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Abstract.  Construction of a new cavern close to an existing cavern will result in a modification of the state 
of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. 
Extensive plane strain finite difference analyses were carried out to examine the deformations induced by 
excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric 
regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the 
maximum key point displacement and the percent strain to various parameters including the rock quality, the 
cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin 
caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built 
MARS model. Parametric studies indicate that the probability of failure Pf increases as the coefficient of 
variation of Q increases, and Pf decreases with the widening of the pillar. 
 
Keywords:    serviceability limit state; the maximum key point displacement; twin caverns; percent 
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1. Introduction 
 

The construction of a new cavern near an existing cavern modifies the state of stresses and 
movements in a zone around the existing cavern. For multiple caverns, the size of this influence 
zone depends on the ground type, the in situ stress, the cavern span, the width of the pillar 
separating the caverns, and the excavation sequences. If two adjacent excavations are constructed 
far apart such that their influence zones do not overlap, then the individual cavern can be 
considered separately as single caverns and analyzed as such. However, if the influence zones of 
the twin caverns do overlap, some degree of interaction between the twin caverns will take place. 
Interaction of the twin caverns will affect the global stability, the state of stress and the 
deformations around the caverns. The ultimate limit state failure for stress-induced instability was 
usually assessed in terms of global factor of safety. However, the serviceability limit state, which 
denotes failure due to excessive movements, should also be considered. Thus an accurate 
estimation of the deformation induced by cavern excavation is necessary. Considering the 
uncertainties existing in the design parameters, the calculation on the probability of the cavern 
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deformation exceeding the prescribed limiting value is important. 
In this paper, plane strain finite difference analyses using FLAC3D were performed in which the 

deformation of the twin parallel caverns is investigated. Based on the numerical results, this paper 
first describes the multivariate adaptive regression splines (MARS) response surface models 
developed for estimating the maximum key point displacement umax_t and the percent strains t. 
This study then demonstrates how reliability analysis on the serviceability limit state of twin 
caverns can be performed using the First-order reliability method (FORM) to estimate the 
probability of the cavern deformation exceeding the prescribed limiting value. 

 
 

2. Details of MARS 
 
Friedman (1991) introduced MARS as a statistical method for fitting the relationship between a 

set of input variables and dependent variables. It is a nonlinear and nonparametric regression 
method based on a divide and conquer strategy in which the training data sets are partitioned into 
separate piecewise linear segments (splines) of differing gradients (slope). No specific assumption 
about the underlying functional relationship between the input variables and the output is required. 
The end points of the segments are called knots. A knot marks the end of one region of data and 
the beginning of another. The resulting piecewise curves (known as basis functions), give greater 
flexibility to the model, allowing for bends, thresholds, and other departures from linear functions. 

MARS generates basis functions by searching in a stepwise manner. An adaptive regression 
algorithm is used for selecting the knot locations. MARS models are constructed in a two-phase 
procedure. The forward phase adds functions and finds potential knots to improve the performance, 
resulting in an overfit model. The backward phase involves pruning the least effective terms. An 
open source code on MARS from Jekabsons (2010) is used in carrying out the analyses presented 
in this paper. 

Let y be the target output and X = (X1, , XP) be a matrix of P input variables. Then it is 
assumed that the data are generated from an unknown “true” model. In case of a continuous 
response this would be 
 

efeXXfy p  )(),,( 1 X                         (1) 

 
in which e is the distribution of the error. MARS approximates the function f by applying basis 
functions (BFs). BFs are splines (smooth polynomials), including piecewise linear and piecewise 
cubic functions. For simplicity, only the piecewise linear function is expressed. Piecewise linear 
functions are of the form max(0, x ‒ t) with a knot occurring at value t. The equation max(.) means 
that only the positive part of (.) is used otherwise it is given a zero value. Formally 
 



 


otherwise,0

if,
),0max(

txtx
tx                         (2) 

 
The MARS model f (X), is constructed as a linear combination of BFs and their interactions, 

and is expressed as 
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where each λm(X) is a basis function. It can be a spline function, or the product of two or more 
spline functions already contained in the model (higher orders can be used when the data warrants 
it; for simplicity, at most second-order is assumed in this paper). The coefficients  are constants, 
estimated using the least-squares method. 

Fig. 1 shows a simple example of how MARS would use piecewise linear spline functions to 
attempt to fit data. The MARS mathematical equation is expressed as 
 

599.3472.4320.4254.6155.679.20 BFBFBFBFBFy        (4) 
 
where BF1 = max(0, x ‒ 16), BF2 = max(0, 16 ‒ x), BF3 = max(0, 14.5 ‒ x), BF4 = max(0, x ‒ 10) 
and BF5 = max(0, 5.5 ‒ x). The knots are located at x = 5.5, 10, 14.5 and 16. They delimit five 
intervals where different linear relationships are identified. 

The MARS modeling is a data-driven process. To fit the model in Eq. (3), first a forward 
selection procedure is performed on the training data. A model is constructed with only the 
intercept, β0, and the basis pair that produces the largest decrease in the training error is added. 
Considering a current model with M basis functions, the next pair is added to the model in the 
form 
 

),0max()(ˆ),0max()(ˆ
21 jmMjmM XttX   XX                 (5) 

 
with each β being estimated by the method of least squares. As a basis function is added to the 
model space, interactions between BFs that are already in the model are also considered. BFs are 
added until the model reaches some maximum specified number of terms leading to a purposely 
overfit model. 

To reduce the number of terms, a backward deletion sequence follows. The aim of the 
backward deletion procedure is to find a close to optimal model by removing extraneous variables. 
The backward pass prunes the model by removing the BFs with the lowest contribution to the 
model until it finds the best sub-model. Thus, the BFs maintained in the final optimal model are 
 
 

Fig. 1 Knots and linear splines for a simple MARS example 
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selected from the set of all candidate BFs, used in the forward selection step. Model subsets are 
compared using the less computationally expensive method of Generalized Cross-Validation 
(GCV). The GCV equation is a goodness of fit test that penalizes large numbers of BFs and serves 
to reduce the chance of overfitting. For the training data with N observations, GCV for a model is 
calculated as follows (Hastie et al. 2009) 
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in which M is the number of BFs, d is the penalizing parameter, N is the number of observations, 
and f (xi) denotes the predicted values of the MARS model. The numerator is the mean squared 
error of the evaluated model in the training data, penalized by the denominator. The denominator 
accounts for the increasing variance in the case of increasing model complexity. Note that (M ‒ 
1)/2 is the number of hinge function knots. The GCV penalizes not only the number of the model’s 
basis functions but also the number of knots. A default value of 3 is assigned to penalizing 
parameter d (Friedman 1991). At each deletion step a basis function is removed to minimize Eq. 
(3), until an adequately fitted model is found. MARS is an adaptive procedure because the 
selection of BFs and the variable knot locations are data-based and specific to the problem at hand. 

