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Abstract.  In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position 
is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic 
distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces 
of the beam without using shear correction factors. The neutral surface position for a functionally graded 
plate which its material properties vary in the thickness direction is determined. The mechanical properties 
of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution 
in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation 
plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the 
principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with 
Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume 
fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified 
by comparing the obtained results with the existing solutions. 
 

Keywords:   mechanical properties; functionally graded material; neutral surface position; shear 
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1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have continuous variation 
of material properties from one surface to another and thus eliminate the stress concentration 
found in laminated composites. A typical FGM is made from a mixture of two material phases, for 
example, a ceramic and a metal. The reason for the increasing use of FGMs in a variety of 
aerospace, automotive, civil, and mechanical engineering structures is that their material properties 
can be tailored to different applications and working environments (Reddy 2000, El Meiche et al. 
2011, Talha and Singh 2011, Jha et al. 2011, Ebrahimi 2013, Houari et al 2013, Attia et al. 2015, 
Bachir Bouiadjra et al. 2013, Tounsi et al. 2013, Saidi et al. 2013, Bessaim et al. 2013, 
Chakraverty and Pradhan 2014, Hebali et al. 2014, Khalfi et al. 2014, Belabed et al. 2014, 
Swaminathan and Naveenkumar 2014, Zidi et al. 2014, Hamidi et al. 2015). Now, FGMs are 
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developed for general use as structural components in extremely high temperature environments. 
Several studies have been performed to analyze the mechanical or the thermal or the 
thermomechanical responses of FG plates and shells. Reddy (2000) has analyzed the static 
behavior of functionally graded rectangular plates based on his third-order shear deformation plate 
theory. Jha et al (2011) presented static stress analysis response of FG plates based on higher order 
shear and normal deformation theory. Taj et al. (2013) conducted static analysis of FG plates using 
higher order shear deformation theory. Transverse shear stresses are represented as quadratic 
through the thickness and hence it requires no shear correction factor. Benachour et al. (2011) 
studied the free vibration of FG plates with an arbitrary gradient. A higher order shear deformation 
model for FG has been examined by Dharan et al. (2010) using zeroth order shear deformation 
theory (ZSDT). 

Recently, Tounsi and his co-workers (Hadji et al. 2011, Houari et al. 2011, El Meiche et al. 
2011, Bourada et al. 2012, Bachir Bouiadjra et al. 2012, Fekrar et al. 2012, Fahsi et al. 2012, 
Bouderba et al. 2013, Kettaf et al. 2013, Klouche Djedid et al. 2014, Nedri et al. 2014, Ait Amar 
Meziane et al. 2014, Draiche et al. 2014, Sadoune et al. 2014, Ait Yahia et al. 2015, Belkorissat et 
al. 2015) developed new shear deformation plates theories involving only four unknown functions. 

In the present article, a new hyperbolic shear deformation plate theory based on neutral surface 
position is developed for the static analysis of functionally graded plates. This theory has number 
of advantages over the CLPT and FSDPT. It is possible to take into account the higher order 
effects and yet keep the complexity to a considerably lower level. In the present theory the 
governing differential equation is of fourth order and in these only lateral deflection, plate physical 
properties and lateral loading are being used. The governing equations of equilibrium are obtained 
from the principle of virtual displacements and Navier solutions for flexure of FG simply 
supported plates are presented. The accuracy and effectiveness of the present theory are 
established through numerical examples. Numerical results are presented for Ceramic – Metal 
functionally graded plates. 

 
 

2. Theoretical formulations 
 

2.1 Physical neutral surface 
 

Functionally graded materials are a special kind of composites in which their material 
properties vary smoothly and continuously due to gradually varying the volume fraction of the 
constituent materials along certain dimension (usually in the thickness direction). In this study, the 
FG plate is made from a mixture of ceramic and metal and the properties are assumed to vary 
through the thickness of the plate. Due to asymmetry of material properties of FG plates with 
respect to middle plane, the stretching and bending equations are coupled. But, if the origin of the 
coordinate system is suitably selected in the thickness direction of the FG plate so as to be the 
neutral surface, the properties of the FG plate being symmetric with respect to it. To specify the 
position of neutral surface of FG plates, two different planes are considered for the measurement 
of z, namely, zms and zns measured from the middle surface and the neutral surface of the plate, 
respectively, as depicted in Fig. 1. 

