonance frequencies are in consistent with that shown in

Fig. 16 Vertical displacements of different observation points for various tunnel thicknesses at: (a) origin O,
(b) Point A, (c) Point B, (d) Point C 



172 Y. B. Yang, H. H. Hung and L. C. Hsu

Fig. 10. Another observation Fig. 18(b) is that as the rock depth decreases, the second resonance

peak becomes more visible.

5.5 Effect of elastic modulus ratio of soil/tunnel 

Let us focus on the relative hardness of the soil with respect to the tunnel structure. Again, a soil

stratum of thickness H = 30 m lying on the bedrock is assumed. The properties of the tunnel section

are the same as those used previously. Three elastic modulus ratios Es/Ec are considered for the soil

relative to the concrete tunnel: 0.001, 0.005 and 0.01. By selecting the elastic modulus of the

concrete tunnel Ec as 2.5 × 1010 N/m2, the elastic modulus of the soil Es is found as 2.5 × 107,

1.25 × 108, 2.5 × 108 N/m2. Correspondingly, the speeds of compressional waves are 133.1, 297.6

and 420.9 m/s, and the primary resonance frequencies computed from Eq. (8) are 1.11, 2.48 and

3.51 Hz, respectively. 

As can be seen from Fig. 19, the primary resonance frequency of the soil layer for both the origin

O and at Point with x = 20 m corresponds very well to those predicted by Eq. (8), which increases

as the soil elastic modulus increases. Noteworthy herein is the fact that the responses shown in Fig.

19 have been multiplied by the shear modulus G of the soil layer, so that the real responses for soil

Fig. 17 Vertical displacements of different observation points for various shear modulus ratio of soils: (a) at
origin O, (b) at Point C

Fig. 18 Vertical displacements of different observation points for bedrock of various depths: (a) at origin O,
(b) at x = 20 m, y = 0 m
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with lower value of elastic modulus ratio, e.g., Es/Ec = 0.001, are higher than that of Es/Ec = 0.01 by

ten times roughly. Therefore, the elastic modulus ratio of soil is the key factor for the absolute value

of the response, i.e., higher ground vibrations will be induced by softer soil layers. 

6. Concluding remarks

In this paper, the finite/infinite element approach has been employed to investigate the vibration

of a soil-tunnel interaction system induced by a harmonic line load on the tunnel. From the

parametric study, we found that the vibrations on the ground surface mainly depend on the soil

properties and the tunnel depth. However, the responses on the tunnel structure will depend highly

on the tunnel properties. Other observations are summarized in the following. The conclusions

drawn below remain strictly valid for the conditions assumed in the analysis:

6.1 Ground vibrations due to an underground line load (without tunnel)

a - For a homogeneous half space or for a soil stratum overlying a bedrock under a harmonic line

load on the ground (with h = 0 m), the maximum ground displacement decays dramatically

with increasing distance from the source. Larger decaying rate can be observed for observation

points closer to the source. However, when the loading point is located under the ground

surface, the decaying rate of the maximum displacement along ground surface becomes

generally mild. Moreover, as the depth of the loading point increases, vibrations of higher

frequencies will be induced. 

b - For a soil layer lying on a bedrock, the incident body waves (compressional waves and shear

waves) will be reflected when reaching the rock surface. Thus, resonance occurs when the

frequency of the soil layer equals that of the applied load, and larger peaks are observed for

softer soil layers. A deeper bedrock will result in a smaller resonance frequency, but a larger

peak value. The resonance frequency of each point on the ground remains basically the same as

long as the depth of bedrock is the same.

c - For a homogeneous half space, a resonance frequency can be observed at the loading point,

which decreases as the depth of the applied load increases. For a soil layer lying on a bedrock,

Fig. 19 Vertical displacements of different observation points for various elastic modulus ratios (with H = 30
m): (a) at origin O, (b) at x = 20 m
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the first resonance peak of the soil decreases as the loading depth increases, and the higher

resonance frequencies become more visible at the loading point as the loading depth increases.

d - For a soil layer lying on a bedrock, the resonance peak decreases as damping ratio of the soil

increases. 

6.2 Ground vibrations due to a line load acting in a tunnel

a - As far as ground vibration is concerned, the existence of a concrete tunnel may somehow

compensate for the loss due to excavation of the tunnel. Only slight difference can be observed

for the cases with and without tunnel. 

b - The effect of tunnel thickness is drastically different for different observation points. At the

ground surface and tunnel apex, the increase in tunnel thickness will result in larger

displacement amplitudes. However, at the bottom of tunnel, the increase in tunnel thickness is

accompanied by a rather large reduction in displacement amplitude.

c - The effect of bedrock depth is similar to the case without a tunnel structure, i.e., the primary

resonance peak increases as the bedrock depth increases. 

d - For a soil layer resting on a bedrock, the primary resonance frequency of the soil layer

increases as the soil elastic modulus increases. Meanwhile, higher ground vibrations will be

introduced by softer soil layers. 
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