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Abstract.  Characterization of discontinuous media is an endeavor that poses great challenge to engineers 
in practice. Since the inherent defects in cracked domains can substantially influence material resistance and 
govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome 
difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks 
along with their impact on the mechanical properties of the intact material. In the present study, stress-strain 
results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the 
evaluation of fractured domain stability. It was found that the formulations proposed earlier could 
satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population 
and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and 
compared to the results of the current study. It is concluded that the geometrical parameters calculated using 
mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked 
domain. 
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1. Introduction 
 

Fabric characterization of cracked domains to assess engineering properties of discontinuous 

media are of special importance in the safety assessment of civil infrastructure such as road tunnels, 

nuclear waste repository sites, power plant and storage caverns. Geometrical changes during 

loading on rock specimens indicate that cracks will propagate differently depending on loading 

conditions. This suggests that preferential crack propagation can be induced considering 

orientation and magnitude of compression on specimens. In addition, the emergence of different 

crack types during the loading procedure refer to different micro-mechanisms in crack extensions. 

Up to the peak strength, the intra-granular cracks in rock minerals tend to propagate and damp 

fracture energy. The energy consumption in this manner is not high enough to trigger dynamic 

effects of emanated waves causing further crack propagation (Hazzard et al. 2000). As the peak 
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stress is achieved, the grain boundary cracks even the ones perpendicular to major loading 

direction form and the rock medium becomes disintegrated (Takemura and Oda 2004). It is 

believed that the sliding and rolling of the grains is responsible for the grain boundary cracks 

leading to failure. The blocky nature of specimens in this stage indicates that it no longer is a 

continuum with defects, but rather a discontinuous medium comprised of many sub-particles 

similar to soils. 

Since the intertwined relationship between rock geometry and its mechanical properties is not 

negligible, many attempts by researchers have been focused on representing fractures in rock in a 

proper manner. The outcome, however, suffer inadequacy as they often require high-tech 

instruments. Monitoring acoustic emissions in which wave characteristics such as frequency are 

recorded and analyzed is a case in point. While some effort is done to model rock bursting failure, 

the varied distribution of cracks in different samples leads to inconsistent results (He et al. 2010). 

To overcome this deficiency, one needs to describe rock geometry so that it would be 

representative of the whole medium. Consequently, a Representative Elementary Volume (REV) 

should be assigned to test specimens which is also a function of the test type and the deemed 

degree of accuracy. Although the necessary specimen size for reliable results are different for 

different variables such as crack radii or crack density, Takemura and Oda (2004) showed that 

there is a threshold in which the propensity of experimental results to different causes of error is 

optimized to minimum. They concluded that a window size of at least six times the crack trace 

lengths is required to obtain statistically meaningful results for their experiments on Inada granite. 

Such uncertainty arises from the fact that the excavated surface in any construction site represents 

2D distribution of cracks appearing in the form of crack traces and thorough understanding of the 

domain engineering properties via 3D studies is not possible. It is worth noting that 

micromechanical studies based on physically meaningful data are of high priority as they are easy 

to employ thanks to lower number of variables measurable by site surveying or laboratory 

experiments. Such micromechanical models for brittle failure have already been developed and 

implemented in the simulation of damaged zones in rocks (Golshani et al. 2006, 2007, Zhou et al. 

2008, Golshani and Tran-Cong 2009, Zhou et al. 2010, Clayton 2010, Zhang et al. 2012). 

In the present paper, the micromechanical characteristics of Inada granite are evaluated based 

on crack tensor analysis first introduced by Oda (1983). The analyses herein would be used to 

further discuss the phenomena related to macromechanical behavior of Inada granite under 

different confining pressures. Crack density changes and its effect on the rock behavior concerning 

the initiation of failure are scrutinized and conclusions based on the results of the current study and 

earlier research are drawn. This study serves as a complementary attempt in addition to those 

conducted earlier mainly by Oda and his colleagues. The current focus of this paper is to 

characterize crack density via mechanical investigations through triaxial tests on Inada granite. 

The present work is in line with the research conducted based on the stereological 

characterizations of fractured rock that facilitate discontinuous domain representations. 

 

 

2. Crack tensor 
 

2.1 Theory 
 

Characterization of cracks in an otherwise continuous medium is of uttermost importance in the 

domain’s mechanical behavior appraisals which are categorized into the following three forms: 
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Rock failure assessment based on crack density and anisotropy index variations... 

● Volume Density (ρ): The number of cracks (m(V)) represented by their centers in an REV 

defines the volume density of cracks: ρ = m(V)/REV 
 

The crack volume density in rock specimens is inversely proportional to the loading intensity; it 

decreases with an increase in axial loading. Takemura and Oda (2004) reported such trend in their 

experiments on Inada granite. The density was reported to be almost constant from 90 to 100 

percent of maximum loads when stable crack growth occurred. Following failure of the specimens 

and further loading beyond the peak strength, a decrease in volume density was observed again 

which was attributed to unstable crack growth in the specimens. These results were in accordance 

with the observations made by Nemat Nasser and Horii (1983). The volume density of cracks is 

obviously a factor that inflicts rock strength. The higher number of cracks in a volume, the lower 

strength expected from rock specimens. Nonetheless, this factor alone lacks the coherent 

characteristics upon cracked domain assessments. 
 