After the optimal MARS model is determined, by grouping together all the BFs that involve 
one variable and another grouping of BFs that involve pairwise interactions (and even higher level 
interactions when applicable), the procedure known as analysis of variance (ANOVA) 
decomposition (Friedman 1991) can be used to assess the contributions from the input variables 
and the BFs. Previous applications of MARS algorithm in civil engineering can be found in 
Attoh-Okine et al. (2009), Lashkari (2012), Mirzahosseinia et al. (2011), Zarnani et al. (2011), 
Samui (2011), Samui and Karup (2011), Zhang and Goh (2013), Goh and Zhang (2014) and Goh 
et al. (2013). However, use of MARS in underground excavations is limited. 

 
 

3. Numerical modeling 
 
The FLAC3D code (Itasca 2005) was utilized for the numerical experiments. The assumptions 

of the numerical analysis, the cross-section layout of the twin caverns, and the basic design 
parameters used are described in this section. 

 
3.1 Assumptions of numerical analysis 
 
The basic assumptions of numerical analyses in this case are: 
 

(1) the study was a two-dimensional plane strain problem; 
(2) the discontinuous nature of the rock is incorporated implicitly in the Mohr-Coulomb 

constitutive relationship used to represent the mass as an equivalent continuum; 
(3) the rock material obeyed Mohr-Coulomb failure criterion that follows the elastic perfectly- 

lastic stress-strain relationship; 
(4) the caverns are unsupported; 
(5) the twin caverns are of equal size, both horse-shoe shaped, with semi-circular roof, the 
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span-to-side wall height ratio (B/H) is 2, and horizontally aligned; 
(6) the excavation involves six stages: heading, first benching, second benching of the right 

cavern, followed by heading, first benching, second benching of the left cavern; 
(7) the effect of creep was not considered in the analysis. 
 

It is accepted that a three-dimensional analysis would more realistically account for the 
longitudinal effects of the face advancement. However, the aim of this study is to provide 
engineers with preliminary estimates of the expected maximum cavern displacements and the 
percent strain during construction, hence the simpler plane strain analyses have been carried out. 

 
3.2 Cross-section layout 
 
One significant parameter influencing the interaction is the cavern span B. In this study, B 

values of 10, 20 and 30 m are considered. In the numerical models, the cavern crown is 65 m 
below the ground surface. The plane-strain conditions are enforced by including a thin 1 m slice of 
material in the longitudinal direction and imposing boundary conditions on the two off-plane 
surfaces that allow movement vertically but are restrained against displacements normal to these 
planes. Outer boundaries are located far from the cavern wall. No surface loading above-ground 
surface is considered. The initial vertical in situ stress v is induced by self-weight of the rock. The 
physical and geometrical model including the twin caverns and the design variables considered are 
shown in Fig. 2. 

 
3.3 Ranges of design parameters 
 
The main factors affecting interaction between the twin caverns are found to be the cavern 

geometry, the rock mass strength properties, the in situ stress field, and the excavation sequence. 
While the effects of some of the factors such as the strength properties and the in situ stresses are 
 
 

 

Fig. 2 Geometrical model and basic design parameters 
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Table 1 Cavern design parameters 

Parameter Description Values 

K0 In situ stress ratio 0.5, 1, 2 

B Cavern span (m) 10, 20, 30 

Sc/B Ratio of pillar width to cavern span 1, 1.5, 2, 2.5 

Q Tunneling quality index 1, 4, 10, 40, 100 

 
 
measurable, the effects of the others such as excavation sequence cannot be quantified. For 
simplicity, excavation in six stages as described in Fig. 2 is regarded as deterministic. The other 
important factors are shown in Table 1. 

For the numerical analyses, the rock mass properties are indirectly (through RMR) determined 
from the Q system by means of commonly used empirical equations and correlations. 

 
3.4 Determination of rock mass strength parameters 
 
In the preliminary stage of an engineering design, the need for an approximate estimate of the 

rock mass parameters frequently arises (Barton et al. 1980, Hoek and Brown 1997, Basarir 2006, 
Aksoy et al. 2010). For the numerical analyses carried out in this study, the following equations 
(Eqs. (7)-(13)) are adopted for determining the rock mass properties. 
 

1998) (Tugrul36ln7  QRMR                      (7) 
 

1983) Pereira and (Serafim)50(10)GPa( 40/)10(   RMRE RMR
m            (8) 

 
1978) i(Bieniawsk)50(1002)GPa(  RMRRMREm                   (9) 

 
1989) i(Bieniawsk)0.1(005.0)MPa(  RMRc                 (10) 

 

1989) i(Bieniawsk5.405.0)(  RMR                 (11) 
 

2000) (Palmstrom)MPa( RMRcm                  (12) 
 

10/)MPa( cmt                            (13) 
 
where Em is the deformation modulus of rock mass, c is the cohesive strength,  is the internal 
friction angle, cm is the Uniaxial Compressive Strength (UCS) of rock material and t is the 
tensile strength. Adopting the above empirical equations, the Q value of each category and its 
corresponding Mohr-Coulomb rock properties to be used in the numerical calculations are shown 
in Table 2. In Table 2, the Poisson’s ratio  values are assumed. For simplicity, density of 2670 kg 
/ m3 is assumed for rock mass of all the ranges of Q. Similar correlations were used for the 
analysis of single caverns (Goh and Zhang 2012). 
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Table 2 Rock mass properties with different Q values 

Q c (MPa) ϕ (°) Em (GPa)  t (MPa) 

1 0.18 22.5 4.47 0.35 2.40 

4 0.22 27.4 7.81 0.20 3.05 

10 0.26 30.6 11.30 0.20 3.47 

40 0.30 35.4 19.75 0.16 4.12 

100 0.34 38.6 28.57 0.16 4.55 

 

 

Fig. 3 Details of cavern peripheral nodes between twin caverns 
 
 

3.5 Determination of the maximum key point displacements and the percent strains 
 
During construction, the displacements of the key points around the cavern like the crown or 

the invert are usually continuously monitored. Based on the magnitude and the changing trend of 
these key point displacements, the stability of excavations is assessed. In this section, the 
influences of Sc/B, Q, B and K0 on key point displacements of the twin caverns are investigated. 
These key points include the crown, the springline, the middle side wall, and the invert of the right 
cavern and of the left cavern, denoted as CR, SR, MR, IR, CL, SL, ML and IL respectively. umax_t is 
defined as max(uCR, uSR, uMR, uIR, uCL, uSL, uML, uIL), in which uCR, uSR, uMR, and uIR are the 
displacements of peripheral nodes C, S, M and I of the right cavern (which is excavated first), 
respectively, while uCL, uSL, uML, and uIL are the displacements of peripheral nodes C, S, M and I of 
the left cavern, as shown in Fig. 3. A similar approach was adopted to assess the deformations and 
strains for single caverns (Zhang and Goh 2012). 

