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Abstract.  This paper presents an elasto-plastic model for determination of the ground response curve of a 
circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear 
Hoek–Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to 
calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric 
and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic 
analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the 
equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding 
the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which 
parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic 
boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed 
for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of 
examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on 
ground response curve appropriately. 
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1. Introduction 
 

Convergence-confinement method is the most commonly frequently applied approach for 

tunnel design and analysis. Using this approach, the ground response curve (the relationship 

between the decreasing internal pressure and increasing radial displacement) is determined based 

on ground convergence to the internal pressure of the tunnel and ground behavior is demonstrated 

based on this curve during the tunnel excavation. The solutions presented for ground response 

analysis are categorized in two groups: closed-form analytical solutions and unclosed 

numerical-analytical solutions. Because of the occasional application of a large number of 
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simplifying assumptions, the closed-form solutions are considered as approximate, while unclosed 

analytical-numerical approaches yield more accurate solutions since they evaluate rock mass 

behavior using a more sophisticated approach. 

When tunnel excavation is performed below the water table, tunnel behavior can be affected by 

the seepage. When tunnel excavation is performed below the water table, tunnel behavior can be 

affected by the seepage. Tunnels below groundwater table can be either sealed or drained. Sealed 

tunnel does not influence the groundwater condition and in situ water pressure is completely 

absorbed by the lining. Thus, a heavier support is required; otherwise, the lining element may fail 

causing failure of the rock mass surrounding the tunnel. In fact, based on the convergence- 

confinement method, it is important to note that most of the loading should be carried by the rock 

and not by the lining. On the other hand, in a drained tunnel, a seepage flow will be developed. 

The seepage flow and the pore water pressure, developed around the tunnel, affect the responses of 

the lining and of the rock mass significantly. In a tunnel with permeable lining below groundwater 

table, the effective stress law must be applied in the analysis. In this condition, the applied inward 

seepage body forces are generated by the hydarulic gradients (Fahimifar et al. 2015). 

As compared to a tunnel in a dry condition, the induced inward seepage loads in a tunnel below 

groundwater table (underwater tunnel) increase the tunnel convergence significantly. Therefore, to 

design underwater tunnels, it is required to perform a powerful analysis taking into account the 

hydro-mechanical aspects of tunnelling. 

Once the plastic zone is developed around the tunnel periphery, the gravitational forces induced 

by the weight of plastic zone affect the response curve significantly. In fact, gravitational loading 

differs for various directions around the tunnel periphery, and, for the same internal pressure, 

convergence of the crown is expected to be larger than that of the walls and floor, because of the 

weight of the failed material on the top of the tunnel. 

To derive ground response curve of circular tunnels, a number of analytical solutions have been 

proposed based on the brittle-plastic and perfectly plastic behavior models and considering linear 

Mohr-Coulomb failure criterion and nonlinear Hoek-Brown failure criterion (Brown et al. 1983, 

Detournay and Fairhurst 1987, Wang 1996, Carranza-Torres and Fairhurst 1999, Sharan 2003, 

2005, Carranza-Torres 2004, Park and Kim 2006). 

Brown et al. (1983), Alonso et al. (2003), Park et al. (2008), and Lee and Pietruszczak (2008) 

proposed analytical-numerical elastoplastic methods considering the strain-softening behavior for 

determination of the ground response curve; however, the effect of gravitational and seepage loads 

have not been taken into account in these approaches. 

Brown and Bray (1982), Lee et al. (2006), Shin et al. (2007) and Fahimifar et al. (2014) 

considered the effects of seepage and pore water pressure in their solutions; nevertheless, study of 

the analytical approaches reveal that the effective stress has not been received adequate attention, 

since the analyses are performed based on the total stress. It must be noted that rock mass strength, 

stress fields, and deformation are, indeed, controlled by effective stress and seepage body forces. 

Fernandez (1994), Fahimifar and Zareifard (2009), Shin et al. (2010, 2011) presented their 

analytical models considering effective stress (rather than total stress) and seepage body forces. 

Through the Fernandez (1994) method, an elastic analysis was proposed by considering the 

seepage body forces. In addition, Fahimifar and Zareifard (2009) proposed a novel elastoplastic 

solution for analysis of the underwater tunnels taking into account the rock mass strain-softening 

behavior. In this model, seepage was modeled using a combination of Kolymbas accurate seepage 

model (Kolymbas and Wagner 2007) (for elastic zone) and radial seepage model, taking into 

account the hydromechanical coupling for the rock mass (in the plastic zone). 
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Shin et al. (2010, 2011) proposed a new elastoplastic model on the basis of Mohr-Coulomb 

failure criterion regarding the brittle-plastic behavior; however, despite their complexity, these 

methods do not provide a solution for computing the pore water pressure distribution. One of the 

few proposed solutions for tunnel analysis in which the gravitational loadings are taken into 

account is the one presented by Zareifard and Fahimifar (2012). 

In the present research, an elastoplastic model is proposed for determination of ground response 

curve by considering the seepage body forces and gravitational loads. In this regard stress, strain, 

and pore water pressure are determined at different directions at the tunnel periphery. Considering 

the axisymmetric condition, for calculating stress, strain, and deformation at different directions of 

tunnel periphery, the body forces induced by gravitational loads and the pore water pressure in a 

given direction are generalized to all directions around the tunnel and then boundary conditions are 

applied. Therefore, simultaneous study of the effect of these two factors (pore water pressure and 

gravitational loads) leads to more accurate results as compared to those of other methods. 