● Crack Dimension (r): The crack shape is idealized as flat and circular. This assumption is 

viable as Oda et al. (2002) produced bar graphs presenting crack trace lengths in three 

orthogonal planes all with almost similar distributions. As a result, the crack radius 𝑟 can 

be obtained from the relationship 𝑟 =  𝑆 𝜋  1 2  in which 𝑆 is the circular crack surface. 
 

A probability density function such as 𝑓(𝑟) can then be defined to account for the distribution 

of cracks; describing the probability of occurrence of cracks with radii 𝑟 to 𝑟 + 𝑑𝑟 via 𝑓(𝑟)𝑑𝑟. 

It is recommended to identify 𝑓(𝑟) as 
 

𝑓(𝑟) = 𝜆𝑒𝑥𝑝(−𝜆𝑟) (1) 

 

since it is a simple equation with the mean and standard deviation both equal to 1/𝜆. The function 

has to satisfy the following relationship 
 

 𝑓 𝑟 𝑑𝑟
∞

0

= 1 (2) 

 

More details can be found in Oda (1982). 
 

● Crack Orientation (n): If the cracks are considered to be flat and circular, two unit normal 

vectors can be assigned to the corresponding two crack surfaces. Since only the sign of 

normal vectors are different, we introduce both as 𝒏. 
 

A probability density function 𝐸(𝑛) is then introduced to represent the crack orientations. 

Subsequently, 𝐸(𝑛)𝑑Ω would result in the probability of cracks whose unit normal vectors 𝑛 

would cover the solid angle 𝑑Ω (see Fig. 1). 

The function 𝐸(𝑛) is symmetric in a manner that 𝐸(𝑛) = 𝐸(−𝑛). This results from the 

opposite directions of unit normal vectors of two crack surfaces. The solid angle Ω stands for the 

surface of a unit sphere (4π) in which 0 ≤ 𝛼 ≤ 2𝜋 and 0 ≤ 𝛽 ≤ 𝜋. Similar to density function 

for crack sizes, 𝐸(𝑛) satisfies the following relationship 
 

 𝐸(𝒏)𝑑Ω
Ω

= 1 (3) 
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(a) (b) 

Fig. 1 (a) Unit normal vectors representing crack orientation (after Oda et al. 1986); 

(b) Unit sphere containing small solid angle 𝑑Ω (after Oda 1982) 

 

 

Since coherent representation of cracks geometry requires all these factors to be taken into 

account, different researchers have proposed solutions to the problem (Kachanov 1980, Kawamoto 

et al. 1988). The results then obtained, though worth the effort, might lack the general practicality 

due to shortcomings related to the acquisition of data or the inclusion of all of the contributing 

factors. Oda et al. (1984) proposed a non-dimensional tensor 𝑭 that took all the density, size, and 

orientation of cracks into account. The crack tensor 𝐹𝑖𝑗 …𝑘  in the integral form is written as 

 

𝐹𝑖𝑗 …𝑘 = 𝜌   2𝑆𝑟𝑛𝑖𝑛𝑗 …𝑛𝑘𝐸 𝒏, 𝑟, 𝑆 𝑑Ω𝑑𝑟𝑑𝑆
Ω

∞

0

∞

0

     (𝑖, 𝑗, 𝑘 = 1,2,3) (4) 

 

In the above formulation, 𝐸 𝒏, 𝑟, 𝑆  is the probability density function of cracks that fall into 

the small solid angle 𝑑Ω with radii ranging from 𝑟  to 𝑟 + 𝑑𝑟 and surface area from 𝑆  to 

𝑆 + 𝑑𝑆. The additive form of the above integral is 
 

𝐹𝑖𝑗 …𝑘 =
1

𝑉
 2𝑆 𝑝 𝑟 𝑝 𝑛𝑖

 𝑝 
𝑛𝑗
 𝑝 

…𝑛𝑘
 𝑝 

𝑚  𝑉 

𝑝=1

     𝑖, 𝑗, 𝑘 = 1,2,3  (5) 

 

In which 𝑉  denotes the volume of the medium with defects. Since the crack tensor is 

symmetric, only tensors with even ranks would render non-zero components. The crack density 𝐹0 

can then be evaluated by calculating the first invariant of crack tensor 𝑭. It is worthy of note that 

the crack density in this context embodies crack number density, crack size, and crack orientation 

as a whole and is a more comprehensive entity in comparison to the number of cracks in a 

representative volume. In light of field-measurable quantities used in crack tensor calculations, one 

can assume the practicality of the method. Furthermore, the analytical computations are easy to 

handle and no difficulty leading to alternate approach is arisen. 

In a three dimensional space with principal axes of anisotropy 𝐹1, 𝐹2, and 𝐹3, the second rank 

crack tensor can be depicted as vector OP (see Fig. 2). Decomposing the vector into the space 

diagonal and its perpendicular component (OP = OA + OB) leads to indicative measures by which 

the state of isotropy in the medium can be investigated. The deviatoric crack tensor is then 

calculated as 
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Rock failure assessment based on crack density and anisotropy index variations... 

