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Abstract.  A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 
2009), was developed to describe the stress-strain relationship for normally consolidated and over- 
consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are 
derived for the strain localization of saturated clays under undrained and fully and partially drained 
conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with 
different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of 
saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS 
with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of 
overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of 
analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path 
and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime. 
 
Keywords:    bifurcation; over-consolidated; constitutive model; undrained condition; partially drained 
condition; numerical simulation 
 
 
1. Introduction 
 

A number of engineering failures, such as landslides, foundation failures and tunnel collapses, 
are related to strain localization. A common feature of these failures in geotechnical engineering is 
that the shear strain is concentrated in a relatively narrow region, and the failure zone is at first 
initiated from the strain localization zone. The initial failure zone propagates together with the 
development of the strain localization zone, which leads to the failure of the entire geotechnical 
structure. 

Theoretical studies of strain localization have been conducted over the last several decades by 
different researchers. Hill (1958) and Drucker (1959) proposed widely used analytical methods 
that can predict the occurrence of strain localization in single-phase materials. These prediction 
and analysis methods were further developed and refined by Rudnicki and Rice (1975), Rice 
(1976), and Bigoni and Hueckel (1991), etc. Recently, material strain localization in the 
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three-dimensional stress state has been highlighted by some researchers. For example, Huang et al. 
(2007) applied micro-polar theory to the hypo-plastic constitutive model and then studied the 
bifurcation characteristics of sand in the three-dimensional stress state. Huang et al. (2010) 
verified that the predictions of bifurcation theory using the non-coaxial elastoplastic constitutive 
model are reasonable and in agreement with the results of true triaxial tests on sands. Zhang and 
Schrefler (2001) launched a series of studies on the initiative condition of strain localization in 
saturated porous media by means of solution uniqueness, bifurcation and variation principle and 
positiveness of the second-order work density. 

In this paper, an acoustic tensor and discriminator of bifurcation are given in an explicit form 
for the three-dimensional elastoplastic constitutive model (called UH model) proposed by Yao et 
al. (2009) for over-consolidated clays and for the strain localization of saturated clays under 
undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate 
the points of bifurcation for the UH model with different three-dimensional stress paths. 
Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and 
fully and partially drained conditions are conducted using ABAQUS (ABAQUS Inc. 2006) with 
the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of 
overconsolidated clays in three-dimensional stress states and various drainage conditions. 

 
 

2. Three-dimensional constitutive model for over-consolidated clays 
 
The pre-consolidation pressure of over-consolidated clays is greater than the current 

consolidation pressure; thus, their mechanical behaviour is different from that of normally 
consolidated (NC) clays. Naturally deposited clays are often found in different over-consolidated 
states. Compared with normally consolidated clays, over-consolidated (OC) clays have a lower 
void ratio and higher strength and exhibit more complicated behaviours, such as shear dilatancy 
and strain-softening. Therefore, the strain localization characteristics of over-consolidated clays 
and normally consolidated clays are different. The formation and development of strain 
localization during loading are largely dependent on the elastoplastic matrix of the constitutive 
model. To reflect the formation and development process of the strain localization of 
over-consolidated clays, a reasonable constitutive model is needed to describe the mechanical 
behaviour. 

In this paper, to investigate the strain localization of over-consolidated clays, an elastoplastic 
constitutive model called the UH model (Yao et al. 2009) is employed. The model is generalised 
to a three-dimensional model in which the Matsuoka-Nakai criterion is adopted using the 
transformed stress method (Matsuoka et al. 1999). The model can capture the stress-path- 
dependent stress-strain relationship, shear dilatancy, strain hardening and softening of over- 
consolidated clays in three-dimensional stress states. The yield function is written as 
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where λ and κ are the slopes of the normal compression curve and unloading line, respectively, e0 
is the initial void ratio, the superscript~denotes transformed stress, p and q are the mean and 
deviatoric stresses, respectively, M is the stress ratio (q/p) at the critical state, 0

~p  is a constant that 
corresponds to the length of the p-axes of the reference yield ellipses at an initial condition when 
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the plastic volumetric strain .0p
v  In addition, H is a hardening parameter expressed by 
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in which pq ~/~~   is the stress ratio in transformed stress space and Mf is the stress ratio )~/~( pq  
at the potential peak failure. To express the peak strength of over-consolidated clays, an improved 
Hvorslev envelope is adopted using a parabolic curve (Yao et al. 2012). Mf is written as 
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where R is an over-consolidation parameter, and 0
~
p  corresponds to the pre-consolidation pressure. 

