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in non-homogeneous orthotropic granular half space

Rajneesh Kakar ™' and Shikha Kakar 2

'DIPS Polytechnic College, Tanda, Hoshiarpur, 146001, India
2 Department of Electronics, SBBSIET, Padhiana Jalandhar-144001, India

(Received June 02, 2013, Revised December 29, 2013, Accepted February 14, 2014)

Abstract. The effect of various parameters on the propagation of surface waves in electro-magneto
thermoelastic orthotropic granular non-homogeneous medium subjected to gravity and initial compression
has been studied. All material coefficients are obeyed the same exponent-law dependence on the depth of
the granular elastic half space. Some special cases investigated by earlier researchers have also been deduced.
Dispersion curves are computed numerically and presented graphically.
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1. Introduction

Seismic surface waves are a complex form of vibratory movement transmitted through a
medium because in solid media there are two types of resistance to the external mechanical action
for the propagation of these waves; the resistance to the changes of volume, or sizes of elements of
the medium and the resistance to shear. For the frequencies of the seismic vibrations usually
observed, liquids and gases only exhibit the formal type of resistance. The propagation of
vibrations then reduces to transmission of cubical deformations through a medium and these are
called longitudinal waves. In solids, these vibrations becomes complicated because at the
boundaries of, for instant, layers in the Earth, an incident longitudinal wave will produce four
waves in a general case, namely, a longitudinal reflected and a transverse reflected wave, and two
analogous refracted waves. The same holds for an incident non-polarized transverse wave which
produces a longitudinal reflected and transverse reflected wave and a similar pair of refracted
waves. This is the main cause of seismic waves.

Surface waves which are the combination of compression and shear waves are called Rayleigh
waves. These waves propagate with slightly lesser speed as compared to bulk shear waves.
Whereas, the Stoneley arises due to interaction of waves with curved or plane interface between
solid and liquid media, so Stoneley waves are also known as interfacial waves. Stoneley waves are
a combination of compression and shear waves. The study of surface waves in granular medium is
useful in the field of soil mechanics.
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Fig. 1 Schematic of the problem

Waves in granular media are more complex due to the heterogeneous nature of these media.
The study of granular medium is useful for soil mechanics, mining engineering, and so forth. Their
traveling speed is slightly smaller than bulk shear waves. Paria (1960) was the first who developed
the theory of surface waves in granular media. Bromwich (1898) considered gravity as a body
force in his research. The work of Bromwich was further used by Love (1911) to show the effect
of gravity on Stoneley waves. The literature on surface waves is available in the books of Jeffreys
(1959), Stoneley (1924) and Bullen (1965). Britan and Ben-Dor (2006) studied the dynamical
behavior of granular materials. Also, the concept of gravity was introduced by Ahmed (1999,
2005) in his study of surface waves in granular medium. Sharma et al. (2007) discussed effects of
inviscid fluid loadings on Stoneley waves in microstretch thermoelastic continua. El-Maghraby
(2008) presented a paper on 2-D generalized thermoelasticity problem for a half-space under the
action of a body force.

Hou et al. (2013) gave the general solution for 3-D steady-state isotropic thermoelastic
materials with applications. Cicco and lesan (2013) studied thermal effects in anisotropic porous
elastic rods. Kakar and Gupta (2012) studied propagation of Love waves in a non-homogeneous
orthotropic layer under ‘P’ overlying semi-infinite non-homogeneous medium. Kakar (2013)
discussed the effect of impulsive line source and non-homogeneity on the propagation of SH-wave
in elastic medium. Recently, Kakar and Gupta (2013) investigated torsional surface waves in a
non-homogeneous isotropic layer over viscoelastic half-space.

In this paper, the combined effect of magnetic field, electric field, gravity, temperature, initial
compression and non- homogeneity on the propagation of surface waves in a granular half space is
studied. We consider the medium consists of large or small grains and is discontinuous in nature.
These grains possess both translational and rotational motion (Fig. 1). The friction is produced by
the movement of these grains; therefore we have taken the concept of friction in the governing
equations of the problem.