  

(a) 3D (b) 2D 

Fig. 2 Isotropic and anisotropic components of the crack tensor (reproduced after Oda, 1986) 

 

 

𝐹𝑖𝑗 = 𝐹𝑖𝑗 − 𝐹𝑘𝑘 3 𝛿𝑖𝑗  (6) 
 

in which 𝐹𝑖𝑗  is the deviatoric crack tensor and 𝛿𝑖𝑗  is the Kronecker’s delta. The ratio of the 

deviatoric vector length in the fabric anisotropy space to the corresponding isotropic component of 

crack tensor is a measure of anisotropy which for three dimensional analysis is represented as 
 

𝐴 𝐹 =
 𝐎𝐁 

 𝐎𝐀 
=

 6𝐽2

𝐹𝐼
=

  𝐹1 − 𝐹2 
2 +  𝐹2 − 𝐹3 

2 +  𝐹3 − 𝐹1 
2 1 2 

𝐹1 + 𝐹2 + 𝐹3
 (7) 

 

and as 

𝐴 𝐹 =
 𝐎𝐁 

 𝐎𝐀 
=

𝐹1 − 𝐹2

𝐹1 + 𝐹2
 (8) 

 

for two dimensional studies. 

 

2.2 Crack tensor determination 
 

To attain crack tensor, one needs to employ a method that can capture crack property variations 

inside rock volume. Oda et al. (1984) rewrote Eq. (4) in petrographically measurable quantities as 

follows 

𝐹𝑖𝑗 =
3𝜋

8

 𝑙2 

 𝑙 

𝑚 𝐿 

ℎ  𝒏. 𝒒  
𝑁𝑖𝑗  (9) 

 

In the above formulation 
 

𝑁𝑖𝑗 =  𝑛𝑖𝑛𝑗𝐸 𝒏 𝑑Ω
Ω

 (10) 

 

and 

 𝑙𝑛 =  𝑙𝑛Φ 𝑙 𝑑𝑙
∞

0

=
1

𝑘
 𝑙𝑛

𝑘

 (11) 

 

where 𝑙 is the trace length, Φ 𝑙  is the trace probability density function, 𝑚 𝐿  is the number of 
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cracks intersected by a scanning line with length ℎ and direction of 𝒒 as the central axis of a 

cylindrical REV, and 𝑘 is the number of crack lengths counted on the excavated surface. 

𝐸 𝒏  is a function of 𝜃 and 𝜙 if the orientation vector 𝒏 is described in the spherical 

coordinate system (see Fig. 3). Although similar to above, 𝐸 𝒏  can be obtained based on 

stereological based fabric analyses (e.g., Oda et al. 2002, Takemura et al. 2003), it can also be 

obtained via petrofabric methods (Douglas and Voight 1969). However, the latter tends to be 

laborious. 

Oda et al. (1984) defined elastic compliance for cracked medium based on crack tensor in 

addition to Young’s modulus and Poisson’s ratio as elastic properties. The displacement jumps 

were determined for three types of penny shaped, elliptical, and row of collinear cracks and the 

average strains due to average stresses on the specimen were described in the following formula 
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𝐷
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𝜍11
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𝜍 33

2𝜍23

2𝜍31

2𝜍12 
 
 
 
 
 
 
 
 
 
 
 

 (12) 

 

in which 𝐺 represents normal or shear stiffness as both were assumed to be equal in the elastic 

range where permanent crack surface displacements with respect to each other did not occur; and 

1 𝐷  was regarded as 𝜋 2𝐸  for elliptical cracks. The aforementioned is also prescribed in the 

present study since the derivation process requires no simplifying assumptions (Walsh 1965, Oda 

1983). The corresponding relationship for two dimensional cases with elliptical cracks was further 

represented as 
 

 
 
 
 
 
𝜀11

𝜀 22

𝜀 12 
 
 
 
 

=
1

𝐸

 
 
 
 
 
 
𝜋

2
𝐹11 + 1 −𝜈

𝜋

4
𝐹12

𝜋

2
𝐹22 + 1

𝜋

4
𝐹12

𝑆𝑦𝑚.
𝜋

8
 𝐹11 + 𝐹22 +

 1 + 𝜈 

2  
 
 
 
 
 

 
 
 
 
 
𝜍11

𝜍 22

2𝜍12 
 
 
 
 

 (13) 

 

It is important to note that these formulations do not take microcracks interaction during loading 

 

 

 

Fig. 3 Spherical coordinates in relation to the Cartesian coordinate system (after Kanatani 1985) 
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Rock failure assessment based on crack density and anisotropy index variations... 

  

(a) Orientation of failure plane 

with respect to loading direction 

(b) Failure surfaces 

 

Fig. 4 Inada granite specimen after failure 

 

 

into account which is crucial when the final stages of loading near specimen failure is achieved. 

Therefore, we either need to take an approach to assimilate cracks interaction in the behavioral law 

of the domain or implement a numerical scheme that automatically introduces such effects by 

nature. Oda et al. (1984) used the self-consistent method to study the developed formula above 

and concluded that the approach was capable of reproducing accurate enough results. However, 

the relation can also be used in numerical analyses that treat discontinuous domains as the 

conglomerate of smaller particles. In this case, the interaction among microcracks is accounted for 

by the equations based on which the code is built upon. 

 

 

3. Procedure 
 
3.1 Testing rock 
 

Cylindrical samples of 12 cm in height and 5cm in diameter with average density of 2628 

kg/m3 were prepared by trimming top and bottom planes with a tolerance of 0.007 mm. The Inada 

granite samples were obtained from a quarry in Kasama, Ibaraki, Japan (Golshani 2003). Inada 

granite is composed of quartz (37%), alkali feldspar (24%), plagioclase (33%), biotite and other 

minerals (6%) (Suzuki et al. 1998). Takemura and Oda (2004) investigated crack density in Inada 

granite and attributed 70% of crack intensity to intra-quartz cracks. Intra-feldspar and 

grain-boundary cracks contributed to the number of defects to a lesser extent, respectively. 