The strain value in each of the key points, take εCR for example, is 
 

),,max( 3_2_1_ RcCRRcCRRcCRCR                        (14) 
 
in which εCR_ciR (i = 1, 2, 3) is defined as 
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10(%)
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_ 
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                        (15) 

 

where uciR is the displacement of the corresponding inner node ciR and lCR_ciR is the length between 
nodes CR and ciR (Fig. 3). 

The percent strain of the twin caverns t is the maximum of the strains of the eight key points 
 

) , , , , , , ,max( ILMLSLCLIRMRSRCRt                   (16) 
 

As illustrated in Fig. 3, the displacements of 32 nodes are obtained from the numerical analyses 
from which the percent strain is determined. 
 
 

4. Modeling results and analyses of umax_t 
 

4.1 Change of the key displacements with excavation stages 
 
 

(a) K0 = 2 (b) K0 = 1 

(c) K0 = 0.5 

Fig. 4 Key point displacements with excavation stage for Sc/B = 1.5, Q = 4, B = 20 m: (a) K0 = 2; 
(b) K0 = 1, and (c) K0 = 0.5 
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Fig. 4(a)-(c) shows the key point displacement with the excavation stages for the case of Sc/B = 
1.5, Q = 4, B = 20 m under K0 = 2, 1, and 0.5 respectively. It can be observed that under high in 
situ stress ratio (K0 = 2), the key point displacements are relatively larger than those for K0 = 1 and 
0.5. The largest key point displacement is about 0.04 m and occurs at the crown of the first (right) 
excavated cavern. It is also clear that large displacements of the key points around the right cavern 
have already occurred before the start of the left cavern excavation (stage 4) as a result of a high  
 
 
Table 3 umax_t (m) for B = 10 m 

Q K0 
Sc/B 

umax_s 1 1.5 2 2.5 

1 

0.5 0.031 0.030 0.026 0.020 0.010 

1 0.030 0.028 0.025 0.019 0.014 

2 0.093 0.078 0.067 0.061 0.058 

4 

0.5 0.009 0.006 0.004 0.004 0.004 
1 0.009 0.006 0.005 0.005 0.005 

2 0.019 0.018 0.017 0.016 0.016 

10 

0.5 0.003 0.002 0.002 0.002 0.002 

1 0.003 0.003 0.003 0.003 0.003 

2 0.009 0.008 0.007 0.007 0.007 

40 

0.5 0.001 0.001 0.001 0.001 0.001 
1 0.001 0.001 0.001 0.001 0.001 

2 0.003 0.003 0.003 0.002 0.003 

100 

0.5 0.001 0.001 0.001 0.001 0.001 

1 0.001 0.001 0.001 0.001 0.001 

2 0.002 0.001 0.001 0.001 0.002 

 
Table 4 umax_t (m) for B = 20 m 

Q K0 
Sc/B 

umax_s 1 1.5 2 2.5 

4 

0.5  0.028 0.013 0.011 0.009 
1  0.023 0.013 0.012 0.010 

2  0.039 0.036 0.034 0.033 

10 

0.5 0.012 0.007 0.006 0.005 0.005 

1 0.012 0.007 0.006 0.006 0.006 

2 0.017 0.016 0.015 0.014 0.016 

40 

0.5 0.003 0.003 0.002 0.002 0.002 
1 0.003 0.003 0.002 0.002 0.002 

2 0.007 0.006 0.006 0.005 0.006 

100 

0.5 0.002 0.002 0.002 0.002 0.002 

1 0.002 0.002 0.002 0.002 0.002 

2 0.003 0.003 0.003 0.003 0.004 
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Table 5 umax_t (m) for B = 30 m 

Q K0 
Sc/B 

umax_s 1 1.5 2 2.5 

4 

0.5   0.027 0.019 0.018 

1   0.025 0.021 0.018 

2   0.061 0.054 0.047 

10 

0.5 0.033 0.011 0.009 0.008 0.008 
1 0.017 0.011 0.009 0.009 0.007 

2 0.027 0.023 0.020 0.019 0.020 

40 

0.5 0.005 0.004 0.004 0.004 0.004 

1 0.004 0.004 0.003 0.003 0.003 

2 0.008 0.008 0.008 0.007 0.008 

100 

0.5 0.003 0.002 0.002 0.002 0.002 
1 0.002 0.002 0.002 0.002 0.002 

2 0.004 0.004 0.004 0.004 0.005 

 
 
horizontal stress release during excavation. For the cases with K0 = 1 and 0.5, displacements of the 
key points around the left cavern are small before stage 4 and for these two cases, the largest 
displacement occurs at the springline of the first excavated cavern. 

 
4.2 Modeling results of umax_t 
 
Tables 3-5 list the umax_t of the numerical cases with global factor of safety greater than 1.0 for 

B = 10, 20, and 30 m, respectively. For these cases, the deformed meshes are not seriously 
distorted. The last column also includes the maximum key point displacement of a single cavern 
umax_s for comparison. 

The influence of pillar geometry Sc/B on umax_t, is clearly evident from Tables 3-5. The greatest 
difference between excavation of single cavern and the twin caverns lies in the fact that, for the 
latter, the excavation of the left cavern influences deformation of the right cavern as a result of 
significant interaction between the twin caverns. It is obvious that generally with increase of Sc/B, 
umax_t converges to umax_s, indicating that the interaction attenuates as Sc/B increases. For different 
cases, interaction diminishes at different Sc/B values. However, in all cases, interaction is 
considerable for a Sc/B value of 1.0. umax_t decreases as Q increases since higher Q corresponds to 
greater deformation modulus and increased strength of the rock mass. In addition, for the same Q 
value, umax_t is significantly influenced by K0. For each plot, the umax_t value for K0 = 2 is much 
higher than those for K0 = 1 and K0 = 0.5 since higher K0 value results in larger horizontal stress 
release during excavation. 