2. Formulation of the problem

Let M, and M, be two non-homogeneous electro-magneto-thermoelastic orthotropic granular
media. They are connected in such a manner that there is no relative motion between them. z-axis
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is taken vertically downwards into the medium M;. Here we assume the free surface and interface
of orthotropic electro-magneto-thermoelastic granular layer lying on non-homogeneous electro-
magneto-thermoelastic orthotropic granular half space of thickness z=H. Surface wave is assumed
to propagate in the positive direction of x-axis. For 2 D surface wave propagation, the displacement
components along x and z-directions are non-zero i.e., u; and u; are non-zero while u, is zero. Due
to rotation of grains, there exists non-symmetric stress tensor and stress couple given by o;; # o
and M;; # M;;. The stress tensor o; can be expressed in symmetric and anti-symmetric tensors
and 7’; given by

o, =1, +7;, (1)

where

Ty = %(% + Uﬁ) and 7; = %(Uij ~Oji ) (2)

Further symmetric strain tensor are given by relation

1({ éu. Ou,
e;=e;=— i | 3)
T0 2\ ox; oy
The anti-symmetric stresses 7°; are given by (Ahmed 2005)
' o an ' oc
T3 :_Fa_a 3 = _FE’ T2 :_FE: Ty =Ty =733 =0, “4)

where, F is the co-efficient of friction and the rotation vector of grain about its C.G. is given by (¢,

1, €)-
The stress couple M;; is given by (Bhattacharya 1969)

Ml.j = Mvij, &)
where M be the third elastic constant
o¢ o0& 0
Yin =72 v :0’ Vi3 =—, v :07 V31 =—» Vi, =—\w, +1),
n= o 2 BT, 23 1T, 12 8x( b 77)
0 o¢
v, =—Iw, +717), v,=—, v, =0,
32 ﬁz( p) 77) 1375 21
where
1 1 1
o = 5(”3,}7 - uZ,z)’ w, = 5(”1,2 _”3,x)> 5 = 5(”2,): - ”1,y) (6)

Let g be the acceleration due to gravity and p be the density of the material, The state of initial
stresses are given by

o;i=] .
o 0 in where i,j=1,2,3

where, o is a function of z. The equation in terms of initial stresses can be written as
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O,= O’ O,=—pP8= O’ (7)

For magneto elastic problems, the basic equations will be electromagnetism and elasticity.
Therefore Maxwell’s equations are
- - 0B - = E
V-E=0, V-B=0, Vsz—é—, V><B=,u€gea—. (8a)
ot ot
where, E, B, y, and ¢, are electric field, magnetic field, permeability and permittivity of the
medium.
And
H(0,0,H)=H,+H, (8b)

Suppose granular elastic media is under the influence of constant primary magnetic field
H acting on the y-axis, gravity g, perturbation H and an initial stress P along the x-axis. Then
the dynamical equations of motion in the x and z dlmensmns of granular medium under gravity are
(Bhattacharya 1969)

0o, 0oy, Ou, P dw, dw, | 0t :p(’izzl , (%)
ox Oz 0 oy Oz 0 ot
0oy, N 00y, +P(aa)3j+ oy, 3 07y _o, (9b)
Ox 0z Oox ox Oz
O0oy; 0oy, Ou, (Ga)zJ ot3, o’u,
+ + — 4+ P — = R 9C
x  a Pa \a) a P ©c)
and
T§3+0'23—032+8M“ +%=0, (10a)
Ox 0z
T+ 0y — 0+ My, +—8M32 =0, (10b)
Ox Oz
T{2+012—021+8M13 +%=0. (10c)
X Oz