 

 

2. Model assumption and governing equations 
 

Fig. 1 illustrates an underwater tunnel with radius of r0 under internal pressure of Pi in a rock 

mass with initial uniform effective stress of    and uniform hydrostatic pressure of Pwo. As 

shown in Fig. 1, two different zones may be formed around the tunnel: the external elastic zone, 

and the internal plastic zone, which may be divided into the softening zone and the residual zone. 

As tunnel excavation initiates, a non-uniform pore water pressure is developed from the tunnel 

boundary to the radius of Rw, named as seepage radius. As the radial distance increases from Rw, 

water pressure indicates no change. 

Fig. 1 shows the seepage forces and stress components on each abcd rock mass element around 

the tunnel. Considering the equilibrium relationship in radial direction for element abcd, Eq. (1) is 

obtained as follows 
 

0)(
2

cos
2

cos

2
sin

2
sin)(   



























































































rrFgFsrr

rrrrrr
r

rrr
r

r

r
r

r

      (1) 

 

Where, r  : effective radial stress;   : effective circumferential stress; Fsr: seepage body force in 

radial direction; and Fgr is body force induced by gravitational loads in radial direction. 

A similar equation is also obtained for circumferential direction. Assuming ∂θ as an 

infinitesimal value and simplifying Eq. (1), the equilibrium equations in radial and circumferential 

directions are obtained as Eqs. (2)-(3) 
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In Eqs. (2)-(3), Fsr and Fsθ, are the seepage body forces in radial and circumferential directions, 
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Fig. 1 Geometry of the problem 

 

 

respectively and are expressed as Eqs. (4)-(5) 
 

wrr iFs                                (4) 

 

wiFs                                 (5) 

 

Where, ir and iθ are hydraulic gradients in r and θ directions, respectively, and γw is specific 

weight of the water. 

Also,  in Eqs. (2)-(3), Fgr and Fgθ, are the body forces induced by gravitational loads in the 

plastic zones, and are expressed as 

 sinrFg                              (6) 

 

 cosFg                              (7) 

 

Where, γ is the saturated specific weight of the rock mass. 

As Fgr and Fgθ are gravitational body forces induced by the weight of fractured rock mass in 

the plastic zone, the seepage body forces (Eqs. (4)-(5)) are only considered in the analysis of the 

elastic zone. 

Obtaining an exact elasto-plastic analytical solution for Eqs. (2)-(3) is extremely complicated 

and even impossible in more cases, because the principal effective stresses may rotate in each 

direction. For simplifying the problem, a number of assumptions are made: 

Through the axisymmetric condition all quantities such as geometry, initial field stresses and 

pore water pressure are assumed as independent of θ. Thus, uθ, , r
  γrz, and γθz will be zero. To 

evaluate the effect of gravitational loads and variations of pore water pressure, the equations were 

derived for various directions around the tunnel (crown, wall, and floor). For each direction, 

boundary conditions and the applied loads were generalized to all directions because of the 

axisymmetric conditions. Terzaghi‟s effective stress equation (σ′ = σ – Pw) is applied for the rock 

mass (Terzaghi 1923), which is true in practical applications, as confirmed by the experimental 
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studies (Skempton 1961). Assuming plane strain condition, εz = γrz = 0. Considering these 

simplifications, the equilibrium relationship through radial direction is simplified as Eq. (8) 
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Under axisymmetric condition, deformation-strain relationships are expressed by Eqs. (9)-(11): 

(Timoshenko and Goodier 1982) 
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Where, u indicates radial deformation and, εr and εθ denote radial and circumferential strains, 

respectively. 
 

 

3. Hydraulic analysis 
 

In this research, the seepage model proposed by Ming et al. (2010) is used. Ming et al. (2010) 

presented a seepage model for underwater tunnels using conformal mapping. This model is highly 

efficient in analysis of shallow to deep tunnels under different conditions, since it produces 

separate equations in two cases of constant hydraulic head and constant pore water pressure at the 

tunnel surface; besides it considers exact boundary conditions. The proposed model is based on the 

following assumptions: 
 

 The circular tunnel is in a saturated, homogeneous and isotropic aquifer. 

 The flow is in steady state. 

 Water pressure is considered as constant at the tunnel surface. 

 No change is induced in the groundwater table because of seepage flow 
 

Fig. 2 shows the geometry of Ming‟s model. In the case that pore water pressure is constant at 

the tunnel surface, pore water pressure distribution in Ming‟s model can be expressed in all 

directions around the tunnel in terms of (r, θ) coordinates as Eq. (12) (Fahimifar et al. 2014) 
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Also, hydraulic head distribution is obtained from the Bernoulli‟s equation 
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Fig. 2 Geometry of the seepage model 
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4. Behavior model 
 

The rock mass is assumed to exhibit strain-softening behavior, which can be reduced to the 

perfect elasto-plastic or elasto-brittle-plastic cases. In the strain-softening behavior model, the rock 

mass will behave as elastic until the failure criterion is satisfied. Then, the rock mass strength 

gradually decreases and reaches its residual strength. Such behavior is generally characterized by a 

failure criterion and a plastic potential function (Fig. 3). 