The volume-fraction of ceramic VC is expressed based on zms and zns coordinates as 
 

n
ns

n
ms

C h

Cz

h

z
V 






 









 

2

1

2

1
                       (1) 

306



 
 
 
 
 
 

A new hyperbolic shear deformation plate theory for static analysis of FGM plate 

Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 

 

 

Fig. 2 Variation of Young’s modulus in a P-FGM plate 
 
 
where n is the power law index which takes the value greater or equal to zero and C is the distance 
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally 
graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and 
Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG plate P, as 
a function of thickness coordinate, become 
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where PM and PC are the corresponding properties of the metal and ceramic, respectively. In the 
present work, we assume that the elasticity modules E and the mass density ρ are described by Eq. 
(2), while Poisson’s ratio v, is considered to be constant across the thickness (Benachour et al. 
2011, Larbi Chaht et al. 2014). 

The variation of Young’s modulus in the thickness direction of the P-FGM plate is depicted in 
Fig. 2, which shows that the Young’s modulus changes rapidly near the lowest surface for 1n  
and increases quickly near the top surface for 1n . 

The position of the neutral surface of the FG plate is determined to satisfy the first moment 
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with respect to Young’s modulus being zero as follows (Bouremana et al. 2013, Ould Larbi et al. 
2013, Fekrar et al. 2014, Bousahla et al. 2014) 
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The position of neutral surface can be obtained as 
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From Eq. (6), it can be seen that the parameter C is zero for homogeneous isotropic plate as 
expected. 

 
2.2 Basic assumptions 
 
Consider a plate of total thickness h and composed of functionally graded material through the 

thickness (Fig. 3). It is assumed that the material is isotropic and grading is assumed to be only 
through the thickness. 

The assumptions of the present theory are as follows: 
 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the FG 
plate. 

(ii) The displacements are small in comparison with the height of the plate and, therefore, 
strains involved are infinitesimal. 

(iii) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only. 

 

),(),(),,( txwtxwtzxw sbns                           (5) 
 
 

 

Fig. 3 Geometry of rectangular plate composed of FGM 
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(iv) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(v) The axial displacement u in x-direction, consists of extension, bending, and shear 

components. 

sbsb vvvvuuuu  00 ,                         (6) 
 

(vi) The bending component ub and vb are assumed to be similar to the displacements given by 
the classical plate theory. Therefore, the expression for ub and vb can be given as 
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(vii) The shear components us and vs gives rise, in conjunction with ws, to the hyperbolic 

variation of shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of 
the plate in such a way that shear stresses τxz, τyz are zero at the top and bottom faces of the 
plate. Consequently, the expression for us and vs can be given as 
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2.3 Kinematics and constitutive equations 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(9) as 
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The strains associated with the displacements in Eq. (10) are 

 

0

 )(

 )(

 )( 

 )( 
0

0










z

s
xznsxz

s
yznsyz

s
yns

b
ynsyy

s
xns

b
xnsxx

zg

zg

kzfkz

kzfkz










                         (11) 

where 
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For elastic and isotropic FGMs, the constitutive relations can be written as: 
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where 
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2.4 Governing equations 
 
The governing equations of equilibrium can be derived by using the principle of virtual 

displacements. The principle of virtual work in the present case yields 
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Where Ω is the top surface and q is the applied transverse load. 

Substituting Eqs. (11) and (13) into Eq. (15) and integrating through the thickness of the plate, 
Eq. (15) can be rewritten as 
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The governing equations of equilibrium can be derived from Eq. (16) by integrating the 
displacement gradients by parts and setting the coefficients zero δu0, δv0, δwb, and δws separately. 
Thus one can obtain the equilibrium equations associated with the present new hyperbolic shear 
deformation theory 
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Using Eq. (13) in Eq. (17), the stress resultants of a the plate can be related to the total strains 
by 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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Substituting from Eq. (19) into Eq. (18), we obtain the following equation 
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3. Analytical solution 
 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (22a)-(22d) for a simply supported FG plate. The 
following boundary conditions are imposed at the side edges 
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The equations of motion admit the Navier solutions for simply supported plates. The variables 

u0, v0, wb, ws can be written by assuming the following variations 
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Umm, Vmm, Wbmn, and Wsmn are arbitrary parameters to be determined, and λ = mπ / a and μ = nπ / b. 
Further, the transverse load q is also expanded in double Fourier series as 
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For the case of a sinusoidally distributed load, we have 

 

011and1 qqnm                            (26) 
 
where q0 represents the intensity of the load at the plate centre. 