Although the granite looks isotropic in appearance, three orthogonally oriented planes based on 

their compressive strength are distinguished namely in increasing order as hardway, grain, and rift. 

Fig. 4 depicts one Inada granite specimen after brittle failure due to axial loading perpendicular to 

rift plane. In the present study, experimental stress-strain results from triaxial tests on Inada granite 

under different confining pressures are used to obtain crack tensor indices of isotropy and 

anisotropy in lieu of stereological method. The results are then discussed and comparison with 

results derived from the stereological approach are drawn. 

 

3.2 Calculation method 
 

The current study implemented triaxial test results to calculate crack density changes with axial 
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stress under different confining pressures obtained through the tests using the loading apparatus 

MTS Model 815 at Saitama University. This highly stiff loading system is capable of providing 

only one specific high pressure in the two main lateral directions. Initially, the hydrostatic pressure 

on the specimen was increased until it reached the pressure at which the confinement was aimed to 

be constant. Subsequently, the axial stress was increasingly applied until the occurrence of failure. 

The strain-controlled test was carried out such that the amount of circumferential strain in the 

loaded specimen accounted for the adjustment of the axial stress applied on it. Therefore, the 

circumferential strain rate was held at the constant rate of 5×10-6 mm/sec. Later on, the incremental 

changes of Poisson’s ratio and Young’s modulus were first calculated by employing the 

corresponding stress and strain values considering their axial and lateral measurements and the 

results were introduced into Eqs. (12) and (13) to obtain crack tensor diagonal terms for 3D and 

2D formulations. Afterwards, crack tensor first invariants for each incremental change in the 

tensors were computed by the summation of crack tensor diagonal terms, and the anisotropy 

indices were derived based on Eqs. (7) and (8). The results were then prepared in graphical forms 

entailed with related discussions which contribute to the following sections. 

 

 

4. Results and discussion 
 

4.1 Poisson’s ratio in rock 
 

Although engineering materials most often take values between 0 and 0.5 for Poisson’s ratio, it 

has been found that the value might considerably change for anisotropic media such as rock mass. 

The existence of cracks in rocks would lead to the decrease of Young’s modulus; as it reduces the 

load bearing capacity of rocks. Unlike voids, cracks widths tend to diminish under compression 

causing the medium to attain elastic features once the load sustained is enough to close all cracks. 

However, the deformability of the domain is still different from the intact rock as crack surfaces 

might slip along each other. Walsh (1965) defined Poisson’s ratio as the negative of the ratio of 

lateral strain rate to the axial(𝜈𝑒𝑓𝑓 = −𝑑𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑑𝜀𝑎𝑥𝑖𝑎𝑙 ). This definition is helpful when 

materials with plastic or nonlinear behavioral characteristics are studied. Despite the common 

values of 0 ≤ 𝜈 ≤ 0.5 for most materials, it has been found that there are exceptions for a limited 

some in which the value is larger than 0.5 or even smaller than zero. One such instance in minerals 

is 𝛼Cristobalite for which 𝜈 = −0.164 (Bass 1995). Such values suggest that the material 

extension would lead to lateral expansion of a rod-like specimen or vice versa for the material 

under compression and are explained by mineral twinning under load (Love 1944). 

Fig. 5 illustrates the axial and lateral strains changes with the axial loading in different planes 

and confining pressures for Inada granite. The sign convention for the graphs below for 

compressive loading and the corresponding strains dictates positive magnitudes for axial strains 

(curves in black color) and negative values for the lateral strains (curves in grey). It can be 

observed that the effect of loading direction with regard to the three main planes of strength 

anisotropy in the rock are negligible (see Fig. 5(a)). As the confining pressure is increased, smaller 

axial and lateral strains are induced which result in closer placement of stress-axial strain and 

stress-lateral strain curves (see Fig. 5(b)). Based on the experimental data obtained via triaxial tests 

on Inada granite, the peak strengths associated with different confining pressures for the rock 

specimens were derived. Table 1 summarizes maximum axial strength of Inada granite specimens 

under various confinements. It is worthy of note that the values for Young’s modulus and 
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(a) Loading under 80 MPa confining pressure 

for the three orthogonal planes 

(b) Loading perpendicular to Hardway plane under 

different confinements 

Fig. 5 Axial stress-strain curves for Inada granite under triaxial loading conditions 

 

 

Table 1 Maximum axial strength of Inada granite under different confining pressures 

Confining Pressure (MPa) 0.1 10 25 40 50 60 80 140 

Axial Strength (MPa) 209.1 355.8 488 546.8 635.1 679.6 763.5 951.1 

 

 

Poisson’s ratio used in the current study were varying with the stress-strain changes in the 

specimen and therefore, no constant value for the aforementioned is reported. However, the values 

seemed to be close to the average values reported earlier by Golshani (2003). 