 
4.3 Determination of umax_t using MARS 
 
Based on the data listed in Tables 3-5, the MARS model for umax_t was built. Of the 147 

observations, 109 patterns were randomly selected as the training data and the remaining 38 data 
were used for testing. The training data sets are listed in Table 6. The MARS testing patterns are 
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Table 6 Training data results of MARS model for umax_t 

B 
(m) 

Q K0 Sc 
umax_t_FDM 

(mm) 
umax_t_MARS 

(mm) 
B

(m)
Q K0 Sc

umax_t_FDM 

(mm) 
umax_t_MARS 

(mm) 

10 1 0.5 1 30.4 34.7 20 10 1 2 5.9 4.1 

10 1 0.5 2 25.8 22.0 20 10 1 2.5 5.5 2.9 

10 1 0.5 2.5 19.6 16.8 20 10 2 1 17.4 16.6 
10 1 1 1 29.6 34.7 20 10 2 1.5 15.9 10.6 

10 1 1 1.5 28.2 27.2 20 10 2 2.5 14.1 8.3 

10 1 1 2.5 18.6 16.8 20 40 0.5 1 3.2 4.5 
10 1 2 1 92.8 84.0 20 40 0.5 2 2.5 3.3 

10 1 2 2 67.2 71.2 20 40 0.5 2.5 2.4 2.2 

10 1 2 2.5 61.2 66.0 20 40 1 1 2.9 4.5 
10 4 0.5 1 9.3 6.9 20 40 1 1.5 2.6 4.5 

10 4 0.5 1.5 6.2 4.1 20 40 1 2.5 2.4 2.2 

10 4 0.5 2.5 4.1 1.8 20 40 2 1 6.6 4.5 
10 4 1 1 9.5 6.9 20 40 2 2 5.7 3.3 

10 4 1 2 5.2 3.0 20 40 2 2.5 5.3 2.2 

10 4 1 2.5 5.0 1.8 20 100 0.5 1 1.8 3.0 
10 4 2 1 19.0 25.2 20 100 0.5 1.5 1.6 3.0 

10 4 2 1.5 17.8 22.4 20 100 0.5 2.5 1.6 0.7 

10 4 2 2.5 16.2 20.1 20 100 1 1 1.7 3.0 
10 10 0.5 1 3.4 6.8 20 100 1 2 1.5 1.8 

10 10 0.5 2 2.3 4.1 20 100 1 2.5 1.5 0.7 

10 10 0.5 2.5 2.3 2.9 20 100 2 1 3.4 3.0 
10 10 1 1 3.2 6.8 20 100 2 1.5 3.1 3.0 

10 10 1 1.5 2.8 5.2 20 100 2 2.5 2.8 0.7 

10 10 1 2.5 2.5 2.9 30 4 0.5 2.5 19.2 24.5 
10 10 2 1 8.5 12.2 30 4 1 2 24.6 25.7 

10 10 2 2 7.4 9.5 30 4 1 2.5 21.0 24.5 

10 10 2 2.5 7.0 8.3 30 4 2 2 60.9 48.3 
10 40 0.5 1 1.3 0.1 30 10 0.5 1 33.2 19.1 

10 40 0.5 1.5 1.2 4.5 30 10 0.5 2 9.0 12.0 

10 40 0.5 2.5 1.2 2.2 30 10 0.5 2.5 8.3 10.8 
10 40 1 1 1.3 0.1 30 10 1 1 16.9 19.1 

10 40 1 2 1.2 3.3 30 10 1 1.5 10.7 13.1 

10 40 1 2.5 1.1 2.2 30 10 1 2.5 8.5 10.8 
10 40 2 1 3.0 0.1 30 10 2 1 27.0 28.8 

10 40 2 1.5 2.7 4.5 30 10 2 2 20.3 21.6 

10 40 2 2.5 2.3 2.2 30 10 2 2.5 18.8 20.5 
10 100 0.5 1 0.9 -1.4 30 40 0.5 1 4.7 4.5 

10 100 0.5 2 0.8 1.8 30 40 0.5 1.5 4.2 4.5 

10 100 0.5 2.5 0.8 0.7 30 40 0.5 2.5 3.6 2.2 
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Table 6 Continued 

B 
(m) 

Q K0 Sc 
umax_t_FDM 

(mm) 
umax_t_MARS 

(mm) 
B

(m)
Q K0 Sc

umax_t_FDM 

(mm) 
umax_t_MARS 

(mm) 

10 100 1 1 0.8 -1.4 30 40 1 1 4.1 4.5 

10 100 1 1.5 0.8 3.0 30 40 1 2 3.4 3.3 

10 100 1 2.5 0.7 0.7 30 40 1 2.5 3.4 2.2 
10 100 2 1 1.5 -1.4 30 40 2 1 7.8 8.8 

10 100 2 2 1.3 1.8 30 40 2 1.5 8.1 8.8 

10 100 2 2.5 1.2 0.7 30 40 2 2.5 7.1 6.5 
20 4 0.5 2 13.0 16.2 30 100 0.5 1 2.7 3.0 

20 4 0.5 2.5 10.8 15.1 30 100 0.5 2 2.3 1.8 

20 4 1 1.5 22.9 17.4 30 100 0.5 2.5 2.3 0.7 
20 4 1 2.5 12.2 15.1 30 100 1 1 2.3 3.0 

20 4 2 2 35.9 34.5 30 100 1 1.5 2.2 3.0 

20 4 2 2.5 34.3 33.4 30 100 1 2.5 2.1 0.7 
20 10 0.5 1 12.4 11.2 30 100 2 1 4.1 7.3 

20 10 0.5 1.5 6.6 5.2 30 100 2 2 3.9 6.1 

20 10 0.5 2.5 5.4 2.9 30 100 2 2.5 3.7 5.0 
20 10 1 1 12.0 11.2       

 
Table 7 Testing data sets of MARS model for umax_t 

B 
(m) 

Q K0 Sc 
umax_t_FDM 

(mm) 
umax_t_MARS 

(mm) 
B

(m)
Q K0 Sc

umax_t_FDM 
(mm) 

umax_t_MARS 
(mm) 

10 1 0.5 15 30.9 27.2 20 10 1 30 6.6 5.2 

10 1 1 20 24.9 22.0 20 10 2 40 14.9 9.5 

10 1 2 15 78.4 76.5 20 40 0.5 30 2.7 4.5 
10 4 0.5 20 4.5 3.0 20 40 1 40 2.5 3.3 

10 4 1 15 5.8 4.1 20 40 2 30 6.0 4.5 

10 4 2 20 17.1 21.3 20 100 0.5 40 1.6 1.8 
10 10 0.5 15 2.5 5.2 20 100 1 30 1.6 3.0 

10 10 1 20 2.7 4.1 20 100 2 40 2.9 1.8 

10 10 2 15 7.9 10.6 30 4 0.5 60 27.1 25.7 
10 40 0.5 20 1.2 3.3 30 4 2 75 53.6 47.2 

10 40 1 15 1.2 4.5 30 10 0.5 45 11.1 13.1 

10 40 2 20 2.5 3.3 30 10 1 60 9.2 12.0 
10 100 0.5 15 0.8 3.0 30 10 2 45 22.7 22.8 

10 100 1 20 0.7 1.8 30 40 0.5 60 3.8 3.3 

10 100 2 15 1.4 3.0 30 40 1 45 3.8 4.5 
20 4 0.5 30 28.2 17.4 30 40 2 60 7.5 7.6 

20 4 1 40 13.3 16.2 30 100 0.5 45 2.5 3.0 

20 4 2 30 38.7 35.7 30 100 1 60 2.2 1.8 
20 10 0.5 40 5.7 4.1 30 100 2 45 4.2 7.3 
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shown in Table 7. To eliminate unnecessary rounding errors, the units of umax_t is changed from 
meters (m) to millimeters (mm). The same units are also used for the MARS model predictions in 
Eq. (17). 