 
 

3. Localised bifurcation analyses 
 
3.1 Bifurcation criterion 
 
The bifurcation was resolved by the acoustic tensor method proposed by Rudnicki and Rice 

(1975). It was assumed that the velocity and stress fields are continuous up to a state at which the 
planar weak discontinuities may develop in a homogeneous specimen under uniform deformation. 
Across a weak discontinuity plane S, as shown in Fig. 1, the velocity and stress fields are initially 
continuous, but the gradient of the velocity field experiences a jump that can be expressed by 
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Fig. 1 Sketch of weak discontinuity plane in principal stress space 
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where [[ ]] denotes the jump of a variable, vi is the velocity, superscripts i and o denote being 
within and outside a band, respectively, vi,j = ∂vi / ∂xj is the velocity gradient, gi is a jump size 
measure of a variable across the strain localization zone, and nj is the normal direction to the zone. 
From 
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we have 
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Then, the jump of the velocity gradient field is produced 
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where εi,j and ji,  are the strain tensor and strain rate tensor, respectively, and ui is the 
displacement vector. 

The governing equations for consolidation problems of saturated soils can be expressed as 
follows 
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where wijijij p   is the effective stress (δij is Kronecker’s delta), σij is the total stress, ui is 
the displacement of the soil skeleton, iw  is the average velocity of the pore water relative to the 
soil skeleton, pw is the pore water pressure, k is the coefficient of permeability, and the parameter 
Q is defined as 
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where Ks and Kw are the bulk moduli of soil particles and pore-water, respectively, and n is 
porosity. In general, Ks � Kw gives Q ≈ (n / Kw)–1. 

From Eq. (10), the equation for drainage state is written as follows (Zhang and Schrefler 2001) 
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in which k, ω, K1, K2 and K3 are parameters. 

Substituting Eq. (9) into Eq. (12) leads to 
 

0
1









 lkijklijkli gnQDn


 (14)

 
When the bifurcation occurs, then gl ≠ 0 and the bifurcation criterion for the drainage 

conditions is written as follows 
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where det denotes the determinant. 

When ξ → +∞, Eq. (15) reduces to the bifurcation criterion for saturated soils under fully 
drained conditions and can be written as follows 
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When k = 0 or ξ = 1, Eq. (15) reduces to the bifurcation criterion for saturated soils under 

undrained conditions and can be written as follows (Zhang and Schrefler 2001) 
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where ξij is the acoustic tensor, ni is the unit vector normal to the strain localization band, and Dijkl 
is an elastoplastic constitutive tensor. 

 
3.2 Analytical expression of bifurcation 
 
Results from true triaxial tests on soil materials by Matsuoka and Nakai (1976) show that the 

failure plane in soil specimens is generally perpendicular to the intermediate principal stress plane. 
Therefore, we assume that the normal direction of the shear band plane under three-dimensional 
principal stress conditions is perpendicular to the direction of the intermediate principal stress. 
Thus, the shear zone is along the direction of the intermediate principal stress. However, the value 
of the intermediate principal stress affects the bifurcation condition. Substituting n2 = 0 into Eqs. 
(15)-(17), the bifurcation condition is obtained as follows 
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with 
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in which θ is the incline angle of the normal direction of the shear zone, n1 and n3 are the cosines 
of the normal direction of the shear zone. If only the soil skeleton phase (saturated soils under fully 
drained conditions) is considered, the bifurcation condition is 
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For saturated soils under undrained conditions, the bifurcation condition is given as follows 
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For saturated soils under partially drained conditions, the bifurcation condition is listed as 
follows 
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where Dijkl denotes the stiffness tensor. 
The bifurcation stress point will occur if Eq. (18) has a real solution. The criterion of the real 

solution is shown as follows 
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Then, the incline angle of the normal direction of the shear zone is given as follows 
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When the UH model (Yao et al. 2009) is employed, the elasto-plastic constitutive tensor Dijkl is 
listed in Appendix. 
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Table 1 UH model parameters for Fujinomori clay 

e0 λ/(1+e0) κ/(1+e0) M ν 

1.0 0.0508 0.0112 1.36 0.3 
 
 