Poisson’s ratio changes with increasing load increments were calculated from the data obtained 

via triaxial tests in which axial loading was applied in hardway plane direction (see Fig. 6). It is 

observed that the value of 𝜈 increases well beyond the acceptable 0.5 magnitude considered as an 

upper bound for engineering materials. Wittke (1990) indicated that transversely isotropic rocks 

may show larger than normal values for 𝜈 when loading direction is perpendicular to the bedding 

plane of rocks. Although the value of 𝜈 is stress independent for isotropic materials in general; 

Min and Jing (2004) reported that this value was stress dependent in jointed rock. Golshani (2003) 

carried out a series of experiments on Inada granite and derived 𝐸50  and 𝜈50  as the engineering 

properties corresponding to that of intact rock. The values were determined by tangents to the axial 

stress-axial strain and lateral strain-axial strain graphs at 50% of peak strength. Since crack closure 

is assured under such condition, the values attained were considered as that of intact rock 

assuming linear elastic behavior. Taking average of the results, the values of 𝐸 = 73GPa and 

𝜈 = 0.23 were considered for the rock. It can be observed from Fig. 6 that the values of 𝜈 at the 

initial stages of loading are well lower than that of intact granite. This may be attributed to the 

open cracks that reduce material tendency to expand in the lateral direction. In the sequel stage, 

however, the value of 𝜈 begins to increase as the crack closure encourages linear elastic trend and 

the cracked rock behavior transforms into that of intact. In this stage, changes in the value of 

Poisson’s ratio reaches minimum as expected. Further loading causes the existing cracks to 

propagate during the stable crack growth phase and finally terminating in failure of the specimen 

due to coalescence of larger cracks (unstable crack growth). The results discussed herein are in 

accordance with similar studies found in literature (Bieniawski 1967, Krech et al. 1974). It is 

801



 

 

 

 

 

 

Kamran Panaghi, Aliakbar Golshani and Takato Takemura 

 

Fig. 6 Poisson’s ratio changes of Inada granite with axial loading under various confining pressures 

 

 

observed that the value 𝜈 = 0.23 considered in earlier studies agrees with the elastic linear part of 

graphs by roughly meeting them in the half (red line). The scattered trend of the maximum 

calculated values of 𝜈 might be explained by the random nature of discontinuities in the rock 

domain where no certain distribution of cracks with various sizes and orientations is expected. In 

addition, steep changes in Poisson’s ratio values become less pronounced by the increase in 

confining pressure and the range in which rock behaves elastically is broadened or in other words, 

more ductility is induced. As intuitively expected, higher confining pressures would result in 

higher axial strengths in cylindrical specimens. Kulatilake et al. (2004) proposed Poisson’s ratio 

values for rock masses to be 20% higher than those of intact rocks due to the anisotropic behavior 

of the medium. It is also observed herein (blue line) that this value could serve as a crude estimate 

for the linear elastic trend’s upper bound after which stable crack propagation initiates. 
 

4.2 First invariant of crack tensor 
 

As discussed, the first invariant of crack tensor 𝐹0 represents crack density which can be used 

for the assessment of crack progress rate and the commencement of specimen failure. Oda et al. 

(2002) investigated 𝐹0 variations with the anisotropy indices for Inada granite under confining 

pressures up to 140 MPa and concluded that a trend could be associated with specimens based on 

their failure mechanism. Consequently, two failure mechanisms were observed depending on the 

degree of specimen confinements. In the following, crack density variations with axial stress in 

three different orthogonal planes of Inada granite calculated by crack geometry dependent 

compliance tensors are compared with each other. The 2D stress-strain formulation based on crack 

geometry was first implemented for the calculations considering several confining pressures (see 

Figs. 7(a)-(c)). It should be noted that the data taken at the initial stages of loading might not be 

credible enough as it takes some adjustments regarding strain and stress gauges to be made before 

reliable measurements are obtained. Additionally, some data discrepancy in the final stages of 

loading might emerge from the normal trend observed during loading. One source of error in the 

measurements is the tripping of strain gauges producing anomalous data. In the current study, this 

error is subtly observed in the data measurements for the 40 MPa confinement of Inada granite in 

which limited number of less meaningful data are omitted near the specimen failure. 

Fig. 7(d) compares the plots corresponding to three orthogonal planes under 40, 50, and 80 

MPa confining pressures. It is obvious that the effect of confining pressure on 𝐹0  values are more 
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pronounced than the loading planes and contradictory results for 𝐹0  values taking plane 

stiffnesses into consideration might arise. Hence, for every set of data corresponding to one 

confining pressure a curve can be fitted by regression. 

Oda et al. (1984) derived the following equation for the Young’s modulus ratio of the cracked 

domain 𝐸  to that of the intact rock 𝐸 
  

𝐸 

𝐸
=  1 −

𝜋

4
𝐹0  (14) 

 

Eq. (14) implies that the elasticity in discontinuous domain vanishes when the value of 𝐹0 

reaches 1.27. Under such condition, the cracks interconnect and form a network that act as 

pathways for fluid flow in permeability studies. Nonetheless, the cracked domain mechanical 

properties would still allow load bearing capacity since interlocking of discrete blocks and their 

rolling and slipping resistance would counteract instability. Later research (Oda et al. 2002) 

revealed that a value of 𝐹0 = 2.5 for 2D models could be regarded as the upper bound for the 

crack density as a measure of severe damage. It is noteworthy that in the former study the 

self-consistent method (Budianski and O’Connell 1976) was used to treat interaction effect among 
 

 

  

(a) Rift (b) Grain 
 

 

 

 

(c) Hardway (d) Rift, grain and hardway 

Fig. 7 2D crack density variations with axial stress under different confining pressures along the 

three orthogonal plane directions 
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cracks. It was shown that the results were affected by whether the interaction among cracks was 

taken into account and how it influenced rock behavior concerning crack density variations. It is 

seen that the first invariants of crack tensors calculated in the present study support the notion that 

this value can be a threshold for specimen failure. Some other observations are as follows: 

 

● The 𝐹0 values for specimens with confining pressures of 10 and 25 MPa (red lines in Fig. 