The optimal MARS model consisted of 13 BFs of linear spline functions with second-order 
interaction. A plot of umax_t_MARS versus umax_t_FDM shown in Fig. 5 indicates that the built MARS 
model is reasonably accurate. Error measures in Rows 2-4 of Table 8 indicate that the MARS 
umax_t model predictions are satisfactory in terms of accuracy. 
 
 

Fig. 5 Comparison between umax t MARS and umax t FDM 

 
Table 8 Error measures used for MARS models 

MARS models 
Relative root mean squared error

RRMSE (%) 
Correlation coefficient r Performance index 

umax_t 

Training 25.5 0.977 0.129 

Testing 12.6 0.986 0.063 

overall 28.2 0.979 0.143 

t 

Training 9.56 0.997 0.048 

Testing 6.30 0.997 0.032 

overall 11.5 0.997 0.057 
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y  is the mean of the target values of yi; Y  is the mean of the predicted Yi; N denotes the number of data 

points in the used set, training set, testing set or the overall set; 
Definitions of RRMSE, r and  are based on Gandomi and Roke (2013) 
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Table 9 ANOVA decomposition of the developed MARS model for umax_t 

Functions GCV STD #basis variable(s) 

1 305.8 10.23 3 Q 

2 23.3 1.02 1 Sc/B 

3 168.0 8.97 3 Q, K0 

4 47.9 3.81 2 Q, Sc/B 

5 120.0 7.29 2 Q, B 

6 22.5 1.25 1 K0, B 

7 24.3 1.50 1 B, Sc/B 

 
 

Table 9 displays the ANOVA decomposition of the developed MARS model. The first column 
in Table 9 lists the ANOVA function number. The second column gives an indication of the 
importance of the corresponding ANOVA function, by listing the GCV score for a model with all 
BFs corresponding to that particular ANOVA function removed. This GCV score can be used to 
evaluate whether the ANOVA function is making an important contribution to the model, or 
whether it just slightly helps to improve the global GCV score. The third column provides the 
standard deviation of this function. The fourth column gives the number of BFs comprising the 
ANOVA function. The last column gives the particular input variables associated with the 
ANOVA function. The parameter relative importance can be evaluated by the increase in the GCV 
value caused by removing the considered variables from the developed MARS model. It is 
obvious that umax_t is mainly influenced by Q, followed by Sc/B. umax_t is also significantly 
influenced by the interaction terms Q and K0 (Function 3), and Q and B (Function 5). 

Table 10 lists the BFs of the MARS model and their corresponding equations. The interpretable 
MARS model to predict umax_t is given by 

 
 
Table 10 BFs and corresponding equations of MARS model for umax_t 

BFs Equation 

BF1 max(0, Q - 4) 

BF2 max(0, 4 - Q) 

BF3 BF2  max(0, K0 -1) 
BF4 max(0, Q -10) 

BF5 max(0, 10 - Q)  max(0, K0 -1) 
BF6 max(0, B - 20)  max(0, 40 - Q) 
BF7 BF2  max(0, 2.5 - Sc/B) 
BF8 max(0, 20 - B)  max(0, 10 - Q) 
BF9 max(0, B - 20)  max(0, K0 - 1) 

BF10 max(0, Sc/B - 1.5) 

BF11 max(0, 1.5 - Sc/B)  max(0, 40 - Q) 
BF12 max(0, 1.5 - Sc/B)  max(0, 20 - B) 
BF13 max(0, K0 - 1)  max(0, 40 - Q) 
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13180.012869.011397.010281.29  

430.08221.07726.26026.05975.1  

4998.13151.82193.71023.235.17

)mm(_max_

BFBFBFBFBF

BFBFBFBF

BFBFBFBF

u MARSt




         (17) 

 
This umax_t equation can be used to provide preliminary estimates of the expected maximum 

cavern displacements during construction of the twin caverns. 
 
 

5. Modeling results and analyses of t 
 
5.1 Modeling results of t 
 
Table 11 lists the percent strains for the 147 observations. Based on the t values in Table 11, 

Fig. 6 presents some typical plots of the influence of pillar geometry Sc/B on the percent strains, 
compared with the single cavern case. Generally t decreases with the increase of Sc/B and 
converges to the value of the single cavern case, which indicates that the interaction between the 
twin caverns attenuates with increasing of spacing. For different cases, interaction diminishes at 
different Sc/B values. t is also significantly influenced by K0. For each plot, the t value for K0 = 2 
is much greater than those for K0 = 1 and K0 = 0.5, because of the larger horizontal stress release 
during cavern excavation. 
 
 
Table 11 Percent strains t of the 147 observations (%) 

Q K0 
B = 10 m B = 20 m B = 30 m 

Sc/B = 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 

1 

0.5 0.407 0.348 0.286 0.234         

1 0.366 0.322 0.305 0.271         

2 1.171 1.087 0.989 0.938         

4 

0.5 0.164 0.099 0.075 0.080  0.168 0.091 0.080   0.113 0.119

1 0.160 0.095 0.095 0.094  0.133 0.088 0.087   0.106 0.123

2 0.380 0.373 0.363 0.358  0.358 0.355 0.354   0.314 0.310

10 

0.5 0.078 0.043 0.035 0.041 0.098 0.047 0.034 0.035 0.160 0.047 0.039 0.049

1 0.066 0.049 0.049 0.048 0.094 0.047 0.047 0.046 0.084 0.047 0.051 0.061

2 0.190 0.185 0.184 0.183 0.187 0.186 0.183 0.180 0.248 0.173 0.170 0.166

40 

0.5 0.021 0.016 0.014 0.015 0.021 0.014 0.013 0.013 0.022 0.015 0.015 0.019

1 0.024 0.020 0.019 0.019 0.023 0.021 0.021 0.021 0.031 0.021 0.022 0.028

2 0.081 0.080 0.078 0.076 0.080 0.077 0.074 0.075 0.106 0.076 0.075 0.077

100 

0.5 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.014 0.009 0.009 0.010

1 0.012 0.010 0.010 0.010 0.013 0.012 0.012 0.012 0.017 0.012 0.013 0.017

2 0.045 0.043 0.041 0.040 0.043 0.042 0.043 0.044 0.062 0.043 0.044 0.045
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(a) B = 10 m 

 

 

(b) B = 20 m 
 

 

(c) B = 30 m 

Fig. 6 Influence of Sc/B on t: (a) B =10 m; (b) B = 20 m; and (c) B = 30 m 
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5.2 Determination of t using MARS 
 
MARS model was built to relate t to the parameters Q, Sc/B, K0 and B, using the data sets in 

Table 11. Of the 147 observations, 109 patterns were randomly selected as the training data and 
the remaining 38 data were used for testing. The optimal MARS model adopted 12 BFs of linear 
spline functions with second-order interaction. The training data sets and the corresponding 
MARS predictions are listed in Table 12. The MARS testing results are shown in Table 13. A plot 
of the t_MARS versus t_FDM is shown in Fig. 7. The high R2 values and error measures in Rows 5-7 
of Table 8 indicates that the MARS predictions are reasonably accurate. 
 