Fig. 2 Stress paths for bifurcation analysis in the -plane 
 
 
Based on the bifurcation solutions of the three-dimensional constitutive model for over- 

onsolidated and saturated clays under undrained and fully and partially drained conditions, the 
following theoretical bifurcation solution of the model is achieved for Fujinomori clay with a 
constant total minor principal stress (σ3 = 200 kPa) and an initial over-consolidation ratio OCR = 8. 
The material parameters for the model are the same as those in the Cam-clay model, as listed in 
Table 1. The values in Table 1 are from Matsuoka et al. (1999). Here λ and κ are the slopes of 
normal compression line and unloading line, M is the slope of critical state line and e0 is an initial 
void ratio. Using the parameter values in Table 1, Yao et al. (2009) showed that the UH model can 
describe the mechanical behaviour of overconsolidated Fujinomori clay, including the dilatancy 
characteristics and hardening-softening behaviour. 

Fig. 2 shows the stress path in the π-plane stress with Lode angles θσ of ±15°, 0° and ±30°. The 
calculation of bifurcation was conducted under a constant total minor principal stress (σ3 = 200 
kPa) condition, along the different stress paths, as shown in Fig. 2. Therefore, the following 
relations are satisfied. 
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Combining Eq. (18) with Eq. (25) leads to the bifurcation solutions corresponding to different 
Lode angles under the minor principal stress of 200 kPa. 

 
3.3 Analytical result of bifurcation 
 

(1) Saturated clays under fully drained conditions  
 

Fig. 3 shows the stress-strain relations and bifurcation solutions along different three- 
dimensional stress paths for saturated clays under fully drained conditions. In Fig. 3, the 
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relationships between the stress ratio, volumetric strain and major principal strain are calculated 
using the constitutive model for over-consolidated clays. 

Fig. 3(a) shows that, when the Lode angle is -30°, which corresponds to the conventional 
triaxial compression stress state, solving Eqs. (18) and (25) jointly reveals that the function Z in Eq. 
(23) is always less than 0. Namely, Eq. (18) has no real solution in the conventional triaxial 
compression stress state. Therefore, there is no bifurcation during loading along the conventional 
triaxial compression stress path. 

Figs. 3(b) and (c) show the analytical bifurcation solutions when the Lode angle is -15° and 0°, 
respectively. When the major principal strain ε1 > 5.18% and 6.33%, respectively, the real 
solutions of Eq. (18) can be obtained, Y < 0 and Z > 0. The major principal strains ε1 = 5.18% and 
6.33% are the bifurcation points along the stress path for Lode angles of -15° and 0°, and the 
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points of bifurcation are located at the hardening regime of the stress-strain relationships of 
over-consolidated clays. 

Figs. 3(d) and (e) are similar to Fig. 3(a). Along the stress paths for Lode angles of 15° and 30°, 
which correspond to the triaxial extension stress state, Eq. (18) does not have any real solutions 
because its discriminant Z is negative, i.e., Z < 0, which indicates that there is no bifurcation along 
these two stress paths. 

Fig. 4 shows the relationship between the stress ratios at peak and bifurcation and the Lode 
angle for saturated clays under fully drained conditions when the minor principal stress σ3 = 200 
kPa. The figure shows that onset of bifurcation occurs in the hardening regime of Lode angles 
between -23.5° and 4°, and there is no bifurcation in the Lode angle ranges of -30°~-23.5° or 4°~ 
30°. 

