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Abstract.  Triaxial compression creep tests were performed on salt rock samples using cyclic confining 
pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining 
pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this 
point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line 
both when the confining pressure decreases and when it increases within one cycle period. The slope of 
these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance 
with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under 
cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We 
supposed that damage evolution follows an exponential law during creep process and replaced the apparent 
stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for 
the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The 
fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the 
creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in 
creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle 
periods. 
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1. Introduction 
 

Salt rock is a soft rock with a number of advantages such as a compact structure, low 
permeability, mechanical stability, and a strong ability to self-recover from damage, so it is 
recognized as the perfect medium for underground storage of natural gas, crude oil and 
compressed air, and for underground disposal of CO2 and high-level radioactive waste (Wang et al. 
2013, Liang et al. 2007, 2011, Chan et al. 1996, Yang et al. 2013, Guo et al. 2012, Wang et al. 
2011). Creep property is one of the most important mechanical properties of salt rock and is a key 
factor in the long-term stability and safety of salt rock underground cavities (Weidinger et al. 1997, 
Ślizowski and Lankof 2003). 

Many efforts have been directed toward the study on creep properties of salt rock in recent 
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years because of the importance of salt rock in underground storage of energies. Yang et al. (1999) 
carried out a number of uniaxial and triaxial creep tests, and suggested an exponential function to 
characterize the creep strain from transient to steady-state creep of salt rock considering the effects 
of confining pressure and axial pressure on the time-dependent stress-strain behavior. Asanov and 
Pan’kov (2004) studied the shear creep properties of salt rock. Zhang et al. (2012) conducted 
triaxial creep tests to the glauberite, anhydrite, and argillaceous salt rock, which investigated the 
strain rate of argillaceous salt rock is lower than glauberite and anhydrite salt rock, and the 
difference becomes larger with the increase of deviatoric stress. Dubey and Gairola (2008) 
investigated the influence of structural anisotropy on time-dependent deformation (creep) of rock 
salt. Chan et al. (1994, 1997) proposed a Multimechanism Deformation Coupled Fracture (MDCF) 
model of salt rock by incorporating continuum, isotropic damage as a fully coupled variable that 
enhanced the stress influence by reduction of the effective area and contributed directly to the 
inelastic strain rate. In this MDCF model, the mechanisms of dislocation creep, shear creep, tensile 
damage, damage healing etc can be considered. But it is quite complex and not convenient to use. 
Heusermann et al. (2003) used the LUBBY2 constitutive model to describe the nonlinear creep 
behavior of rock salt. Jin and Cristescu (1998) developed a new viscoplastic constitutive model for 
transient creep of salt rock, and the new constitutive model was employed by the authors to 
analyze the stress distribution around a plane strain borehole excavated in salt rock neglecting the 
effect of large deformation and steady state creep. Munson (1997) suggested a multimechanism 
constitutive model of the creep of polycrystalline salt rock based on steady state creep as modified 
to incorporate transient creep through workhardening and recovery. Yahya et al. (2000) 
constructed a unified viscoplastic model with a single set of equations and material constants for 
describing both short term and long term ductile behavior of rock salt. Nazary Moghadam et al. 
(2013) formulated a numerical model of the time-dependent behavior of underground caverns 
excavated in salt rock, and used the new model to describe dilatancy, short-term failure as well as 
long-term failure during transient and steady state creep of salt rock. On the basis of time-based 
fractional derivative, Zhou et al. (2011, 2012, 2013) constructed creep constitutive model by 
replacing a Newtonian dashpot in the classical Nishihara model with the fractional derivative Abel 
dashpot, and the time-based fractional derivative model can be simplified to the Nishihara model 
for the special case of fractional derivative order equal to 1. 

However, most of the studies cited above are on the creep properties of salt rock under static 
loading, and there have been few studies on creep properties under cyclic loading. During 
long-term service of underground storage, the deformation process for the surrounding rock mass 
is a creep process under the action of cyclic loading due to periodic injection and production 
characteristics of salt rock storage, which results in periodic fluctuations in cavern pressure. 
Therefore, it is of practical engineering significance to research the creep properties of salt rock 
under the action of cyclic loading. 