The gradual transition from an initial failure criterion to a residual failure criterion is controlled 

by a softening parameter. In the present study, the deviatoric plastic strain 
p
r

p     is 

employed as the softening parameter. Although there is no universal approach for defining the 

strain-softening parameter, the above mentioned softening parameter (Alonso et al. 2003) is the 

most widely accepted one. 

Here, the Mohr-Coulomb criterion is used as plastic potential function for a non-associated 

flow rule. For the Mohr-Coulomb type of plastic potential function, the relation between the 

plastic parts of the radial and circumferential strain increments is obtained as follows (Alonso et al. 

2003): (Fig. 3) 
pp

r K                               (14) 
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(a) (b) 

Fig. 3 Strain-softening behavior model (Alonso et al. 2003) 

 

 
Where, Kψ is the dilation factor, and is given as (Alonso et al. 2003) 
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In Eq. (15), ψ is the dilation angle and varies as a function of the softening parameter η. 

The rock mass is assumed to obey the Hoek-Brown failure criterion, given by: (Hoek and 

Brown 1980) 
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In which,  1  and r 3  are the major and minor principal stresses at the failure,  

respectively; c  is the uniaxial compression strength of the intact rock; m and s are strength 

parameters of the rock mass; and a is exponential coefficient related to the Hoek-Brown failure 

criterion. In this research, a is considered as 0.5. 

In contrast to the solution presented by Brown et al. (1983), the solution proposed in this work 

considers the elastic strains induced in the plastic zone. Therefore, total strain is divided into two 

parts, elastic and plastic strains 
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It should be noted that in the plastic zone, the failure and dilation parameters (m, s and ψ), 

appearing in Eqs. (15)-(16), can be described by a bilinear function based on the deviatoric plastic 

strain η (Alonso et al. 2003) 
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Where w represents one of the parameters m, s and ψ, and 
*  is the critical deviatoric plastic 

strain from which the residual behavior starts, and should be identified by experiments. The 

subscripts „p‟ and „r‟ denote the peak and residual values, respectively. 

A comparison between the equations produced by two strain-softening models (i.e., Alonso et 
al. 2003, Brown et al. 1983) revealed that the parameter 

*  can be estimated as Eq. (19): (Park et 
al. 2008) 
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Where, α is a parameter indicating the length of strain-softening zone in the method of Brown 

et al. (1983). 

 

 

5. Analysis of the plastic zone 
 

By substituting the seepage body forces and gravitational loads in Eq. (8), Eq. (20) is derived as 

follows 
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By substituting the Hoek-Brown failure criterion in right hand of Eq. (20), one can derive the 

equilibrium equation in the plastic zone as Eq. (21) 
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Since functions – γ sin θ and 
dr

dHw
w  depend on the direction angle, different equilibrium 

equations are derived for different directions at tunnel periphery. 

As mentioned, unlike Brown et al. (1983) model, which considers unchanged elastic strain 

throughout the plastic zone, the model proposed in this work considers the increment of elastic 

strain separately. The relationships between the elastic strain increments and the effective stress 

increments r   and    are given by Hook‟s law (Timoshenko and Goodier 1982) 
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Since a multi-linear behavior model and the incremental theory of plasticity have been used, 

the governing equations on the stresses and strains in the plastic zone have no analytical solutions, 

and must be solved numerically, as presented in Appendix A. 
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6. Analysis of the elastic zone 
 

To estimate the effective stress in the elastic zone, the superposition principle is used, through 

which the total effective stress in the elastic zone is composed of the sum of initial ground stress 

) ,(  
r , the extra stress induced by the tunnel excavation )  ,( )()( eer    and the extra stress 

induced by seepage body forces )  ,( )()( ssr    
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In addition, ground deformation, due to excavation and seepage through the radial direction is 

obtained from the sum of radial deformations induced by both excavation and the seepage 
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Before excavating the tunnel, the rock mass is in uniform equilibrium state. To simulate this 

situation, the elastic deformation and strains of rock mass induced by initial hydrostatic field stress 

o   under axisymmetric and plane strain conditions are calculated using Eqs. (26)-(27) 
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In this regard, the initial ground stresses are determined using Eq. (28) 
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It must be noted that, initial deformation and strains, derived from Eqs. (26)-(27), are not 

incorporated in the calculation of total deformation and strains induced by the excavation and 

seepage (Fahimifar et al. 2015). 

 

6.1 Stresses and strains induced by the seepage in the elastic zone 
 

Governing equilibrium equation derived on the basis of induced stresses by the seepage is 

expressed as Eq. (29) 
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Where, Fsr is the seepage body force in radial direction and is expressed as Eq. (4) (Fsr = irγw). 

Substituting 
dr

dH
i w
r   in Eq. (29), Eq. (30) is obtained 
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The plain strain condition between the stresses and strains induced by the seepage is controlled 

by Hook‟s law for the elastic zone (Timoshenko and Goodier 1982) 
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Where, E and υ are elasticity modulus and Poisson‟s ratio of elastic rock mass, respectively. 

 Substituting Eqs. (31)-(32) into Eq. (30), Eq. (33) is derived for calculating the deformation 

induced by seepage in the elastic zone 
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Taking into account appropriate boundary conditions in a given direction, stresses, strains and 

deformations induced by the seepage body forces are derived by solving the differential Eq. (33) 

(see details in Appendix B). 