 

(2) Saturated clays under undrained conditions 
 

Fig. 5 shows the stress-strain relationships with bifurcation solutions along different three- 
dimensional stress path for saturated clays under undrained conditions. Fig. 5(a) shows that, when 
the Lode angle is -30°, the discriminant Z of Eq. (18) is always less than 0. Namely, the equation 
has no real solutions. Thus, there is no bifurcation for saturated clays in the stress state of 
conventional triaxial compression and under undrained conditions. Fig. 5 (b) shows the analytical 
bifurcation solutions at a Lode angle of -15°. When ε1 > 6.33%, there is a real solution of Eq. (18), 
i.e., Y < 0 and Z > 0; thus, the major principal strain ε1 = 6.33% is a bifurcation point along the 
stress path for a Lode angle of -15°, and the point of bifurcation is at the strain-softening regime of 
the stress-strain relationships. Figs. 5(c), (d) and (e) are similar to Fig. 5(a); the function Z in Eq. 
(23) is always less than 0, which means that Eq. (18) has no real solutions. Thus, there is no 
bifurcation along the stress path for Lode angles of 0°, 15° or 30°. 

Fig. 6 shows the relationship between the Lode angle and major principal strains corresponding 
to the bifurcation and the peak of the stress-strain curve for saturated clays when σ3 = 200 kPa and 
under undrained conditions. The figure shows that there is bifurcation in the Lode angle range of 
-23°~ -1°. All strains at peak are less than the strains corresponding to bifurcation, which means 
that bifurcation occurs in the strain-softening regime of Lode angles between -23° and -1°. There 
is no bifurcation in the Lode angle ranges of -30°~-23° or -1°~30°. 

 

(3) Saturated clays under partially drained conditions 
 

Fig. 7 shows the analytical bifurcation solution along different three-dimensional stress paths. ζ 

678



 
 
 
 
 
 

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions 

is a parameter related to the coefficient of permeability, the bulk modulus of pore-water, and the 
eigenvalues of Eq. (10), as shown in Eq. (13). For details, see Zhang and Schrefler (2001). ζ = 1 
and 1 < ζ < +∞ correspond to the analytical bifurcation solutions of saturated clays under 
undrained and partially drained conditions, respectively, while ζ → +∞ corresponds to the 
analytical bifurcation solution of saturated clays under fully drained conditions. 
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Fig. 7 Analytical bifurcation solutions along different three-dimensional stress paths (3 = 200 kPa) 
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Fig. 7(a) shows the result of the bifurcation analysis for Lode angle of 30°, the triaxial 
compression state. When ζ is in the range [1, +∞), Eq. (18) has no real solutions; thus, the function 
Z in Eq. (23) is always less than 0, which indicates that there is no bifurcation at the triaxial 
compression stress state for saturated clays under undrained and fully and partially drained 
conditions. Fig. 7(b) shows the analytical bifurcation solution for a Lode angle of -15°. When ζ is 
in the range [1, +∞), if ε1 > 6.5%, there is a real solution to Eq. (18), and Y < 0 and Z > 0 in Eq. 
(23) are satisfied. Hence, the major principal strain of 6.5% is a bifurcation point at θσ = –15° for 
saturated clays under partially drained conditions. The major strains at bifurcation points under 
different values of ζ are almost the same. Fig. 7 (c) shows the analytical bifurcation solution at a 
Lode angle of 0°. When 1 33 ≤ , the function Z in Eq. (23) is always less than 0; thus, the Eq. 
(18) has no real solutions, which indicates there is no bifurcation point during loading along this 
stress path. When 33   ≤ , if ε1 equals a value within the range specified in Eq. (23), Y < 0 
and Z > 0, and Eq. (18) has real solutions, indicating the existence of a bifurcation. With 
increasing ζ, the bifurcation point moves forward. 

Figs. 7(d) and (e) show the analytical bifurcation solutions for Lode angles of 15° and 30°, 
respectively. The figures show that the function Z in Eq. (23) is always less than 0, which indicates 
that there is no bifurcation along the stress paths for Lode angles of 15° and 30° (corresponding to 
the triaxial extension stress state) for saturated clays under undrained and partially and fully 
drained conditions. 
 