3. Solution of problem for Stoneley waves

Further the stress components in presence of electric, magnetic and thermal field are given by

o, =(C, +P)%+(Cl3 +P)%+A,ueH§ +Ae,E}-ET, (11a)
8u1 8u3 2 P
03, =C;— " +C— o +Au Hy +Ag Ey —ET, (11b)
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ou, Ou
=C Ly =33 11c
013 44( o axJ (I1c)
Inserting Egs. (11), (5), (6) and (4) in Egs. (9a)-(9¢c); we get
o*u o’u , 0A oA
C,+P Cs+P)—=+uHl—+¢&,E;—
( 1 )8 ( 13 )8 o + 4, ox €L
A LI N 8”3 i( (12a)
oz\ 0z Ox Oz lo/4
Lofon ) o [ ]_ 2
20z\ 0z Ox Ox 2
Q(F%j_i(pa_?j:(), (12b)
0Oz ot ox ot
44i %_’_% -‘ri C13%+C33 au3 _6T+ a( HOZA)
ox\ 0z Ox Oz ox Oz 0z 0Oz
5 (12¢)
+i(geE§A)_£i(%_%j+%%4_3[]76_77}: a Z';S’
0Oz 20x\ 0z Ox ox Ox ot ot
-F—= 0¢ +MV? E+—= 0¢ G(M) =0, (12d)
ot 0z Oz
on ) 0 oM
-F—+MV-(n+ + =0, 12
o (77 a’z) Py (a’z 77) Py (12¢)
og 0g oM)
- F—=+MV? =0, 12
ot ct 0z Oz (129)
where, A=%+%.
ox 0Oz

We assume the non-homogeneities of the granular half-space as

mz mz mz mz

Cy=¢;e", p=pye”, F=F¢e", M=M,e",
mz mz mz — L] mz

P:R)e ’ :ue:(lue)oe s ge:(g Oe » == €

where, e;;, po, Fo, Mo, Po, (te)o, (€c)o , Eo are constants.
Inserting inhomogeneities in Egs. (11a)-(11c), we get

0’u O (0ou, oOu 0 (0ou, Ou
(e“+E’)aT;+(”e)°H5§(a_;+a_;j+(€ hES ax( e a;j (132)
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O0(0Ou, Ouy) _ OT (Ou, Ou Py 0 (0u, Ou,
tey—| = |~ By | 2 e, ) - | -2
Oz\ Oz Oox Ox Oz Oox 2 0z\ Oz Oox

0’ 0 o(o 0 0’ (150
u u u
+(eys + Py )22 — S _F, ’7) Fom 2L = L
(13 ) e Po8 ox at(é oM Po o
8_5_6_4’ +m % =0, (13b)
oaloz  ox ot
i(%+%j+e uy +me, %+e —82u3+ m%
“ox\ oz ox " bzox Pax Yo Y oz
+(ge)0E§ m %4_% +£ %_’_%
ox Oz oz\ Ox Oz
(13¢)
Ou, Ou O(Ou Ou
+ HYm| —+ = |+ —L+=2
(1) { [Ox 62] 82(6x azﬂ
ou, o(on) _(oT Fy 0 (0u, Ou, ou,
+p,g—+F B —+ml |———| ——— |=py—»
P8 Ox Oat(ﬁxj 0[ 0z j 2 6x[8z ox o or’
a§+MV E+ &, —( 0)=0, (13d)
* o oz
o, o2 0 o(M,)
— B+ MV (7 + ,)+—(o, +77) =0, (13¢)
ot oz Oz
Oz 2 a(M,)
~Fy,—+MNV*¢ +¢ . =0, (139)
ot T 0Oz
We introduce displacement potentials in terms of displacement components given by
MI:%—G—V/ u3=%+a—l/l. (14)
ox 0Oz 0z Ox
Introducing Eq. (14) into Egs. (13a)-(13f), we get
0°¢ 0’
(611 + 5 +(lue)0H§ ( ) Ez) Jr(313 +2ey + B + ( e)ng +(5e)0E§)_2
ox? oz
, (15a)
o¢ 9 _ o°¢
+2me44E_(Pog"'meM)E_':oT:Po 2

g(a_g_%]m(a_g):o’ (15b)
Ot\ 0z Ox ot
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P\ o'y P\ 0%y oy
o on o'y
2 2 _