In this study, triaxial compression creep tests were conducted under the action of 
low-frequency cyclic loading (ignoring the fatigue effect) on salt rock samples using stress loading 
involving cyclic confining pressure and static axial pressure. Low-frequency cyclic loading was 
chosen because of the relatively long injection–production cycle period during gas storage service 
and the relatively low number of cycles during its service life (Chen et al. 2007). Therefore, we 
supposed that low-frequency cyclic loading occurs and ignored the fatigue effect for salt rock. The 
creep deformation properties of salt rock under low-frequency cyclic loading were analyzed 
according to the test results. Then, a creep damage model for salt rock under low-frequency cyclic 
loading was established on the basis of rheology model and damage mechanics theories, and the 
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suitability of which was verified using the test results. 
 
 

2. Materials and methods 
 
2.1 Sample preparation 
 
Salt rock samples were obtained from a salt mine in Huai’an (Jiangsu Province, China). This 

salt unit is considered as host rock for natural gas storage. The samples are relatively pure halite 
with slight amounts (< 5%) of insoluble materials (argillaceous, anhydrite, and glauberite) and 
have a natural density of approximately 2.2 g/cm3. The samples were prepared as cylinders with a 
diameter of 50 mm and a height of 100 mm, according to the International Society for Rock 
Mechanics (ISRM). 

 
2.2 Test equipment 
 
Creep tests were performed using an RLW-2000 rheology testing system that comprises axial 

loading, confining pressure loading, numerical control, and measurement systems. It is suitable for 
uniaxial compression, triaxial compression, creep, relaxation, seepage, and cyclic loading tests. 
The maximum axial load is 2000 kN and the measurement resolution is 200 N; the maximum 
confining pressure is 60 MPa and the measurement resolution is 0.001 MPa. 

 
2.3 Test program 
 
Triaxial compression creep tests were performed under the action of low-frequency cyclic 

loading (ignoring the fatigue effect) on two salt rock samples using the stress-loading mode of 
cyclic confining pressure with static axial pressure. The cyclic confining pressure takes the form of 
a triangular wave and the stress loading mode is shown in Fig. 1. 

The axial stress for both samples was 1 = 25 MPa, the maximum confining pressure was 3max 
= 20 MPa, and the minimum confining pressure was 3min = 10 MPa. The cycle period for the 
confining pressure, T0, was varied. Low-frequency cyclic loading was chosen because of the 

 
 

 

Fig. 1 Stress loading mode for salt rock creep tests 
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Table 1 Load parameters for salt rock creep tests 

Sample Axial pressure (MPa) 
Confining pressure 

3max (MPa) 3min (MPa) T0 (h) 

SR1 25 20 10 4 

SR2 25 20 10 8 
 

(a) SR1 sample 
 

(b) SR2 sample 

Fig. 2 Axial creep curves for salt rock under cyclic loading: (a) SR1 sample; and (b) SR2 sample 

 
 
relatively long injection–production cycle period during gas storage service and the relatively low 
number of cycles during its service life (Chen et al. 2007). Therefore, we assumed that 
low-frequency cyclic loading occurs and ignored the fatigue effect for salt rock. In addition, 
limited by the test conditions, the test cannot last too long. On the basis of these considerations, 
cycle periods for confining pressure for the two samples were determined as T0 = 4 h and T0 = 8 h, 
respectively. Table 1 lists the parameters for the loading program. 

 
2.4 Test procedure 
 
Before testing, the salt rock samples were covered with heat-shrinkable rubber to make them 
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oil-proofed. The rubber cover was heated with a high-power hair drier to shrink it so that it 
adhered to the sample surface. The sealed samples were then placed at the center of a triaxial cell 
of the rheology testing system so that the sample’s axis coincided with the loading center line of 
the testing machine to avoid eccentric compression. The initial values of the axial pressure and 
confining pressure were set and applied at a certain loading rate. The measurement was started to 
record once the axial pressure and confining pressure reached the initial values. The ambient 
temperature was kept at 25  1C throughout the test process. 