 
4. Numerical simulations of true triaxial tests for identifying bifurcation 
 

4.1 Conditions of numerical simulations 
 
To verify the validity of the analytical solutions, numerical analyses were performed to detect 

the strain localization of saturated over-consolidated clay under undrained and fully and partially 
drained conditions. A subroutine code of the three-dimensional constitutive model for over- 
consolidated clays based on the improved Hvorslev envelope was implemented with the finite 
element software ABAQUS. The object of this analysis was a homogeneous and isotropic cube 
with side lengths of 10 cm. An 8-node hexahedral linear element was employed. The cube was 
divided into 14 × 14 × 14 = 2744 units; the finite element meshes are shown in Fig. 8. 

The vertical direction is set to the major principal stress direction, and the other two horizontal 
directions are the intermediate and minor principal stress directions. The top and bottom surfaces 
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Fig. 8 Meshes for finite element analysis 
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are set to be perfectly smooth. The forced vertical displacements were imposed down on the top 
surface. Also, the vertical displacements on the bottom surface are fixed. Saturated soil used units 
adopted by the C3D8P in ABAQUS. For undrained conditions, there is no drainage boundary, 
while the drainage boundary was set on the top surface under partially drainage conditions. A 
fixed time increment of 0.001 day was adopted for each step, and the total computing time was set 
to be 0.139 days for achieving the major principal strain of 20%. When the computation stops on 
the computing way the point is considered to be the bifurcation. The initial over-consolidation 
ratio of the specimen is assumed to be 8, and the constitutive model parameters are listed in Table 
1. 

 

4.2 Results of numerical simulation 
 
Fig. 9 shows the numerical solutions of the stress-strain relationship up to the bifurcation along 
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Fig. 9 Numerical solutions up to bifurcation along different three-dimensional stress paths (3 = 200 kPa)
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different three-dimensional stress paths. The stress and strain are the average of the whole 
structure in Fig. 8. Figs. 9(a) and (e) show that when the Lode angle is -30° or 30°, there is no 
bifurcation for saturated clays under undrained and fully and partially drained conditions. Last 
plots in Figs. 9(b), (c) and (d) denote the bifurcation points. Fig. 9(b) shows that there are 
bifurcations at a Lode angle of -15° for saturated clays under undrained and fully and partially 
drained conditions, with the bifurcation point being the principal strain, ranging from 3.0% to 
6.2%. Similar to Fig. 9(b), Fig. 9(c) shows that when the Lode angle is 0°, the bifurcations occur at 
the major principal strain, ranging from 4.5% to 8.6%. 

Fig. 9(d) shows that when the Lode angle is 15°, the bifurcation of saturated clay under fully 
drained conditions appears the earliest, with major principal strain of 6.3%. For saturated clays 
under partially drained conditions, a small permeability coefficient k means that bifurcation 
appears later. When k = 8.54 × 10-5 m/d, the major principal strain corresponding to the bifurcation 
is 19.42%. Under undrained conditions, the major principal strain corresponding to the bifurcation 
is 19.14%. As shown in Fig. 9(b), (c) and (c), the bifurcation appears in the strain-hardening 
regime of the stress-strain curve for saturated clays under fully drained conditions, while the 
bifurcation appears in the strain-softening regime of the stress-strain curve for saturated clays. 

 
4.3 Comparison of numerical simulation and analytical solution 
 
Table 2 summarises the results of analytical and numerical bifurcation solutions for saturated 

over-consolidated clays under undrained and fully and partially drained conditions along different 
 
 

Table 2 Bifurcation points by analytical and numerical analyses 

 
 (°) 

-30 -15 0 15 30 

Saturated clay 
under fully drained 

conditions 

Analytical 
Not 

bifurcated
Bifurcated 
(5.18%) 

Bifurcated 
(6.33%) 