7(c)) are well above the value suggested as the threshold for instability of cracked rock. It is 

noted, however, that the approach for calculating 𝐹0  adopted herein is based on the 

micromechanics of cracked domains and any failure is described by cracks population. 

Contrary to that, there are cases where the failure mechanism under compression is assigned 

to critical stress intensity factor or material toughness at one or limited number of main 

crack tips that demand fracture mechanics concepts for further investigation. Laboratory 

results, for example, show that the uniaxial strength of specimens failed in compression is 

governed by the stress intensity factor at some crack tips. This behavior is also consistent for 

rock samples under low confining pressures up to 25 MPa as reported in Oda et al. (2002). 

As the confining pressure is increased, nonetheless, the failure mechanism tends to be better 

explained by the approach undertaken here. 

● Since the crack tensor-dependent compliances adopted in the present study do not include 

interaction among cracks, the 𝐹0 values for different confining pressures are presumably 

higher than those for more precise analyses taking interaction into account. Higher than the 

threshold 𝐹0 values for the 40 MPa confining pressure on three different planes are in 

accordance with such speculation. 

● The general trend of the plots in Figs. 7(a)-(c) indicates that the higher confining pressures 

are accompanied by lower values for crack density and subsequently higher compressive 

strengths for rock samples. Although the plot related to a 60 MPa confining pressure test 

results (not plotted) challenged the usual trend anticipated as compared to a 50 MPa 

confining pressure test in Fig. 7(c), they were still close enough; the probable reason for 

which is rock core anisotropy. 

● The three orthogonal planes, i.e., rift, grain, and hardway characterize the compressive 

strengths of Inada granite core samples in the three orientations in descending order. 

Nevertheless, the measurements for overall elastic moduli of Inada granite in the three 

orthogonal directions show slight differences in magnitude (Golshani 2003). It can 

qualitatively be observed from Figs. 7(a)-(c) that the values of 𝐹0 for the hardway plane are 

smaller than those of grain plane, those of which are smaller than the rift plane. These 

results support the fact that the density of induced cracks are less for planes of higher 

resistance to fracture. 

 

The 2D calculations for 𝐹0 threshold based on Eq. (13) accord well with the value proposed 

by Oda et al. (2002). They proposed that the value can serve as the threshold for structural 

disintegration of rock in which instability of tessellated rock blocks is induced after sliding 

resistance of interlocked domain is exceeded. Although a much smaller value is suggested for 

cracked domain permeability problems (Robinson 1984), the current value is high enough to 

account for the random distribution of cracks in a domain where block behavior is prevalent. Figs. 

8(a)-(c) illustrate the results obtained from Eq. (12). Trends similar to 2D plots for 3D calculations 

of 𝐹0 show that the earlier conclusions drawn for 2D studies can be generalized to 3D cases. 

However, it is observed that the threshold value for three dimensional cases is shifted to higher 
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(a) Rift (b) Grain 
 

 

 

 

(c) Hardway (d) Rift, grain and hardway 

Fig. 8 3D crack density variations with axial stress under different confining pressures along the 

three orthogonal plane directions 

 

 

values as compared to two dimensional studies. Oda et al. (2002) reported a value of 7 to 10 as the 

index for the instability of continuous domain with inherent defects. This value served as the limit 

beyond which rock domain was rather discrete with particular interaction. Later research by 

Takemura and Oda (2004) revealed that a value of 8.01 was more likely to represent disintegrated 

blocky domain of rock. They attributed such difference to the precision involved regarding the 

number of crack traces accounted for in the determination of crack tensors since traces smaller 

than a threshold length (1.0 mm in the former and 0.5 mm in the latter) were ignored. They also 

indicated an approximately linear trend for crack density increment with the inelastic volumetric 

strain which implies constant inelastic volumetric strains for specimens at peak failure. Fig. 8(d) 

illustrates 3D case results for the same confining pressures and planes depicted earlier in Fig. 7(d) 

for 2D cases. The same regression procedure is adopted for each set of curves and the remarks on 

2D plots seem to be applicable for 3D cases as well. 
 

4.3 Anisotropy in cracked medium 
 

Oda (1982) reported that the length of vector OB in Fig. 2 can be related to rock anisotropy as 
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it represented deviatoric component of crack vector F. Since the length of OB is the numerator of 

the crack tensor anisotropy index, it is represented as 
 

Γ =  2𝐽2 =   𝐹1 − 𝐹2 
2 +  𝐹2 − 𝐹3 

2 +  𝐹3 − 𝐹1 
2 (15) 

 

The calculated Γ above was not a comprehensive measure of anisotropy because it did not 

incorporate the deviation with respect to the space diagonal. Nevertheless, it can still be 

qualitatively said that some observations could be assumed to be viable if the relevant data are for 

a specific rock type and plane direction. Fig. 9 for example, represents the calculated values of Γ 

for Inada granite in hardway direction. The results are related to the confining pressures of 25, 40, 

50, 80, and 140 MPa for specimens under a cycle of axial loading-unloading. The deviatoric vector 

length appears the largest for the smallest confining pressure and tends to be inversely proportional 

to the intensity of the aforementioned. Furthermore, the difference between two values of Γ for 

the same confining and axial pressures is reduced once an increase in lateral compression occurs. 

The dotted colored lines represent the limit of 70% of specimens’ axial strength after which during 

loading and before which during unloading procedures 𝐴𝐼 attains constant values. 

Since specimens are loaded beyond half their strength, the induced crack growth is most 

favorable (Paulding 1965) and hence the energy dissipation due to friction between cracks faces. 