 
Table 12 Training data results of t for MARS 

B (m) Q K0 Sc 
t_FDM 

(%) 
t_MARS 

(%) 
B (m) Q K0 Sc 

t_FDM 

(%) 
t_MARS

(%) 

10 1 0.5 1 0.407 0.401 20 10 1 2 0.047 0.044 

10 1 0.5 2 0.286 0.274 20 10 1 2.5 0.046 0.044 

10 1 0.5 2.5 0.234 0.236 20 10 2 1 0.187 0.210 

10 1 1 1 0.366 0.401 20 10 2 1.5 0.186 0.190 

10 1 1 1.5 0.322 0.338 20 10 2 2.5 0.180 0.170 

10 1 1 2.5 0.271 0.236 20 40 0.5 1 0.021 0.018 

10 1 2 1 1.171 1.130 20 40 0.5 2 0.013 0.018 

10 1 2 2 0.989 1.003 20 40 0.5 2.5 0.013 0.018 

10 1 2 2.5 0.938 0.965 20 40 1 1 0.023 0.018 

10 4 0.5 1 0.164 0.147 20 40 1 1.5 0.021 0.018 

10 4 0.5 1.5 0.099 0.123 20 40 1 2.5 0.021 0.018 

10 4 0.5 2.5 0.080 0.099 20 40 2 1 0.080 0.078 

10 4 1 1 0.160 0.147 20 40 2 2 0.074 0.078 

10 4 1 2 0.095 0.099 20 40 2 2.5 0.075 0.078 

10 4 1 2.5 0.094 0.099 20 100 0.5 1 0.008 0.009 

10 4 2 1 0.380 0.395 20 100 0.5 1.5 0.008 0.009 

10 4 2 1.5 0.373 0.371 20 100 0.5 2.5 0.008 0.009 

10 4 2 2.5 0.358 0.347 20 100 1 1 0.013 0.009 

10 10 0.5 1 0.078 0.083 20 100 1 2 0.012 0.009 

10 10 0.5 2 0.035 0.044 20 100 1 2.5 0.012 0.009 

10 10 0.5 2.5 0.041 0.044 20 100 2 1 0.043 0.043 

10 10 1 1 0.066 0.083 20 100 2 1.5 0.042 0.043 

10 10 1 1.5 0.049 0.063 20 100 2 2.5 0.044 0.043 

10 10 1 2.5 0.048 0.044 30 4 0.5 2.5 0.119 0.099 

10 10 2 1 0.190 0.210 30 4 1 2 0.106 0.099 

10 10 2 2 0.184 0.170 30 4 1 2.5 0.123 0.099 

10 10 2 2.5 0.183 0.170 30 4 2 2 0.314 0.347 

10 40 0.5 1 0.021 0.018 30 10 0.5 1 0.160 0.105 
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Table 12 Continued 

B (m) Q K0 Sc 
t_FDM 

(%) 
t_MARS 

(%) 
B (m) Q K0 Sc 

t_FDM 

(%) 
t_MARS

(%) 

10 40 0.5 1.5 0.016 0.018 30 10 0.5 2 0.039 0.044 

10 40 0.5 2.5 0.015 0.018 30 10 0.5 2.5 0.049 0.044 

10 40 1 1 0.024 0.018 30 10 1 1 0.084 0.105 

10 40 1 2 0.019 0.018 30 10 1 1.5 0.047 0.063 

10 40 1 2.5 0.019 0.018 30 10 1 2.5 0.061 0.044 

10 40 2 1 0.081 0.078 30 10 2 1 0.248 0.232 

10 40 2 1.5 0.080 0.078 30 10 2 2 0.170 0.170 

10 40 2 2.5 0.076 0.078 30 10 2 2.5 0.166 0.170 

10 100 0.5 1 0.010 0.009 30 40 0.5 1 0.022 0.039 

10 100 0.5 2 0.008 0.009 30 40 0.5 1.5 0.015 0.018 

10 100 0.5 2.5 0.008 0.009 30 40 0.5 2.5 0.019 0.018 

10 100 1 1 0.012 0.009 30 40 1 1 0.031 0.039 

10 100 1 1.5 0.010 0.009 30 40 1 2 0.022 0.018 

10 100 1 2.5 0.010 0.009 30 40 1 2.5 0.028 0.018 

10 100 2 1 0.045 0.043 30 40 2 1 0.106 0.100 

10 100 2 2 0.041 0.043 30 40 2 1.5 0.076 0.078 

10 100 2 2.5 0.040 0.043 30 40 2 2.5 0.077 0.078 

20 4 0.5 2 0.091 0.099 30 100 0.5 1 0.014 0.030 

20 4 0.5 2.5 0.080 0.099 30 100 0.5 2 0.009 0.009 

20 4 1 1.5 0.133 0.123 30 100 0.5 2.5 0.010 0.009 

20 4 1 2.5 0.087 0.099 30 100 1 1 0.017 0.030 

20 4 2 2 0.355 0.347 30 100 1 1.5 0.012 0.009 

20 4 2 2.5 0.374 0.347 30 100 1 2.5 0.017 0.009 

20 10 0.5 1 0.098 0.083 30 100 2 1 0.062 0.064 

20 10 0.5 1.5 0.047 0.063 30 100 2 2 0.044 0.043 

20 10 0.5 2.5 0.035 0.044 30 100 2 2.5 0.045 0.043 

20 10 1 1 0.094 0.083       

 
Table 13 Testing data sets of MARS predictions of t 

B (m) Q K0 Sc 
t_FDM 

(%) 
t_MARS 

(%) 
B (m) Q K0 Sc 

t_FDM 

(%) 
t_MARS

(%) 
10 1 0.5 15 0.348 0.338 20 10 1 30 0.047 0.063 

10 1 1 20 0.305 0.274 20 10 2 40 0.183 0.170 

10 1 2 15 1.087 1.067 20 40 0.5 30 0.014 0.018 

10 4 0.5 20 0.075 0.099 20 40 1 40 0.021 0.018 

10 4 1 15 0.095 0.123 20 40 2 30 0.077 0.078 

10 4 2 20 0.363 0.347 20 100 0.5 40 0.008 0.009 

10 10 0.5 15 0.043 0.063 20 100 1 30 0.012 0.009 
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Table 13 Continued 