Eqs. (24), (25) and Eq. (26) reduce the governing Eq. (22) to the following form 
 

    PC                                 (27) 
where 

       mnmn
T

smnbmnmnmn
T qqfWWVU ,,0,0and,,,   

 
where [C] refers to the flexural stiffness. 
 
 
4. Results and discussion 
 

The study has been focused on the static behavior of functionally graded plate based on the 
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present new hyperbolic shear deformation plate theory and based on neutral surface position. 
For static analysis the plates are subjected to a sinusoidal distributed transverse load given by 
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b

y

a

x
qyxq


sinsin, 0                           (28) 

 
A functionally graded material consisting of Aluminum - Alumina is considered. The following 

material properties are used in computing the numerical values. 
 

Ceramic (Alumina, Al2O3): Ec = 380 GPa; v = 0.3. 
Metal (Aluminium, Al): Em = 70 GPa; v = 0.3. 
 

And their properties change through the thickness of the plate according to power-law. The 
bottom surfaces of the FG plate are aluminium rich, whereas the top surfaces of the FG plate are 
alumina rich. 

For convenience, the following dimensionless form is used 
 
 
Table 1 Effects of volume fraction exponent on the dimensionless displacements of a FGM 

n Model u  v  w  

Ceramic 

ZSDT* 0.21805 0.14493 0.29423 

HSDT# 0.21805 0.14493 0.29423 

Present 0.21815 0.144885 0.29604 

0.2 

ZSDT* 0.2818 0.1985 0.33672 

HSDT# 0.28172 0.19820 0.33767 

Present 0.30479 0.21538 0.35988 

0.5 

ZSDT* 0.42135 0.31096 0.44387 

HSDT# 0.42131 0.31034 0.44407 

Present 0.43859 0.32549 0.45369 

1 

ZSDT* 0.64258 0.49673 0.59059 

HSDT# 0.64137 0.49438 0.58895 

Present 0.64112 0.49408 0.58893 

2 

ZSDT* 0.9022 0.71613 0.76697 

HSDT# 0.89858 0.71035 0.75747 

Present 0.89793 0.70968 0.75733 

5 

ZSDT* 1.06786 0.84942 0.94325 

HSDT# 1.06297 0.84129 0.90951 

Present 1.06620 0.84399 0.91171 

Metallic 

ZSDT* 1.18373 0.78677 1.59724 

HSDT# 1.18373 0.78677 1.59724 

Present 1.18428 0.78652 1.60709 

# Results form Ref (Reddy 2000) 
* Results from Ref (Dharan et al. 2010) 
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Results are tabulated in Tables 1 and 2. The tables contain the non dimensionalised deflections 
and stresses respectively. 

The results obtained are compared with the Zeroth order Shear Deformation Theory (ZSDT) 
(Dharan et al. 2010). The present model predicts better estimates than ZSDT and is in good 
agreement with the most accepted model of Reddy (2000). 
 
 
Table 2 Effects of volume fraction exponent on the dimensionless stresses of a FGM square plate subjected 

to sinusoidal loading (a / h = 10) 