 
 

3. Test results 
 
No radial creep curves were obtained during the test process because of a radial sensor 

malfunction, so only axial creep curves were obtained (see Figs. 2(a)-(b)). Figs. 2(a)-(b) reveal that 
salt rock samples exhibit significant time-dependent deformation, but no accelerated creep stage 
occurs. Two possible reasons are as follows: (1) the rheological test machine used in the test has 
its measuring range. In order to prevent the creep deformation of the salt rock from exceeding the 
effective range of the machine, relatively smaller deviatoric stresses were applied to the samples 
 
 

(a) SR1 sample 
 

(b) SR2 sample 

Fig. 3 Axial creep curves from 24 to 32 h: (a) SR1 sample; and (b) SR2 sample 
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during the test; and (2) limited by the laboratory conditions, the creep test didn't last long enough. 
Within a certain time (point “M” in Figs. 2(a)-(b), ~6 h for sample SR1 and ~16 h for SR2), 

creep deformation rapidly increases with time, but the creep rate gradually decreases. In this stage, 
the effect of confining pressure on the salt rock creep properties is small and the axial creep curve 
is smooth. After this time, changes in the confining pressure gradually affect the sample creep and 
the axial creep curve clearly fluctuates with the confining pressure. This fluctuation is more 
pronounced for sample SR1 than for SR2. Thus, the smaller the cycle period for the confining 
pressure is, the more distinct are the axial creep fluctuations. 

To observe creep fluctuations under the action of cyclic loading more clearly, Figs. 3(a)-(b) 
show the creep curves from 24 to 32 h. It is evident see that within one confining pressure cycle, 
the creep curve is approximately a straight line both when the confining pressure decreases and 
when it increases. However, the slope of these straight lines differs and is greater when the 
confining pressure decreases than when it increases. This indicates that creep rate for salt rock is 
greater when the confining pressure decreases than when it increases under cyclic loading. Thus, 
confining pressure has a great impact on the creep properties of salt rock. The slope of the straight 
lines both when the confining pressure decreases and when it increases gradually decreases as the  
 
 

(a) SR1 sample 
 

(b) SR2 sample 

Fig. 4 Creep rate curves for salt rock under cyclic loading: (a) SR1 sample; and (b) SR2 sample 
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Fig. 5 Schematic view of the Burgers model 

 
 
time and number of loading cycles increase, and reaches a stable minimum value after 40 h, 
respectively. 

Figs. 4(a)-(b) show creep rate curves for the salt rock samples. The creep rate rapidly decreases 
and is hardly influenced by changes in the confining pressure up to point “M”, and the creep rate 
curve is fairly smooth. After point “M”, the creep rate curve is to a square wave, and the creep rate 
regularly fluctuates with increasing and decreasing confining pressure. The creep rate reaches to 
the maximum value when the confining pressure decreases and the minimum value when the 
confining pressure increases. This fluctuating wave pattern for the creep rate is more pronounced 
for sample SR1 than that for SR2. 
 
 
4. Creep damage model 
 

The creep curves for salt rock under cyclic loading in Figs. 2(a)-(b) are similar to the creep 
curve from the Burgers model (Chopra 1997, Zhang et al. 2012). However, the conventional 
Burgers model can only describe creep for materials under static loading and cannot reflect 
deformation fluctuations under cyclic loading. Therefore, we used the Burgers model in 
combination with damage mechanics theory to deduce the axial creep equation for salt rock under 
the action of low-frequency cyclic loading (ignoring the fatigue effect). 

The Burgers model involves serial connection of Maxwell and Kelvin models, as shown in Fig. 
5. According to Fig. 5, we have. 
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where σ(t), σM(t), and σK(t) are stress, and ε(t), εM(t), and εK(t) are strain for the Burgers, Maxwell, 
and Kelvin models, respectively. 

 
4.1 Expression for cyclic loading 
 
To deduce the creep equation for salt rock under cyclic loading, an expression for the confining 

pressure as a function of time must be determined. To this end, the triangular wave for the 
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confining pressure must be expanded, as shown by the dotted line in Fig. 1. Thus, the confining 
pressure during one cycle can be expressed as 
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where σ3(t) is the confining pressure, t is time, σ3max is the maximum and σ3min is the minimum 
confining pressure, and T0 is the cycle period. 

Since σ3(t) is an even function related to time t, according to trigonometric expansion, the 
constant component a0 = (σ3max + σ3min)/2, the sinusoidal component amplitude bn = 0, and the 
cosine component amplitude is given by 
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where n is a positive integer, ω0 is the angular velocity, and ω0 = 2π/T0. 