The individual cycles of loading-unloading for specimens under different confinements would lead 

to a hysteresis–like loop in the Γ-axial stress plots whereas the changes in anisotropy index with 

axial stress beyond 70% of ultimate strength is approximately independent from loading (see Fig. 

10(a)). This trend suggests that during the strain controlled test, the damage would continue to 

accumulate even when the core sample is unloaded. However, the ratio of Γ to the isotropic 

component of crack vector  𝐹0  becomes constant which is presumably due to higher rates of 

change for the isotropic component. Since the anisotropy index retains its value beyond and to 70% 

of material’s ultimate strength during a loading-unloading cycle, this value marks the threshold for 

constant 𝐴𝐼 values. The threshold was determined based on the smaller than 0.0001 difference 

cutoff of two consecutive values for 𝐴𝐼. It is interesting to note that the results for 𝐴𝐼 in the 

loading stage are almost identical with those of unloading. In addition, loading in three main plane 

orientations makes no difference concerning 𝐴𝐼 values (see Fig. 10(b)). The aforementioned are 

 

 

 

Fig. 9 Deviatoric vector length variations with axial stress in different confining pressures calculated from 

test results on specimens under one loading-unloading cycle-hardway plane (3D formulation) 
 

806



 

 

 

 

 

 

Rock failure assessment based on crack density and anisotropy index variations... 

  

(a) Hardway plane (b) The three orthogonal planes 

Fig. 10 Anisotropy index variations with axial stress in different confining pressures for Inada granite 

specimens under loading-unloading cycles (3D) 
 

 

also valid for the set of plots related to 2D formulations (see Fig. 11). Walsh (1965) reported 

results for the stress-strain behavioral characteristics of Westerly granite considering axial, lateral, 

and volumetric strains. Unlike axial and lateral strain curves for loading-unloading cycles, the 

results formed no loops for the stress-volumetric strain changes. Therefore by analogy, one can 

associate axial and lateral strains with deviatoric vector as measures of failure assessment based on 

domain mechanical and geometrical properties, respectively. The same is applicable to volumetric 

strain and 𝐴𝐼 for one order higher. 

Next, plots of 𝐴𝐼 changes with stress for 2D formulations are presented for the sake of 

comparison in Fig. 11. Again, the results seem to fall within the range proposed by Oda et al. 

(1986) and identical trends to previous results regarding crack density and anisotropy index appear 

to exist. The dotted colored lines pinpoint the same limit described earlier concerning Fig. (9). It 

should be noted that the values regarding 50 MPa confining pressure (not shown) were very close 

to those of 80 MPa so that the plots were difficult to detect from each other. However, as the  
 

 

  

(a) Hardway plane (b) The three orthogonal planes 

Fig. 11 Anisotropy index variations with axial stress in different confining pressures for Inada granite 

specimens under loading-unloading cycles (2D) 
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combination of anisotropy index with 𝐹0  values are deterministic for cracked domains 

evaluations, such results will pose no drawback during investigations. 

Another obvious trend in 𝐴𝐼-stress plots is the steep decrease of 𝐴𝐼 to near zero values with 

axial stress in triaxial tests before axial stress equals the confining pressures (Figs. 12(a)-(b)). 

Since thickness of cracks in the formulation for crack tensor (Eq. (4)) is not taken into account,  
 

 

  

(a) 3D (b) 2D 

Fig. 12 Anisotropy index variations with axial stress in different confining pressures for Inada 

granite specimens under loading-unloading cycles 
 

 

Table 2 Summary of calculated 𝐹0 and AI values at specimens ultimate strength and threshold stresses for 

constant AI 

Plane 

Conf. 

Pre. 

(MPa) 

Axial 

strength 

(MPa) 

F0@Ult. 

Strength 

AI@Ult. 

Strength 
Threshold for Constant AI 

2D 3D 2D 3D 2D 3D 

H
ar

d
w

ay
 

10 355.82 19.7 42 0.99 0.7 Stress (MPa) Ratio* Stress (MPa) Ratio 

25 460.49 8.78 18.6 0.99 0.7 261.5 0.57 251.79 0.55 

40 546.78 3.95 8.47 0.99 0.7 405.82 0.74 401.73 0.73 

50 644.79 3.1 8.76 0.97 0.7 432.59 0.67 415.43 0.64 

80 736.52 2.76 6.12 0.98 0.69 510.16 0.69 492.18 0.69 

140 951.06 1.9 4.35 0.96 0.67 692.3 0.73 679.36 0.71 

G
ra

in
 

40 585.50 6.44 13.76 0.99 0.7 

A
I@

T
h
re

sh
o
ld

 S
tr

es
s 

fo
r 

H
ar

d
w

ay
 P

la
n
e 

Stress 

(MPa) 
2D 3D 50 632.23 2.43 8.32 0.97 0.7 

80 794.85 3.23 7.11 0.98 0.69 

125 962.62 2.15 4.85 - - 25 0.9816 0.6883 

R
if

t 

40 615.76 7.0 14.92 0.99 0.7 40 0.9808 0.6882 

50 650.99 2.8 9.57 0.97 0.7 50 0.9339 0.6720 

80 777.83 2.4 7.11 0.98 0.69 80 0.9517 0.6600 

125 934.71 3.02 4.42 - - 140 0.9215 0.6350 

* Ratio of axial stress to specimen strength 
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Table 3 Summary of calculated 𝐹0 and AI values for various loading intensities 

P
la

n
e 

C
o

n
f.