 

6.2 Stresses and strains induced by the tunnel excavation in the elastic zone 
 

During the tunnel excavation, excess stresses are induced due to the excavation of the 

surrounding rock mass. The governing equilibrium relationship for this induced stresses (ignoring 

the seepage body forces) is obtained as Eq. (35) 
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In the elastic zone, Hook‟s law is valid for the plain strain condition between the stresses and 

strains induced by the excavation (Timoshenko and Goodier 1982). 
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Fig. 4 Groundwater height 

 

 

(a) Shallow tunnel (h1 / r0 = 1) 
 

 

 

 

(b) Semi-shallow tunnel (h1 / r0 = 10) (c) Deep tunnel (h1 / r0 = 100) 

Fig. 5 Pore water distribution through the vertical direction above the tunnel 
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Substituting Eqs. (36)-(37) into Eq. (35), Eq. (38) is derived for calculating deformation 

induced by excavation 

0
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u

dr

du

rdr

ud ererer
                      (38) 

 

Taking into account the appropriate boundary conditions through the considering direction, 

stresses, strains and deformations induced by the tunnel excavation are derived by solving the 

differential Eq. (38). (see details in Appendix C). 

 

 

 

(a) Shallow tunnel (h1 / r0 = 1) 

 

 

 

 

(b) Semi-shallow tunnel (h1 / r0 = 10) (c) Deep tunnel (h1 / r0 = 100) 

Fig. 6 pore water distribution through horizontal direction for shallow tunnel 
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7. Validation of the proposed model 

 
The solution presented in this paper has been programmed using MATLAB code. The proposed 

solution and the computer code are used to analyze several typical tunnels, and the results obtained 

are compared with those obtained from other models. Also, the effect of various parameters on 

ground response curve is examined using the model proposed. 

 
7.1 Example 1 
 

An underwater tunnel with radius of 5 m is excavated. Using the analytical Ming and 

Kolymbas (Kolymbas and Wagner 2007) seepage models as well as numerical FLAC program, 

pore water pressure around the tunnel periphery is analyzed under various groundwater conditions: 

shallow (h1 / r0 = 1), semi-shallow (h1 / r0 = 10), and deep (h1 / r0 = 100). Where, h1 is the 

groundwater height from the tunnel crown (Fig. 4). Pore water pressure at the tunnel surface is 

considered as zero. 

Here, it must be noted that despite the different procedure and formulation of the methods 

proposed by Ming et al. (2010) and Kolymbas and Wagner (2007), the results obtained by these 

two methods are in complete agreement in all direction at tunnel periphery for shallow to deep 

tunnels. 

Fig. 5 shows water pressure distribution along the vertical axis at tunnel crown for shallow to 

deep tunnels for Ming and Kolymbas models and the FLAC program. For shallow tunnels, Ming 

and Kolymbas models give overestimate values in comparison to those of FLAC; as the results of 

these two models are 8% greater than those of FLAC. 

Fig. 6 presents pore water distributions through horizontal direction for shallow to deep tunnels 

for Ming and Kolymbas models and FLAC program which are almost the same for Ming et al. 

(2010) and Kolymbas and Wagner (2007) and FLAC program. 

Fig. 7 illustrates pore water distribution through vertical directions at floor of the tunnel for 

shallow to deep tunnels is shown for Ming and Kolymbas models and FLAC program. As shown 

in the figure, the obtained results are almost the same for Ming and Kolymbas model and FLAC 

program. 

Considering the results obtained through Figs. 5-7, Ming et al. (2010) and Kolymbas and 

Wagner (2007) models are of acceptable accuracy for computation of pore water pressure 

distribution around underwater tunnels in various directions for various depths. 

 
7.2 Example 2 
 

In this example, the proposed method is compared with Park et al. (2008) model and Brown et 

al. (1983) model in dry conditions (tunnel above the groundwater level). The data set used in 

Park‟s model is shown in Table 1. 

Figs. 8-10 exhibit ground response curve, radial and circumferential stresses using the proposed 

method, Park et al. (2008) and Brown et al. (1983) models. As the number of loops are selected 

large enough (n > 5,000), the results obtained by the proposed method are consistent with those of 

Park‟s model. To evaluate the effect of elastic strain increment in the plastic zone, a comparison 

was made between the results obtained from the proposed method and Park‟s model compared to 

those of Brown‟s model. 
Brown et al. (1983) neglected the elastic strain distribution in the plastic zone, while the 
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(a) Shallow tunnel (h1 / r0 = 1) 

 

 

 

 

(b) Semi-shallow tunnel (h1 / r0 = 10) (c) Deep tunnel (h1 / r0 = 100) 

Fig. 7 pore water distribution through vertical direction at tunnel floor 

 

 
Table 1 Data set of Park‟s model (Park et al. 2008) 

Parameter Value Parameter Value Parameter Value 

E 1380 mp 0.5 σo 3.31 MPa 

Υ 0.25 sp 0.001 Pi 0 

σc 27.6 MPa mr 0.1 a 0.5 

ϕp 30 sr 0 η
* 0.004742 

ro 5.35 m ψp 19.47 ψr 5.22 
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proposed method and Park‟s model (Park et al. 2008) consider the effects of elastic strain 

increment and dilatancy angle in the plastic zone. As shown in Figs. 8-10, using the proposed 

method and Park‟s model, compared to Brown‟s model, greater values for elasto-plastic radius and 

ground convergence are obtained. In this regard, the elasto-plastic radius and convergence of the 

tunnel increase from 12.41 and 0.89 m for Brown‟s model to 19.58 and 0.276 m in the proposed 

model (for ψp = 19.47 and ψr = 5.22), respectively. Considering the increasing peak and residual 

dilatancy angles from 0 to 19.47° and 0 to 5.22°, respectively, the elasto-plastic radius rises from 

18.62 to 19.58 m while the tunnel convergence enhances from 0.176 to 0.2765 m, respectively. 