B (m) Q K0 Sc 
t_FDM 

(%) 
t_MARS 

(%) 
B (m) Q K0 Sc 

t_FDM 

(%) 
t_MARS

(%) 
10 10 1 20 0.049 0.044 20 100 2 40 0.043 0.043 

10 10 2 15 0.185 0.190 30 4 0.5 60 0.113 0.099 

10 40 0.5 20 0.014 0.018 30 4 2 75 0.310 0.347 

10 40 1 15 0.020 0.018 30 10 0.5 45 0.047 0.063 

10 40 2 20 0.078 0.078 30 10 1 60 0.051 0.044 

10 100 0.5 15 0.008 0.009 30 10 2 45 0.173 0.190 

10 100 1 20 0.010 0.009 30 40 0.5 60 0.015 0.018 

10 100 2 15 0.043 0.043 30 40 1 45 0.021 0.018 

20 4 0.5 30 0.168 0.123 30 40 2 60 0.075 0.078 

20 4 1 40 0.088 0.099 30 100 0.5 45 0.009 0.009 

20 4 2 30 0.358 0.371 30 100 1 60 0.013 0.009 

20 10 0.5 40 0.034 0.044 30 100 2 45 0.043 0.043 

 

Fig. 7 Comparison between t MARS and t FDM 

 
 

For brevity, the ANOVA decomposition of the developed MARS model and the relative 
importance of the parameters are not detailed here. But the conclusion is that t is mainly 
influenced by Q, followed by K0. Table 14 lists the BFs of the MARS model for t and their 
corresponding equations. The interpretable MARS model to predict t is given by 
 

120043.0110018.0100084.090.0013  

80007.07025.06018.050.0004  

4074.0314.02046.010093.01.0

(%)_

BFBFBFBF

BFBFBFBF

BFBFBFBF

MARSt







        (18) 

449



 
 
 
 
 
 

Wengang Zhang and Anthony T.C. Goh 

Table 14 BFs and corresponding equations of MARS model for t 

BFs Equation BFs Equation 

BF1 max(0, Q - 4) BF7 BF2max(0, 2.5 - Sc/B) 
BF2 max(0, 4 - Q) BF8 max(0, Q - 40) 

BF3 BF2  max(0, K0 -1) BF9 max(0, 40 - Q)  max(0, 2 - Sc/B) 
BF4 max(0, K0 - 1) BF10 max(0, Q - 10) 

BF5 BF4  max(0, Q -10) BF11 max(0, 40 - Q)  max(0, K0 - 1) 
BF6 BF4  max(0, 10 - Q) BF12 max(0, 1.5 - Sc/B)  max(0, B - 20) 

 

 
(a) Q and K0 

 

 

(b) Q and Sc/B 

Fig. 8 Response surfaces relating t to: (a) Q and K0; (b) Q and Sc/B; and (c) Q and B 
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(c) Q and B 

Fig. 8 Continued 
 
 

The response surfaces relating t to Q and K0, Q and Sc/B, Q and B are illustrated in Fig. 8(a), 
(b) and (c), respectively. These response surfaces provide a practical design tool, especially during 
early design stages of design and construction. By specifying the pillar geometries Sc/B for a given 
Q as well as the cavern span, the expected percent strain can be estimated quickly. Or by assuming 
the threshold of the percent strain for a given Q and the cavern span, the appropriate pillar width 
can be estimated. Also, the effect of changing Q and in situ stress ratio K0 can be assessed. 

 
 

6. Probabilistic assessment on serviceability limit state 
 
6.1 Serviceability criterion 
 
The serviceability limit state can be assessed either by umax_t or t. However, there is very 

limited guidance from the literature with regard to the choice of a threshold displacement that can 
be utilized to limit the induced deformations with tolerable ranges. As a matter of fact, the choice 
of such a threshold value is specific to the size and shape of the openings and it does not provide 
information about the degree of stability. Consequently, Eq. (18), in terms of percent strain values 
t, is adopted as the serviceability limit state criterion as explained in the following section. 

 
6.2 Threshold strain values 
 
Meguid and Rowe (2006) investigated the influence of rock mass strength reduction on the 

stability of D-shaped tunnels by examining the induced displacements at four different locations 
including the face centre, springline, crown and invert. They first obtained an elastic line which 
represents the elastic response of the rock mass. A design line, which is based on an additional 
50% of the elastic strain e, is then suggested to limit the induced strains to within tolerable limits. 
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Strains between the limits bounded by the elastic and design lines are considered to be acceptable 
and will not cause instability at those four locations. 

Based on this design methodology, numerical trials are performed to derive the elastic 
responses under combinations of Q, K0 and B. The elastic responses are obtained through FDM 
analyses with the rock mass assumed as linear elastic. Table 15 lists the elastic strains and the 
strain values for the design line. The strain value of the design line d is 1.5 times that of the elastic 
strain e. 
 
 
Table 15 Elastic strains and the strain values of the design line 

K0 Q B (m) e (%) d (%) 

0.5 

1 

10 0.083 0.125 

20 0.084 0.126 

30 0.080 0.120 

4 

10 0.050 0.075 

20 0.051 0.077 

30 0.050 0.075 

10 

10 0.034 0.052 

20 0.035 0.053 

30 0.034 0.052 

40 

10 0.020 0.030 

20 0.020 0.030 

30 0.020 0.030 

100 

10 0.014 0.021 

20 0.014 0.021 

30 0.014 0.021 

1 

1 

10 0.081 0.121 

20 0.082 0.123 

30 0.079 0.119 

4 

10 0.045 0.068 

20 0.047 0.071 

30 0.046 0.070 

10 

10 0.031 0.047 

20 0.033 0.049 

30 0.032 0.048 

40 

10 0.018 0.027 

20 0.019 0.028 

30 0.018 0.027 

100 

10 0.012 0.018 

20 0.013 0.019 

30 0.013 0.019 
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Table 15 Continued 

K0 Q B (m) e (%) d (%) 

2 

1 

10 0.147 0.221 

20 0.151 0.227 

30 0.154 0.231 

4 

10 0.085 0.128 

20 0.087 0.131 

30 0.089 0.133 

10 

10 0.059 0.088 

20 0.060 0.090 

30 0.061 0.092 

40 

10 0.034 0.050 

20 0.034 0.052 

30 0.035 0.052 

100 

10 0.023 0.035 

20 0.024 0.036 

30 0.024 0.036 

 

Fig. 9 Elastic and the design lines for K0 = 0.5, 1 and 2 

 
 

As the strain values for the three cases of B = 10, 20, and 30 m under the same K0 and Q are 
nearly the same, it can be assumed that d and e are independent of the cavern span. Based on the 
strain values of Table 15, Fig. 9 plots the elastic line and the design line as a function of Q. It is 
clear that these lines are specific to K0, as also indicated in Meguid and Rowe (2006). 