Not 
bifurcated 

Not 
bifurcated

Numerical 
Not 

bifurcated
Bifurcated 

(5.5%) 
Bifurcated 

(5.3%) 
Bifurcated 

(6.3%) 
Not 

bifurcated

Saturated 
clays 

Partially 
drained 

conditions 

Analytical 
Not 

bifurcated

Bifurcated 
(6.5%) 

(unrelated to )

Bifurcated 
(critical point

 =33) 
(related to  )

Not 
bifurcated 

Not 
bifurcated

Numerical 
Not 

bifurcated

Bifurcated 
(3.0%~3.6%)

(unrelated to k)

Bifurcated 
(4.7%~5.5%)

(unrelated to k)

Bifurcated 
(8.6%~19.42%) 

(k larger, 
bifurcation 

appear earlier) 

Not 
bifurcated

Undrained 
conditions 

Analytical 
Not 

bifurcated
Bifurcated 
(6.33%) 

Not bifurcated Not bifurcated 
Not 

bifurcated

Numerical 
Not 

bifurcated
Bifurcated 

(6.2%) 
Bifurcated 

(8.1%) 
Bifurcated 
(19.1%) 

Not 
bifurcated

Note: (  ) represents the value of major principal strain at bifurcation points 
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three-dimensional stress paths. The values in brackets (such as 5.5%) in the table represent major 
principal strains at which bifurcation occurs. As shown in Table 2, when the Lode angle is -30° or 
30°, the analytical and numerical solutions are not bifurcated. When the Lode angle is -15°, both 
the analytical and numerical solutions are bifurcated. Under partially drained condition, from the 
analytical results the bifurcation always takes place regardless of ζ value (Fig. 7(b)), and from the 
numerical results the bifurcation takes place regardless of k value (Fig. 9(b)). When the Lode angle 
is 0°, the analytical bifurcation solution occurs for saturated clay under fully drained conditions 
but does not occur for saturated clays under undrained conditions, while the occurrence of 
bifurcations depends on the parameter ς under partially drained conditions. When the Lode angle 
is 15°, bifurcation occurred in the analytical and numerical solutions. For saturated clays under 
partially drained conditions, a large permeability coefficient k resulted in an early appearance of 
bifurcation. The bifurcation predicted by the numerical solution is more likely to occur than that 
by analytical solutions along the same stress paths because the pore water pressure and effective 
stress distribution from numerical simulation are not uniform in the specimens, which causes the 
stress path in some units to deviate from the original stress path, culminating in bifurcation. 

 
 

5. Conclusions 
 
Based on a three-dimensional elastoplastic constitutive model for over-consolidated clays, an 

acoustic tensor and discriminator of the bifurcation for strain localization of saturated clays under 
undrained and fully and partially drained conditions are given explicitly. The theoretical analysis 
shows that, for saturated clays under fully drained conditions, bifurcation occurs in the 
strain-hardening regime for Lode angles between -23.5° and 4°, while no bifurcation occurs at 
Lode angles in the ranges of -30°~-23.5° and 4°~ 30°. However, for saturated clays under 
undrained conditions, bifurcation occurs in the strain-softening regime for Lode angles in the 
range of -23°~ -1°, while no bifurcation occurs at Lode angles in the ranges of -30°~-23° and -1°~ 
30°. Numerical analyses of cubic specimens for the bifurcation of saturated over-consolidated 
clays under undrained and fully and partially drained conditions are conducted using ABAQUS 
with the UH model, which shows the similar bifurcation behaviour obtained from analytical 
analyses for overconsolidated clays in three-dimensional stress states and various drainage 
conditions. 
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Appendix 
 
The elasto-plastic constitutive tensor of the UH model (Yao et al., 2009) is written as 
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in which L and G are Lame’s constants, p is the mean principal stress, v is Poisson’s ratio, I1, I2 
and I3 are the first, second and third stress invariants, respectively, and skl is the deviatoric stress 
tensor. ij~  is a transformed stress tensor based on the Matsuoka-Nakai’s criterion (1974), and 
p~  and q~  are the mean and deviatoric stresses in the transformed stress space. For details of the 

transformed stress, see Matsuoka et al. (1999). 
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