Based on these findings, Brown et al. (1983) model gives underestimate values for the ground 

convergence and the elasto-plastic radius. 
 

 

 

Fig. 8 Comparison of the ground response curves of tunnel wall (θ = 0) using the proposed method, 

Park‟s model, and Brown‟s model (example 2) 

 

 

Fig. 9 Comparison of the circumferential stress using the proposed method (θ = 0), Park‟s model, 

and Brown‟s model (example 2) 
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Fig. 10 Comparison of radial stress using the proposed method θ = 0, Park‟s model, and Brown‟s 

model (example 2) 

 

 

Table 2 Data set of Zareifard‟s model (Zareifard and Fahimifar 2012) 

Parameter Value Parameter Value Parameter Value 

E 4000 mp 0.3 σo 10 MPa 
υ 0.25 sp 0.0001 Pi 0.5 
σc 30 MPa mr 0.1 A 0.5 
γ 28 KN/m3 sr 0 η* 0.004 
ro 3 m ψp 0 ψr 0 

 

 

 

Fig. 11 Comparison of the ground response curves using the proposed method and Zareifard‟s 

model (example 3) 
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Fig. 12 Comparison of the circumferential stresses using the proposed method and Zareifard‟s 

model (example 3) 
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Fig. 13 Comparison of the radial stresses using the proposed method and Zareifard‟s model 

(example 3) 

 

 

7.3 Example 3 
 

In this example, the effect of gravitational loads in the plastic zone is examined. The model 

proposed in this work was compared to the one presented by Zareifard and Fahimifar (2012) by 

taking into account the effect of gravitational loads induced by fractured zone weight in dry 

condition (ignoring the seepage effects). In this regard, a tunnel with the following characteristics 

is considered. 

Ground response curve, radial and circumferential stresses are evaluated using two model. The 
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results obtained from these two models are fitted with high accuracy. Taking into account the 

effect of gravitational loads, tunnel convergence and elastoplastic radius increase from floor to the 

crown of the tunnel. Therefore, the gravitational loads act as an instability factor in the crown and 

as a stability factor in the floor, respectively. However, these loads have no effect on tunnel‟s 

walls. 

 

7.4 Example 4 
 

As shown in Table 3, a tunnel is considered in a rock mass consisting of mudstone and siltstone 

at a depth of 300 m from the groundwater table. Based on these characteristics, Brown and Bray 

(1982) analyzed the given tunnel and reported the results. 

Stress and strain in the Brown and Bray‟s model (Brown and Bray 1982) are analyzed using 

total stress in the equilibrium equations, ignoring the separate analysis of the body forces. Besides, 

the effects of dilatancy angle and elastic strain increment are ignored in the plastic zone, while the 

radial seepage forces are applied. 

On the other hand, in the model proposed by Fahimifar and Zareifard (2009), despite taking 

into account the seepage body forces and more accurate analysis in the elastic zone by using the  
 

 

Table 3 Data set of Brown and Bray method (Brown and Bray 1982) 

Parameter Value Parameter Value Parameter Value 

E 20000 MPa mp 0.65 σo 27 MPa 
υ 02 sp 0.2 Pi 1.98 MPa 
σc 40 MPa mr 0.2 ro 3.0 m 
ϕc 30 sr 0.0001 h 300 m 
a 0.5 Pwo 2.3 MPa   

 

 

Fig. 14 Comparison of radial and circumferential stresses using the proposed method (θ = 0), 

total stress method, and Brown& Bray method (example 4) 
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Fig. 15 Comparison of the ground response curves of tunnel wall (θ = 0) using proposed method, 

total stress method, and Brown & Bray method (example 4) 

 

 
non-radial seepage model of Kolymbas and Wagner (2007), the effects of dilatancy angle and 

elastic strain increment were not considered in the plastic zone. However in the proposed method, 

not only the seepage body forces are considered using the accurate seepage model of Ming et al. 

(2010), but the elastic strain increment is also calculated in the plastic zone with respect to the 

dilatancy angle, and the effects of these angle variations on the tunnel performance in the plastic 

zone are also taken into account. 

Fig. 14 illustrates variations of σθ and σr versus radial distance based on Brown & Bray method, 

total stress method, and the proposed method. In addition, the ground response curves obtained on 

basis of Brown and Bray (1982), Fahimifar and Zareifard (2009), total stress methods, and the 

method proposed in this work are shown in Fig. 15. As the elastic strain increment in the plastic 

zone is applied in the proposed method and in the total stress method, greater values are obtained 

for the elasto-plastic radius as compared to Brown and Bray method. Since, the seepage body 

forces and the effective stresses are considered separately in the proposed method (unlike the total 

stress method), greater ground convergence and elasto-plastic radius are obtained. In this respect, 

for a constant dilatancy angle (ψ = 0) the ground convergence and the elasto-plastic radius are 

 
 
Table 4 Characteristics of the studied tunnel 

Parameter Value Parameter Value Parameter Value 

E 4000 mp 0.3 σo 10 MPa 
υ 0.25 sp 0.0001 Pi 0.5 
σc 30 MPa mr 0.1 a 0.5 
γ 28 KN/m3 sr 0 η* 0.004 
ro 3 m     

341



 

 

 

 

 

 

Ahmad Fahimifar, Hamed Ghadami and Masoud Ahmadvand 

0.1185 m and 20.0439 m, respectively for total stress method and 0.142 m and 21.3649 m, 

respectively for the proposed method. 