 

P
re

. 

(M
P

a)
 

L
I*

 (%
) F0 AI 

2D 3D 2D 3D 
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both closed and open cracks can part in the discontinuous domain behavior. Consequently, as axial 

stress dictates cracks closure, more isotropy in the initial stages of loading is anticipated which is 

especially the dominant phenomenon before axial loading intensity reaches that of lateral pressure. 

Table 2 summarizes some specific results for the current study. It is worth to point out that the 

ratios of the stress threshold for constant 𝐴𝐼 to ultimate strength for 2D and 3D formulations are 

both 0.7 corresponding to 𝐴𝐼 values of 0.95 and 0.7, respectively. However, more experiment on 

different types of rock is required before a conclusive remark on the values can be made. It is also 

observed that 𝐴𝐼 values do not exceed unity for 2D cases and 1.4 for 3D calculations. Takemura 

and Oda (2004) reported that cracks grew beyond grain boundaries when axial loading exceeded 

90% of ultimate strength. The propagation of grain boundary cracks even the ones perpendicular to 

the loading direction accelerated near the failure of Inada granite samples, so that diagonal arrays 

of the tensor for the grain boundary cracks substantially increased. It was concluded that a new 

micromechanism different from the earlier crack initiation and growth pattern which results in the 

formation of shear bands might explain the notable inelastic volumetric strains. It should be noted 

that if the threshold for linear trend of 𝐴𝐼-stress plots is altered toward more precision, closer 

magnitudes for the ratio in this study to the 90% value proposed by Takemura and Oda (2004) will 

be obtained (see Table 3). 

Taking plots of 2D and 3D formulations of 𝐴𝐼 and 𝐹0 into consideration, it is concluded that 

both sets refer to similar trends concerning crack anisotropy and density. It is reasonable to hold 

the 2D nature of loading accountable for such trend in the present study. It is also surmised that 

similar trends shall be obtained for uniaxial tests with zero confining pressure. On the contrary, 

distinguishable difference might arise for studies that employ true triaxial tests data that allow 

comparison between 2D and 3D cases. 
 

 

5. Conclusions 
 

In this study, we successfully used the experimental results on Inada granite along with 

stress-strain relationships based on crack tensor to appraise crack density and anisotropy of the 

discontinuous domain. The advantage of such approach lies behind the fact that easily measurable 

mechanical quantities extracted from laboratory experiments are enough to calculate the required 

criteria. Although the experimental limitations regarding shear loading would not allow us to 

obtain non-diagonal arrays of the crack tensor, the diagonal terms would only be needed for the 

crack concentration phenomena under investigation. However, further need for the calculation of 

non-diagonal terms would not impose difficulty as it can be achieved via stereological methods. 

Since the principal axes of fabric anisotropy are almost the same as the principal axes of crack 

tensor and the little rotation of axes happening especially in the final stages of loading is negligible, 

the calculation of non-diagonal arrays during and after loading procedure is reasonably 

circumvented by specifying the same arrays of the crack tensor for the starting specimens to the 

ones after experiments. Based upon the observations, the following conclusions are drawn: 
 

● The 𝐹0 values obtained for two and three dimensional studies are in accord with the 

general trend anticipated during axial loading. The threshold values obtained for a cracked 

medium under moderate to high confinements to manifest granular domain characteristics 

agree well with earlier studies implementing a different approach. The same applies for 𝐴𝐼 
values as they decrease with higher confining pressures. 

● The plots show that higher confining pressures result in higher axial strength for rock 
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specimens as they retard cracks initiation and propagation. Comparison between material 

strength in three different planes of Inada granite revealed that the effect of confining 

pressure on crack tensor’s first invariant as a measure for damage is much more pronounced 

than its three main orientations of anisotropy. As the results suggest, the effect of plane 

anisotropy can be neglected by assigning a regression line to every set of plots representing 

different plane directions for one specific confining pressure. Results regarding 𝐴𝐼 changes 

with axial loading for different planes in Inada granite would further agree with this in a 

stronger manner. 

● The results for 𝐴𝐼 values suggest a notable descending trend in the early stages of axial 

loading before it equals the lateral confinement which is due to cracks closure. This causes 

the cracked domain to behave more isotropically as the elastic behavior of rock matrix 

would dominate material behavior henceforth. Further loading would gradually induce 

inelastic behavior due to cracks growth which would ultimately lead to unstable growth of 

defects and constant 𝐴𝐼 for high axial stresses. 

● It was found in an approximate manner that 𝐴𝐼 values for different confining pressures via 

3D formulations attained a constant value of 0.7 after specimens were loaded to 70% of the 

final axial strength. In addition, values of 𝐴𝐼 for 2D formulations attained a constant value 

of approximately 0.95 with the same ratio of axial stress to ultimate strength. Although no 

conclusion can be made due to the results being restricted for one specific rock, further 

study as a tool for comparison might help explain such trends in other rock types, if 

available. Generally speaking, a different cracking phenomenon might be attributable to the 

failure mechanism of rock specimens after the stress threshold of 70% is surpassed. Since 

the details regarding crack types for crack tensor calculations were not considered in the 

current study, coherent judgment on the values is only feasible when different types of 

cracks are categorized and taken into account. Therefore, emphasis is laid upon the fact that 

our study was still restricted to elastic regime behavior in the rock matrix and further study 

that focus on the failure mechanism of samples in the final stages of loading is needed to 

render any conclusive remarks. 
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