Taking the integral of Eq. (3) with respect to time, we obtain 
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Then the expanded equation for σ3(t) is 
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Eq. (6) contains an infinite series expansion, and in real applications the first several terms can 

be taken approximately according to the precision required. For easy calculation to the required 
precision, the first two terms are taken here, namely 
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Analyzing the extremum of Eq. (7), we find 
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It is evident from Eq. (8) that owing to approximate treatment, Eq. (7) cannot precisely meet 
the max. and min. values of confining pressure. To satisfy the maximum and minimum confining 
pressure, Eq. (7) is amended as 
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Although this is not theoretically rigorous, the boundary conditions for the confining pressure 

cycle can be met precisely. 
The stress tensor σij for a material under three-dimensional stress can be divided into the 

spherical stress tensor σm and the deviator stress tensor Sij (Zhang et al. 2011). It is generally 
recognized that σm can only change the bulk of the material, while Sij can only change its shape. 
The relationship between σij, σm, and Sij is given by 
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where σ1, σ2, and σ3 are principal stresses in the three directions and δij is the Kronecker function. 

In the case of conventional triaxial compression, because of lateral stress (σ2 = σ3), axial 
deviatoric stress can be expressed as 
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Substituting Eq. (10) into Eq. (12), we have 
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4.2 Axial creep equation for the Maxwell model under cyclic loading 
 
The Maxwell model comprises a Hooke body and a Newton body connected in series (Fig. 5) 

for which the constitutive equation is (Zhang et al. 2011) 
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where )(teM

ij  is the deviator strain tensor, )(tS M
ij  is the deviator stress tensor, G1 is the shear 

modulus, and η1 is the viscosity coefficient. 
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Taking the derivative of Eq. (13) with respect to time, the rate of change in S11(t) can be 
obtained as 
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From Eq. (1) we know that ).()( 1111 tStS M   By substituting Eqs. (13) and (15) into Eq. (14), 

we obtain the relation between axial deviator stress and axial deviator strain for the Maxwell 
model under the cyclic loading shown in Fig. 1 as 
 

t

t
G

t

t
Gdt

tdeM

0
1

min3max3

0
1

0min3max3
0

1

min3max3

0
1

0min3max3

1

min3max3111

3cos
27

)(45.0

3sin
9

)(45.0
cos

3

)(45.0

sin
3

)(45.0

3

)(5.0)(



































       (16) 

 
Taking the integral of Eq. (16) with respect to time, we obtain 
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where C0 is the integration constant and 
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According to Eq. (10), σ3(t) = σ3max when t = 0. At this instant, 1max3111 3)( GeM   . 

Substituting this initial condition into Eq. (17), C0 can be determined as 
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Substituting Eq. (20) into Eq. (17), we obtain 
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Thus, the axial deviator strain for Maxwell model produced by axial deviator stress can be 

determined. 
According to the generalized Hooke’s law, the constitutive relation for a Hooke body under 

three-dimensional stress is given by (Yahya et al. 2000) 
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where σm is the spherical stress tensor, εm is the spherical strain tensor, K is the bulk modulus, and 
G is the shear modulus, with 
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where E is the elastic modulus and ν is Poisson’s ratio. 

If the influence of the changing load on εm is not taken into account and εm is calculated for the 
load at t = 0, according to Eq. (22) we have 
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Combining Eq. (21) with Eq. (24), the axial creep equation for the Maxwell model under the 

low-frequency cyclic loading shown in Fig. 1 can be expressed as 
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4.3 Axial creep equation for the Kelvin model under cyclic loading 
 
The Kelvin model comprises a Hooke body and a Newton body connected in parallel (Fig. 5), 

for which the constitutive equation is expressed as (Zhang et al. 2011) 
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where )(teK
ij  is the deviator strain tensor, )(tS K

ij  is the deviator stress tensor, G2 is the shear 
modulus, and η2 is the viscosity coefficient. 