The range of seepage radius (R2) (external radius of the rock zone affected by the seepage) in 

the Brown and Bray (1982) method was 150 m while it was considered as infinite in the Fahimifar 

and Zareifard (2009) method. In this example, this range was considered as equal to the 

groundwater level (300 m) using the proposed method. However, the variation of Rw affects the 

elasto-plastic radius and convergence of the tunnel; as in the proposed method, the change in Rw 

from 150 m to infinite, leads to an increase at the elasto-plastic radius and convergence of the 

tunnel from 21.096 m and 0.138 m to 22.00 m and 0.1524 m, respectively. 

 

 

8. Effective parameters on ground response curve 
 

In this part, effects of the variation of different parameters on the ground response curve are 

examined. Table 4 presents characteristics of the studied tunnel. 

Fig. 16 indicates effect of dilatancy angle on ground response curve by keeping other 

parameters unchanged. An increase in dilatancy angle from 0 to 15° results in an increase in the 

ground convergence from 0.1116 to 0.454 m. In addition, by considering varying peak and 

residual dilatancy angles equal to 15 and 0°, respectively, the tunnel tends to show a behavior 

similar to that of 15° dilatancy angle in the vicinity of elastoplastic boundary (strain softening 

zone) and a behavior similar to that of 0° dilatancy angle in the zone at the vicinity of tunnel 

boundary (residual zone) and would have convergence of 0.1645 m. 

Fig. 17 indicates ground response curve of the crown, wall, and floor of the underwater tunnel. 

As shown in the figure, considering the effect of gravitational loads, ground convergence varies 

from 0.0894 m at the tunnel wall to 0.1055 and 0.0778 m at its crown and floor, respectively. Thus, 

the gravitational loads lead to an 18% increase in the crown convergence and a 14% decrease in 

the floor convergence as compared to the wall convergence. 

 

 

 

Fig. 16 The effect of dilatancy angle on GRC of tunnel wall (h = 300 m, Rw = ∞) 
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Fig. 17 GRC of crown, wall and floor (The effect of gravitational loads) (h = 300 m, Rw = 300 

m, ψp = ψr = 7.5°) 

 

 

Fig. 18 The effect of groundwater height on GRC of tunnel wall (Rw = ∞, ψp = ψr = 7.5°) 

 

 
Fig. 18 shows the effect of groundwater height on the ground response curve. As shown in the 

figure, an increase in water height from dry condition to 300 m results in an increase in the tunnel 

convergence from 0.1697 m to 0.2037 m. 

Fig. 19 shows the effect of variations in seepage radius (the external boundary subject to the 

seepage) on the ground response curve. In the case, in which a zone is considered under effect of 
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Fig. 19 The effect of seepage radius on GRC of tunnel wall (h = 300 m, ψp = ψr = 7.5°) 

 

  

(a) Crown (b) Floor 

Fig. 20 The effect of seepage and gravitational loads on GRC of tunnel (ψp = ψr = 7.5°) 

 

 

infinite seepage, clearly, greater values are obtained for tunnel convergence and the elastoplastic 

radius, as compared to a finite seepage radius and the total stress method (Fahimifar et al. 2014). 

Fig. 20 illustrates ground response curve for the tunnel crown and floor, considering different 

conditions. As the figure shows, both seepage and gravitational loads lead to increase the 

convergence and thus the instability of the tunnel crown. Since, the maximum seepage radius for 

the vertical direction above the tunnel is considered as the groundwater height (Rw = h), the 
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seepage is of less significance on the ground response curve in comparison to the gravitational 

loads. Simultaneous effect of two seepage and gravitational loads leads to an increase in tunnel 

convergence from 0.1578 m to 0.1928 m. At tunnel floor, seepage and gravitational loads result in 

an increase and a decrease in tunnel convergence, respectively. However, in the case in which 

seepage radius in vertical direction at the tunnel floor is assumed as infinite, seepage effect 

outweighs the gravitational loads and the convergence increases from 0.1578 to 0.1726 m by 

simultaneous consideration of both factors. On the other hand, if seepage radius is assumed as 

finite, effect of gravitational loads outweighs the seepage, and the tunnel convergence reduces 

from 0.1578 to 0.135 m by simultaneous consideration of both parameters as compared to the 

initial conditions (ignoring the effects of seepage and gravitational loads). 
 
 

9. Conclusions 
 

In this paper, an analytical-numerical solution for determination of ground response curve of a 

circular underwater tunnel excavated in a Hoek-Brown strain-softening rock mass was presented, 

considering the seepage body forces and gravitational loads. The problem is considered in 

axial-symmetry condition and thus, the initial stress state was assumed to be hydrostatic. Through 

the developed previous seepage models, a more accurate model was proposed for calculation of 

pore water pressure and hydraulic head distribution in all directions around underwater tunnels. 