+(mel3 +(/ue)0H0 "'(ge)oEo +Pog)g+Fo_at =P o

b

sz—a%+m%=0,

ot 0z
vip—aZlam 21wy V)|,
ot Oz 0z
v —a8  m g
ot Oz
where
P
MO

We use Fourier’s law of heat conduction for determination of 7 1.e.

oT 0
VT =C—+T,G, —(V?
pP Vat 0 Lat( ¢)’

(15¢)

(15d)

(15¢)

(15)

(16)

(17

where, K is the thermal conductivity and C, is the specific heat of the body at constant volume, let

Eq. (17) obeys the law as given by K = Ky "™, p = Ky / p.
Therefore, Eq. (17) can be written as

or o¢
K. VT = p,C.—+=,T.V>? ==
0 £Poly, or olo o

Eliminating 7 from Eq. (17) and Eq. (15a); we get

) N _
(ell +I)0 +(/ue)OHg +(ge)0E§)gf
o( p,C 5 )\0% L[ 22T, (a(,zsj
Vi | oy 2 P H, EX )~ |-v? 20 | X 1=
( 8t( X, j +(el3+ eyt o+(ﬂe)o 0+(5e)o 0)622 (%@ o ,
0 0 0*
_+ 27"344_f - (me44 _pog)a_f - Po?? |

or

(18)
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_ it
.09

- AV =0,
ot

(611 +PO+(,ue)0H§ +( e) Ez)
H2

IS

o’¢
or? ]

+ (e13 +2e,, +P+(1,),
oy
Ox

~Po

10 j
® ot

0

+2mey, a_f +(meyy — pog)——

where

Eliminating # from Egs. (15¢) and (15¢); we get
_ S
( €4y T~ j o
62

"(633_613 €yt j 2
0z of Oy 4
+F0V a— +mFOV
t

o’y
Ozot

(19)

(20)

JzO. 21

ot

0
_a_+m§) [mel3+( )
(ge)OEO +p0g

0
+ ‘333"1_‘// ~Po

oz

og
ox

oy

or? ]

To solve Egs. (15a)-(15f), we assume that
Jonz = (@ pz=p @ =g @
nx,z,0)=n,(2) """, {(x,z,)=¢, (2) ™.

Put Eq. (22) in Egs. (19) and (21), we get
dY (dY (dY (d dy
{A[Ej +B[ZJ +D(Ej +E(E +G:l¢l+|:I(EJ +J}//I_O, (23)
dY (dY (dY | dY (d B
HEJ ) oAg) ) _Wl*[T(zJ *U(z]”}’“"' e

where, A (613 + 2@44 + P() + (,ue)o H02 + (83)0 E ) B 2me44
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D=—(e11 + Py +(u )y Ho +(5e)oE5)12 —2meyl” + pyb’

+ ib(ell +P0 +(,Ug)0H02 +(€e)0Eg)
®

+ ibA,

2imb
E=-2me,l” + il

) I=il(me44 _pog), J=(m€44 —pog{— il’ —%J

.3
Gles + 20+ By (0, 13 ) DI -t + 28

e

e in(e13 +2e,, + Py +(u, ), HE +(56)OE§)12

P ). P, )
L=|e;; —e —e44+7 ibF,, N =mey; +m| ey; —e;; —ey, +7 —ibmFy,

P ] (25)

P
O=-1e, L —1> -1 e, —e,—ey, +—2~
44 BT Tl T

P
+ pyb” + iab(e33 —e3 — €y +70) +mey; + 2ibl*F,,
P,
Q =-ml’e;; +imaesy; — mlz(e44 + 70] + pob’m + 2ibF,1°,

P, P,
S =[e44 +70jl4 — pob’1* —ibal® +[e44 +70jib3ap0 —ibF,l*,

T =illmeyy +m(u, ), HE +m(e, ), EZ + pyg) U =imilme,s +mlu, ), HE +mls, ), E2 + pog)

V=i’ (meB +mlu, )y Hy +mls, ), Eq + Pog)_ alb(meB +mu, ) Hi +mls, ), Eq + Pog)
Therefore the solutions of Eq. (23) and Eq. (24) is of the form