Eq. (26) can be rewritten as 
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According to Eq. (1), we know that ).()( 1111 tStS K   Substituting Eq. (13) into Eq. (27), the 
relation between axial deviator stress and axial deviator strain for the Kelvin model under the 
cyclic loading shown in Fig. 1 is obtained as 
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Solving this differential equation, we obtain 
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where C0 is the integration constant and 
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For the Kelvin model, 011 
Ke  when t = 0. Considering this initial condition, C0 is determined 

as 
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Substituting Eq. (32) into Eq. (29), we obtain 
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Analysis reveals that the curve described by the first term in Eq. (33) is the creep curve for the 
Kelvin model under static loading with axial pressure of σ1 and confining pressure of 0.5(σ3max + 
σ3min), while the curves described by both the second and third terms fluctuate according to a wave 
pattern. 

The Kelvin model is normally used to describe the primary creep property of material. 
According to the results for salt rock under cyclic loading as shown in Fig. 2, changes in the 
confining pressure have a small effect on creep, and fluctuations in the creep curve are not 
significant up to a certain time as well. Thus, to simplify the calculation, we can consider that the 
failure of salt rock is controlled by deformation, and let sin(ω0t + AK) = sin(3ω0t + BK) ≡ ‒ 1. 
Furthermore, because there is no spherical strain, the axial strain of the Kelvin model is .1111

KK eε   
Based on the above analysis, Eq. (33) can be written as 
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             (34) 

 

4.4 Axial creep damage equation for the Burgers model under cyclic loading 
 
The Burgers model comprises a Maxwell model and a Kelvin model connected in series. Thus, 

combining Eqs. (1), (25), and (34), the axial creep equation for the Burgers model under the cyclic 
loading shown in Fig. 1 can be expressed as 
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According to the test results, salt rock exhibits distinct creep deformation under an applied load. 
Based on the rheological damage theory, new fissures within a material will be continuously 
produced by creep deformation. These fissures will gradually expand over time, resulting in 
degradation of the mechanical properties and a decrease in strength. 

According to the classic damage mechanics, damage evolution for a material can be expressed 
in terms of the effective bearing area S

~
 as 

 

S

S
D

~
1                              (36) 

 

where S is the total area and D is the damage factor, 0 ≤ D ≤ 1. 
The effective stress ~  borne by the material can thus be written as 

 

D


1
~                               (37) 

 
where σ is the apparent or Cauchy stress. The apparent stress and effective stress can only be equal 
when D = 0. 

An appropriate damage evolution equation needs to be determined to establish a creep model 
according to the mechanical damage method. In accordance with the results reported by Jiang et al. 
(2011), the damage evolution equation can be determined in exponential form as 
 

)exp(1)( nttD                            (38) 
 
where n is a constant related to the rock properties. 

Substituting Eq. (38) into Eq. (37), we obtain 
 

)exp(~ nt                              (39) 
 

We assume that salt rock is an isotropic material and the damage is also isotropic. According to 
the strain equivalent principle (Lemaitre 1984), replacing the apparent stress in Eq. (35) by the 
effective stress expressed by Eq. (39), we can obtain 
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Eq. (40) can be used as the axial creep damage equation for the Burgers model under cyclic 
loading shown in Fig. 1. 

 
 

5. Model verification 
 
The suitability of Eq. (40) was evaluated using creep results for salt rock under low-frequency 

cyclic loading. Firstly, based on the nonlinear least-squares theory, creep parameters were 
determined using the curve-fitting method (Yang and Cheng 2011) and 1stOpt mathematical 
optimization software. The greatest advantage of the software is that the software will give initial 
values of the parameters to be determined instead of inputting them by users, and can determine 
the globally optimal solution by the special method of universal global optimization. The fitting 
method and steps are as follows: 

 

(I) Eq. (40) is compiled into the fitting code for software identification in the form of 
self-defining function. 

(II) The creep parameters to be inversed are taken as the design variable, namely 
 

 nηηGEX   ,  ,  ,  , 212                         (41) 
 
where E is the elastic modulus of salt rock. When E is obtained, the bulk modulus K and shear 
modulus G1 can be determined according to Eq. (23) and the Poisson′s ratio for salt rock ν = 0.3. 

(III) The target function 
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
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i
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is constructed, where N is the number of test data groups, wi(X, ti) is the strain calculated at time ti, 
wi is the strain measured at time ti, and Q is the target function, namely the error-squared sum. 

(IV) The precision is set for the target function Q and iteration is carried out to obtain a solution. 
If the value of Q calculated satisfies the precision requirement, iteration ceases and the 
calculated results are outputted; if not, iteration continues till the precision requirement is 
satisfied. 