Based on the results above, the design of underground rock cavern constructed in rock mass 
represented by Q under anisotropic/isotropic stress conditions represented by K0 should satisfy the 
criterion of limiting the induced strain to within tolerable limits. The allowable strains c are 
summarized in Table 16 for the cases of Q = 1, 4, 10, 40, and 100, respectively. 
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Table 16 Suggested c for various Q values 

Q 1 4 10 40 100 

c (%) 0.082-0.227 0.047-0.131 0.033-0.090 0.019-0.052 0.013-0.036 

 
 

6.3 Reliability assessment using First-Order Reliability Method (FORM) 
 
In many civil engineering applications, the assessment of safety is made by first establishing a 

relationship between the load S of the system and the resistance R. The boundary separating the 
safe and ‘failure’ domains is the limit state surface (boundary) defined by G(x) = R ‒ S = 0, in 
which x = vector of random variables. Mathematically, R > S or G(x) > 0 would denote a ‘safe’ 
domain. An unsatisfactory or ‘failure’ domain occurs when R < S or G(x) < 0. Calculation of the 
probability of failure (probability of unsatisfactory performance) Pf involves the determination of 
the joint probability distribution of R and S and the integration of the Probability Density Function 
(PDF) over the failure domain. Considering that the PDFs of the random variables are not known 
in most rock engineering applications and the integration is computationally demanding when 
multi-variables are involved, an approximate method known as the First-Order Reliability Method 
(FORM) (Hasofer and Lind 1974), is commonly used to assess Pf. The approach involves the 
transformation of the limit state surface into a space of standard normal uncorrelated variables, 
wherein the shortest distance from the transformed limit state surface to the origin of the reduced 
variables is the reliability index  (Cornell, 1969). For normal distributed random variables, Pf ≈ 1 
‒ Φ(β), in which  = cumulative normal density function. Mathematically, Low and Tang (2004) 
have shown that  can be computed using 
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in which xi is the set of n random variables, i is the set of mean values, i is the standard deviation, 
R is the correlation matrix and F is the failure region. Low (1996) has shown that Microsoft 
EXCEL spreadsheet can be used to perform the minimization and determine . 

In assessing the serviceability limit state (SLS) for twin caverns the limit state function based 
on the MARS model can be expressed as 
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       (20) 

 
The expressions of BFs in this equation can be found in Table 14 and the statistics of the input 

variables assumed are shown in Table 17. It should be highlighted that the probability of failure Pf 
is significantly influenced by the choice of c and usually when using the lower bound value of c, 
the cavern performance is nearly elastic. Thus, in the following analyses, the upper bound values 
of c are adopted based on the mean value of Q. 
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Table 17 Input variables for reliability assessment of SLS 

Variable Distribution type Mean COV 

Q Normal 10, 40, 100 0.1, 0.2, 0.3, 0.4 

B Normal 10, 20, 30 0.1 

Sc/B Normal 1, 1.5, 2, 2.5 0.1 

K0/B Normal 0.5, 1, 2 0.1 

 

Fig. 10 Calculation of Pf for serviceability limit state using FORM_MARS spreadsheet 
 
 

Probabilistic assessment of the percent strain t can be performed using FORM based on the 
built MARS model. The serviceability limit state function Eq. (20) and its corresponding BF 
equations in Table 14 are incorporated into an EXCEL spreadsheet environment based on the 
approach by Low and Tang (2007), from which the reliability index can be determined. Fig. 10 
shows a sample spreadsheet for computing the reliability index  where the statistics of the design 
parameters are the same as those used in the previous section. The spreadsheet cells A2:A5 allows 
the selection of various distribution types for the input variables, including normal, lognormal, 
triangular etc as explained in Low and Tang (2007). For nonnormals, the nonnormal distributions 
are replaced by an equivalent normal ellipsoid, centered at the equivalent normal mean. Cells 
C2:F5 are parameters which are set corresponding to the variable distribution types. For 
lognormals, cells C2:C5 correspond to the mean values while cells D2:D5 correspond to the 
standard deviations. The correlation matrix R in cells K2:N5 are used to define the correlations 
between Q, B, Sc/B and K0. The ni vector in cells O2:O5 contains equations for (xi ‒ uN

i) / N
i. Cells 

H2:J13 contain the basis function expressions and equations obtained from the MARS model. The 
design point (x* values) was obtained by using the spreadsheet’s built-in optimization routine 
SOLVER to minimize the cell, by changing the x* values, under the constraint that the 
performance function g(x*) = 0. Prior to invoking the SOLVER search algorithm, the x* values 
were set equal to the mean values (10, 20, 1.5, 1) of the original random variables. Iterative 
numerical derivatives and directional search for the design point x* were automatically carried out 
in the spreadsheet environment. 

Fig. 11 plots the influence of the various design parameters on Pf of SLS. It is clear that both 
the COV and the average value of Q significantly influence the Pf. However, the influence of B on 
Pf is not as significant as that for Sc/B. In addition, from Fig. 11(c) it can be observed that the 

455



 
 
 
 
 
 

Wengang Zhang and Anthony T.C. Goh 

(a) COV of Q, B and mean Q (b) Sc/B, COV and mean Q 
 

(c) Sc/B, K0, COV and mean Q 

Fig. 11 Influence of Q, Sc/B, B, and K0 on Pf of SLS: (a) COV of Q, B and mean Q; (b) Sc/B, 
COV and mean Q; and (c) Sc/B, K0, COV and mean Q 

 
 
influence of K0 on Pf is also significant when Q = 40 compared with Q = 100. The Pf under K0 = 1 
is generally higher than that under K0 = 0.5 as the t for K0 = 1 is larger than for K0 = 0.5 but c is 
the same. 

 
 

7. Conclusions 
 
This paper considered the serviceability limit state of twin caverns. The dependent responses 

considered include the maximum key point displacement umax_t and the percent strain t. MARS 
model predicting the maximum key point displacement can be used to give preliminary estimates 
of the expected maximum cavern displacements during construction. The response surfaces 
relating percent strain t to Q and K0, Q and Sc/B, Q and B were constructed from the built MARS 
model. 
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Percent strain t is adopted as the serviceability limit state criterion. The threshold strain values 
are determined through the elastic and design line methodology proposed by Meguid and Rowe 
(2006). Probabilistic assessments on SLS were performed using FORM spreadsheet method based 
on the built MARS percent strain model. This study will be extended to investigate the 
three-dimensional effects of the face advancement of a new cavern on the support of an adjacent 
existing cavern. 
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