—l/-z
$=Ade ", (26)
vi=Be ", j=3,4,56 (27)

where , 4; (j =3, 4, 5, 6) are the real roots of the following equation
a,D* +a,D" + a;D°® + a,D° + a,D* + a, D’ + a,D* + a;D + a, =0 (28)
where

a,=AL, ayy=AN+BL, a;=A0+BN+DL, a,=AQ+BO+DN +EL, (29)
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as=AS+BQ+DO+EN+GL-IT, a,=BS+DQ+EO+GN-1U,

29
a;=DS+EQ+GI—1V —JT, ag=ES+GQ—-JU, ay=GS—JV. @9)

where 4, B, D, E, G, I, J, L, N, O, O, S, T, U and V are given by Eq. (25). Further the constants 4,
B; (j =3, 4, 5, 6) are related by means of Eq. (23). Equating the coefficients of e’ (j=3,4,5,06)
to zero and using Eqs. (23) and (24); we get

A;=nB, (j=3,4,5), (30)

-2 -J
n.=
! AX;—BZ,+DX,—El+G

(j=3,4,5,6) (31)

using Egs. (15¢), (25) and (27), we get

m = Be™) (j=3.4.5.6) (32)
where
B—mAB =202 +ml*A. +1*
Y — J J J J (33)
J 2 —mh. +iba—1*
J J

using Egs. (15a), (22) and (26), we get

T:Pj(Aje‘“) (j=3.4,5,6) (34)

where

F
h 12(933 — €3 €y +70) + (meB + m(ﬂe)ng + m(ge)oEé )ﬂi
oL (35)

o=
=0

1
—2mey; + il(mey, - pog)? +b%p,
J

Further substituting Eq. (22) into Egs. (15b), (15d) and (15f), we get

(D+m)é —ilg, =0, (36)
[Dz rm+ (iab—lz)zjg’1 ~0, (37)

[(Dz +m+(iab —zz)zﬂgl ~0. (38)

The solutions of Egs. (37) and (38) are given by

E=Ae“+Aze ", (39)
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(=B e” +Bze”, (40)

where
o —m+\/m2 —24(l'ab—12)2 pe er\/m2 —24(iab—12)2 m? —4(iab—lz)z S0, (41)
Substituting Eq. (39), Eq. (40) into Eq. (36), we get
(A o+ A m)e™ +(— 4y frmdy)e ™ =illB e + B, e ) (42)

Equating the co-efficients of ¢ and e to zero in Eq. (42), we get

4= B, 4= ilB,

a+m

. 43
i (43)
Let Ao, o, po, Fo, My are the characteristics of layer and Lo, ,L_to, ;0, Fo, M, are the characteristics
of half-space, also for the lower half-space and description of surface wave propagation &, @y, #1,

w1, {1 goes to zero as z — oo, also the non-homogeneity constant m is replaced by constant m for
lower granular half-space also it is assumed that the real parts of (j = 3, 4, 5, 6) are positive.
Thus for lower half-space

4 =de ", (44)
7 =Be ", (45)
m=vBe ) (46)
T =Pj(Aje ' ) (47)
£ iL_g (48)
1 I’I_’l—ﬂ 2 s
G =Be” (j=3,4,5,6) (49)