 

Table 2 lists the inversion results for salt rock creep parameters. Figs. 6(a)-(b) compare fitting 
and experimental creep curves, while Figs. 7(a)-(b) compare fitting and experimental creep rate 
curves. 

According to the data in Table 2, the correlation coefficient R > 0.99 for both samples, this 
indicates that the fitting parameters are highly correlated. Figs. 6(a)-(b) and 7(a)-(b) reveal that 

 
 
Table 2 Inversion results for the creep parameters 

Samples 
Cycle period

(h) 
Parameters 

R 
K (MPa) G1 (MPa) G2 (MPa) η1 (MPa·h) η2 (MPa·h) n 

SR1 4 93 043 42 943 1 027 114 682 169 0.091 0.992

SR2 8 126 179 58 237 788 151 665 215 0.081 0.991
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(a) SR1 sample 
 

(b) SR2 sample 

Fig. 6 Comparison of fitting and experimental creep curves: (a) SR1 sample; and (b) SR2 sample 
 
 
 

(a) SR1 sample 

Fig. 7 Comparison of fitting and experimental creep rate curves: (a) SR1 sample; and (b) SR2 sample 
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(b) SR2 sample 

Fig. 7 Continued 

 
 
the fitting curves are in excellent agreement with the experimental data. Thus, our model 
accurately reflects the creep property of salt rock under cyclic loading. In particular, it reflects 
distinct fluctuations in creep deformation and creep rate as the confining pressure increasing and 
decreasing under different cycle periods. 
 
 
6. Conclusions 

 
To investigate the creep behavior of salt rock under low-frequency cyclic loading, triaxial 

compression creep tests were performed on salt rock samples using cyclic confining pressure with 
a static axial pressure. The creep deformation properties of salt rock under low-frequency cyclic 
loading were then analyzed. A creep damage model for salt rock under low-frequency cyclic 
loading was established based on the rheology model and damage mechanics theories, and the 
suitability of which was evaluated using the test data. 

 

 Salt rock samples exhibit significant time-dependent deformation. Up to a certain time (~6 h 
for sample SR1 and ~16 h for SR2), changes in the confining pressure have little influence 
on creep properties of salt rock, and the axial creep curve is smooth. After this point, 
changes in the confining pressure gradually affect the sample creep, and the axial creep 
curve clearly fluctuates with the confining pressure. The smaller the cycle period for the 
confining pressure is, the more distinct are the axial creep fluctuations. For the fluctuation 
stage, the creep curve is approximately a straight line both when the confining pressure 
decreases and when it increases within one cycle period. The slope of these lines differs: it 
is greater when the confining pressure decreases than when it increases. The creep rate 
curve exhibits a square wave pattern, with crests and troughs corresponding to decreasing 
and increasing confining pressure, respectively. 

 In accordance with rheology model theory, axial creep equations were deduced for Maxwell 
and Kelvin models under cyclic loading. These were combined to establish an axial creep 
equation for the Burgers model. We supposed that damage evolution follows an exponential 
law during creep process and replaced the apparent stress in creep equation for the Burgers 
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model by the effective stress, the axial creep damage equation for the Burgers model was 
obtained. 

 The model suitability was verified using creep test results for salt rock. The fitting curves 
are in excellent agreement with the test curves, so the proposed model can well reflect the 
creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the 
fluctuations in creep deformation and creep rate as the confining pressure increasing and 
decreasing under different cycle periods. 

 

As an attempt in the preliminary study, 2 samples were used for the creep test under 
low-frequency cyclic loading, and the creep damage model for salt rock under low-frequency 
cyclic loading was established based on the test results. However, due to the limited number of 
samples and small variation range of stress state, the creep damage model is applicable and 
acceptable in a limited range of stress conditions. In spite of the small number of samples, some 
useful conclusions can be made, and the basic pattern of the salt rock creep deformation under 
low-frequency cyclic loading is obtained, which provides an excellent foundation for the 
subsequent research. In the subsequent research, the authors will continue to work on this subject, 
use more samples with adjusted stress states for creep test, use more test data to verify the 
applicability and rationality of the model, and overcome its inadequacy. 
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