n Model x  y  xy  
xz  yz  

Ceramic 

ZSDT* 1.98915 1.31035 0.70557 0.23778 0.23778 

HSDT# 1.98915 1.31035 0.70557 0.23778 0.19051 

Present 1.99515 1.31219 0.70656 0.24406 0.21289 

0.2 

ZSDT* 2.1227 1.30962 0.6678 0.22557 0.2256 

HSDT# 2.12671 1.30958 0.66757 0.22532 0.18045 

Present 2.26002 1.38706 0.72053 0.24805 0.22655 

0.5 

ZSDT* 2.60436 1.47175 0.66709 0.23909 0.23869 

HSDT# 2.61051 1.47147 0.66668 0.23817 0.19071 

Present 2.61929 1.45863 0.69119 0.24945 0.24311 

1 

ZSDT* 3.07011 1.48935 0.61395 0.22705 0.23919 

HSDT# 3.08501 1.4898 0.61111 0.23817 0.19071 

Present 3.08640 1.48954 0.611061 0.24406 0.26178 

2 

ZSDT* 3.58089 1.3968 0.54947 0.22705 0.22719 

HSDT# 3.60664 1.39575 0.54434 0.22568 0.1807 

Present 3.60856 1.39561 0.54413 0.22427 0.27558 

5 

ZSDT* 4.19547 1.1087 0.57811 0.21792 0.21813 

HSDT# 4.24293 1.10539 0.57368 0.21609 0.17307 

Present 4.24758 1.10329 0.57553 0.19919 0.24164 

Metallic 

ZSDT* 1.98915 1.31035 0.70557 0.23778 0.23778 

HSDT# 1.98915 1.31035 0.70557 0.23778 0.19051 

Present 1.99515 1.31219 0.70656 0.24406 0.21289 

# The results obtained based on Reddy’s HSDT (2000) 
* Results from Ref (Dharan et al. 2010) 
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The table shows the effect of volume fraction exponent (Vf) on the stresses and displacements 
of a functionally graded square plate with a / h = 10. It can be observed that as the plate becomes 
more and more metallic the deflection w and normal stress x  increases but normal stress y  
decreases. It is very interesting to note that the stresses for a fully ceramic plate are the same as 
that of a fully metal plate. This is due to the fact that in these two cases the plate is fully 
homogeneous and stresses do not depend on the Modulus of elasticity. 

Fig. 4 shows the variation of non dimensionalised central deflection of a square plate with 
power law index n. Figs. 5 and 6 show the variation of central deflection with aspect ratio (a / b) 
and side to thickness ratio (a / h). It is observed that the deflection is maximum for metallic plate 
and minimum for a ceramic plate. The difference increases as the aspect ratio increases while it 
may be unchanged with the increase of side to thickness ratio. 
 
 

Fig. 4 Non dimensionalised central delfection w  versus power law index n for a simply 
Supported square FGM plate under sinusoidal load 

 

Fig. 5 Non dimensionalised central deflection w  
versus aspect ratio (a / b) of an FGM plate 

 

Fig. 6 Non dimesionalised central deflection w  as a 
function of the side to thickness ratio (a / h) of 
an FGM square plate 
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From these figures it is also evident that the response of FGM plates is intermediate to that of 
the ceramic and metal homogeneous plates. 

Figs. 7 to 11 show the distribution of normal stresses and shear stresses through the thickness 
of the FGM plates. The volume fraction exponent is taken as 2 for these results. 

It can be seen from the Figs. 7 and 8 that the normal stresses σx and σy are compressive 
throughout the plate up to z 0.149 and then they become tensile. 

Maximum values of these stresses as well as in plane shear stress τxy occur at the top and 
bottom surfaces of the plate. 
 
 

Fig. 7 Variation of In plane longitudinal stresses 

x  through the thickness of an FGM 
plate for different values of side to thick- 
ness ratio (a / h) 

Fig. 8 Variation of In plane longitudinal stresses 

y through the thickness of an FGM plate 
for different values of aspect ratio (a / b) 

 

 

 
Fig. 9 Variation of In plane shear stresses xy  through the thickness of an FGM plate for 

different values of side to thickness ratio (a / h) 
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Fig. 10 Variation of transvese shear stresses xz  

through the thickness of an FGM plate 
for different values of aspect ratio (a / b) 

Fig. 11 Variation of transvese shear stresses yz  

through the thickness of an FGM plate for 
different values of aspect ratio (a / b) 

 
 

Distinction between the curves in Figs. 10 and 11 is obvious. As strain gradients increase, the 
in homogeneities play a greater role in stress distribution calculations. The through-the-thickness 
distributions of the shear stresses τyz and τxz are not parabolic and the stresses increase as the aspect 
ratio decreases. It is to be noted that the maximum value occurs at z  0.2, not at the plate center 
as in the homogeneous case. 

 
 

5. Conclusions 
 
In the present study, a refined trigonometric shear deformation beam theory based on neutral 

surface position is proposed for free vibration analysis of functionally graded beams. The theory 
gives a parabolic distribution of the transverse shear strains and satisfies the zero traction boundary 
conditions on the surfaces of the beam without using shear correction factors. Based on the present 
beam theory and the neutral surface concept, the equations of motion are derived from Hamilton’s 
principle. Numerical examples show that the proposed theory gives solutions which are almost 
identical with those obtained using other shear deformation theories. 
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