The proposed model compared and validated with several analytical elastoplastic models of tunnel 

under dry and saturated conditions. The concluding remarks are summarized as follows: 
 

 The results clearly revealed that more accurate investigation of ground response curve of a 

circular underwater tunnel is possible by incorporating the proposed solution, whereas the 

variations of displacement are underestimated by assuming plastic behavior model used by 

Brown and Bray (1982). 

 For the hydraulic analysis, the accurate non-radial Ming‟s model (Ming et al. 2010) was 

developed to model distribution of pore water pressure around the tunnel. Considering the 

results derived from Ming‟s model, compared to those obtained by Kolymbas and Wagner 

(2007) method and FLAC program, it was observed that Ming‟s model involves appropriate 

accuracy for analysis of seepage in shallow to deep underwater tunnels. 

 It was shown that the flow of groundwater into tunnels results in significant effect on 

ground response curve. In comparison with dry condition, seepage flow into a tunnel 

induces seepage forces, and consequently increases the tunnel convergence. 

 By increasing dilatancy angle, plastic strain rises in each loop which in turns leads to an 

increase in the displacements. Moreover, taking into account the effects of effective stress 

and seepage body forces, convergence of the tunnel enhances in comparison to the total 

stress method. 

 In fact, gravitational loading differs for various directions around the tunnel. Taking into 

account the effect of gravitational loads on ground response curve, a greater deformation is 

obtained for tunnel crown as compared to its wall and floor. 

 For determination of ground response curve at tunnel crown and floor, the effects of seepage 

and gravitational loads are needed to be considered simultaneously. Seepage acts upon 

increasing the deformation at all directions in tunnel periphery. Nevertheless, gravitational 

loads lead to an increase in displacement of tunnel crown and a decrease in displacement of 

floor; while they do not affect the ground response curve at tunnel wall. As the effects of 
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gravitational loads and the seepage forces in the analyses can be noticeable, ignoring each of 

them can lead to significant errors in the corresponding calculations. 
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Nomenclature 
 

r radial distance from the center of the tunnel  r depth of the tunnel from ground surface 

θ 
angle measured clockwise from horizontal 

direction 
 ir hydraulic gradient 

σr Radial stress  Hw hydraulic head 

σθ circumferential stress  wP
 pore water pressure 

σ1 major principal stress  o
 initial stress 

σ3 minor principal stress  Pi tunnel internal pressure 

εr radial strain  γw specific weight of water 

εθ circumferential strain  Rw 
external radius of the rock zone affected by 

the seepage 

ε1 major principal strain  η* 
parameter indicating the length of strain- 

softening zone in Alonso‟s method 

ε3 minor principal strain  η strain-softening function 

w expresses parameters m, s, σc, ψ  α 
parameter indicating the length of strain- 

softening zone in Brown‟s method 

wp parameters m, s, σc, ψ for intact rock mass  Fr body forces in radial direction 

wr Parameters m, s, σc, ψ for broken rock mass  Fθ body forces in circumferential direction 

w  Parameters m, s, σc, ψ for different elements  γ specific weight of rock mass 

m, s 
Material constants of Hoek-Brown failure 

criterion 
 Pwo Hydrostatic water pressure 

ψ dilatancy angle  Superscripts 

c
 uniaxial compressive strength of intact rock  p 

refers to quantities corresponding to plastic  

zone 

E deformability modulus of rock mass  E 
refers to quantities corresponding to elastic 

zone 

υ poisson‟s ratio of rock mass  Prime  Denotes effective stress 

ϕp friction angle  Subscripts 

a 
exponential coefficient of Hoek-Brown 

criterion 
 e 

refers to quantities corresponding to 

excavation 

ro radius of tunnel  s 
refers to quantities corresponding to seepage 

body forces 

re elastoplastic radius  in 
refers to quantities corresponding to initial 

state 
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Appendix A: Stress-strain analysis in plastic zone 
 

 

Using Eq. (21), the equilibrium equation in plastic zone is obtained as Eq. (A1) 
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Since introducing a closed-form solution is impossible for solving the above differential equation, 

the equations are solved using the numerical solution of finite difference method (FDM). Using 

the numerical FDM solution of Eq. (A1), radial stress in each ring can be solved as Eq. (A2) 
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To calculate radial and circumferential strains, deformation-strain relationships of the 

axisymmetric condition are used. Unlike the model proposed by Brown et al. (1983), which 

assumes a constant elastic strain throughout the plastic zone, the proposed model is able to 

calculate increments of the elastic strain separately. Accordingly, the total strain is divided into 

two components; elastic and plastic strains 

 



































p

p
r

e

e
rr

 










                           (A4) 

 

By substituting Eq. (A4) into Eq. (11) and using numerical FDM solution, )(ip
  (increment of 

circumferential plastic strain) is obtained as Eq. (A5) (Fahimifar et al. 2014): 
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Where, ψ denotes dilatancy angle. 

In Eq. (A5), εθ (i − 1) and εr (i − 1) are circumferential and radial strains calculated in the previous 

loop (i − 1), respectively. Here, )(ip
  and )(ip

r  (circumferential and radial elastic strain 

increments) also are obtained from Eq. (A8) 
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After calculating )(ip

  from Eq. (A5), )(ip
r  can be derived from Eq. (A9) 
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Also, the strain-softening parameter (η) for each loop is estimated as Eq. (A10) 
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In this step, the plastic strain can also be calculated using the parameters obtained from previous 

steps 
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And the total circumferential and radial strains are expressed as the sum of elastic and plastic 

strains using Eq. (A12) 
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Finally, through calculating the total circumferential strain, deformation also can be obtained using 

Eq. (A13) 

 

)()()( iriiu                              (A13) 

 

To perform the analysis, by assuming an elasto-plastic radius (re), calculations are performed at the 

elasto-plastic boundary. Then, by taking the initial values for stress, stain and deformation 

obtained at the elasto-plastic boundary as initial values, equations of plastic zone are 

numerically solved until the value of the radial stress for a specific r(n) (i.e., )(nr  ) reaches Pi. 

The calculations are continued until the analysis converges. 
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Appendix B: Stress-strain analysis in elastic zone 
 

 

Based on Eq. (33), Eq. (B1) is obtained for deformation induced by seepage in elastic zone 
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Considering different boundary conditions and hydraulic head distributions at different directions 

around tunnel periphery, stress, strain, and deformation induced by seepage forces are obtained 

for horizontal and vertical directions as follows: 

 

B.1 Horizontal direction (θ = 0°, Along the tunnel walls) 
 

Considering Eq. (13), hydraulic head distribution through horizontal direction (θ = 0°) is obtained 

using Eq. (B3) 
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By differentiating Eq. (B3), Eq. (B4) is obtained 
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By replacing the above equation for differentiation of hydraulic head in deformation Eq. (B1), Eq. 

(B8) is derived 
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By solving Eq. (B8), deformation, strain, and stress induced by seepage forces along the horizontal 

direction in the elastic zone, are obtained through Eqs. (B9)- (B13) 
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In Eqs. (B9)-(B13), constants C1 and C2 are obtained by applying the boundary conditions. 

In the case of considering the range of seepage radius as infinite through horizontal direction, the 

boundary conditions are considered as Eq. (B14) 
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By considering the boundary conditions according to Eq. (B14), constants C1 and C2 are obtained 

as Eqs. (B15)-(B16) 
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When the range of seepage radius through horizontal direction is considered as a finite value (Rw), 

the boundary conditions are considered using Eq. (B17) 
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By considering the boundary conditions according to Eq. (B17), constants C1 and C2 are derived as 

Eqs. (B18)-(B21) 
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B.2 Vertical direction (θ = 0°, Along the tunnel crown) 
 

Considering Eq. (13), hydraulic head distribution through the direction (θ = 90°) (along the tunnel 

crown) is obtained using Eq. (B22) 
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By differentiating Eq. (B22), Eq. (B23) is obtained 
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Where 
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By replacing the above equation for differentiation of pore water pressure in deformation Eq. (B1), 

Eq. (B27) is derived 
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Solving Eq. (B27), deformation, strain, and stress induced by seepage forces in the direction θ = 

90° in the elastic zone are obtained through Eqs. (B28)-(B32) 
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In Eqs. (B28)-(B32), constants C1 and C2 are obtained by applying the boundary conditions. When 

the range of seepage radius is considered as a finite value (Rw) in the direction θ = 90°, the 

boundary conditions are considered using Eq. (B17) 
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By considering the boundary conditions according to Eq. (B17), constants C1 and C2 are derived as 

Eqs. (B33)-(B34) 
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B.3 Vertical direction (θ = 270°, Along the tunnel floor) 
 

Considering Eq. (13), hydraulic head distribution through the direction θ = 270° (along the tunnel 

floor) is obtained using Eq. (B35) 
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By differentiating Eq. (B35), Eq. (B36) is obtained 
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By replacing the above equation in deformation Eq. (B1), Eq. (B40) is derived 
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Solving Eq. (B40), deformation, strain, and stress induced by seepage through the direction θ = 

270° in the elastic zone are obtained through Eqs. (B41)-(B45) 
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In Eqs. (B41)-(B45), constants C1 and C2 are obtained through applying the boundary conditions. 

In the case of considering the range of seepage radius as infinite through the direction θ = 270°, 

the boundary conditions are considered as Eq. (B14) 
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By considering the boundary conditions according to Eq. (B14), constants C1 and C2 are obtained 

as Eqs. (B46)-(B47) 
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Appendix C: Stresses and strains induced by the tunnel excavation in elastic zone 
 

 

Based on Eq. (38), Eq. (C1) is obtained for deformation induced by the tunnel excavation in elastic 

zone 
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The differential Eq. (C1) can be solved using the boundary conditions in the interior and exterior 

boundaries of the elastic zone. Considering the boundary conditions as )()()( eerer r   in r = re 

and 0)( 
er  in r → ∞ stresses, strains and deformation induced by excavation can be calculated 

using Eqs. (C2)-(C4) (Zareifard and Fahimifar 2012) 
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Where )()( eer r   is the radial stress induced by the tunnel excavation at the elasto-plastic boundary 

and is obtained using Eq. (C5) 
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The total stresses at the elasto-plastic boundary )()( ee r   and )( er r   must satisfy the failure 

criterion. Thus, by substituting in the Hoek-Brown failure criterion and solving the derived 

equation, total radial stress at the elasto-plastic boundary is obtained as Eq. (C6) 
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