4. Boundary conditions and dispersion equation
Case - |

The boundary conditions on interface z = H are
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(1) uy = Ela
(1) us = us,
(iii) E= E_,
(iv) n=,
v) (=¢,
(vi) M3 = M3,
(Vll) M;, = ]‘/_131, (50).
(viii) M3, = M3,
(ix) 033 = 033,
(%) 031 = 031,
(Xl) 033 = 332.
(xii) T=T
(xiii) Loor-L.or
Oz 0z
Case - 1l
The boundary conditions on free surface z =0 are
(XiV) M33 = 0,
(xv) M;, =0,
i M3, =0,
(xvi) 32 (51)
(xvii) 033=0,
(xviii) 031 =0,
(xix) 03, =0,
where
0 0 0
My=m2, My =12 (-vy), My =M,
Oz Oz 0z
o’ o° o’ _
053 =Cpy _f +G; _? +(Ci3— Gy )_¢ + 1 H VP P+ Mg EgVP$—ET,
ox oz ox0z
o 'y w0y on
o, =—F—=2, o0, =C - 2 -F—.
2 o’ N THla ot T owez ot
where, @is the ratio of the coefficients of heat transfer to the thermal conductivity.
From the boundary conditions (iii), (v), (vi) and (vii), we get
B e 4 e P = _32 — e_EH, (52)
a+m m—f m—p
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B e +B, e =B, e P,
M, e [Bl ae™ -B, ﬂe‘ﬁH]z—]\?o e BB, e,

B ae™ B, pe™ — o B _
MoemH ;+m _ Zmﬂ_ﬁ :_MoemHﬂ 2 ﬂH‘

From Egs. (52) to (55), we have

i.e.,
§=¢=¢=¢=0.
The other boundary conditions give the following relations
(i) (iln;—A,)B;=(iln,—2,)B,,
i) (i1=n,2,)B, =il =7 7,5,
(i) Y,(B,)=Y,(B,)
(vit) M, [ (P +Y )4, =4} |(B)=M,[ (" +X ) A, -4} |(B),

(333/% _e13lz)”_,- —il(ey; —e3)A; —E Py,
J
ey LE 00 i G5 =) e B (G5 =1
ix
3 (3332/; _61312)ﬁj —il(ey; —e3)A, —EPnp; |

+(@,)o Hom (A =1%)+(&,), Egn (A —17)

Jj°

(%) [(ewu(I” + 4] +2iln,A)~ibF,Y | B, = (e, (I° + A] +2iln, A,)—ibF, Y , | B,

(xi) Pm;B; = Pil;B,
(xii) — P, 4;B;+0n,4,P,B; =~Pj,2;B

13

(53)

(54

(55)

(56)

(57)

(58)

(58)

(39)
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where
a, =ilny— Ay, a,=iln,—4,, a;=ilns—A;, a, =ilng—A,

ais =ilny— A, a¢=iln,—4,, a,=ilns—A;, a,=ilng—A,

a21=11n3—n3/13, a22=lln4—n4/i4, a23=lln5—n5/15, a24=lln6—n6/£6,
ays =ilny—nydy, a,, =ilng,—nyd,, a,, =ilns—nslds, a,3 =ilng—ngi,,

&

e

&

3:
(=]
N
;,
[\ ] )
A A A —_~
o
(=]

e eJo

a55 :(833132 61312_§0+(/L74')0 I—[O2 2+ 7(3 0E§72+ 76’)0 H02[272+(7e)0 E31272)73_ll(€33
a56:(633142_6]312_?‘0+(7e)0H(fj’42+ &, 0E5742+ 7@)0H512/T42+(7e)0 E(?lzitz)a_ll(ess
ds; :(633752_61312_30"'(@3)0]_[02152"' g, 0E§;2+ 76)0H()212752+(7e)0E($12752)?75_11(633
assz(esszéz_elsl _Eo"'(ie)oHozj*(az"' g, 0E02762+ 76)0H0212762+(61)0E512/T()2)76—ll(e33

ag, = e, (I + A +2iln,A,) —ibF, Y, a,, = e, (I° + A; +2iln,A,)—ibF,Y,,
ag = e, (P + A2 +2iln A)—ibF,X s, a,, = e,,(I’ + A, +2iln,A,) —ibF, Y,
ags = e, (I7 + A7 +2iln,A,) —ibF, X, a,, = e,,(I* + A} +2iln,A,)—ibF,Y,,
ag, = e, (I* + A8 +2ilnA) —ibF, X 5, a5 = e,,(I* + A7 +2iln, A, ) —ibF, Y,

a, =P, a,, =P,,a,, =P;,a,, =P, a0, =P,a,, =Pg,a,, =P,,a;, =Py,

ay, = (-4 +0npP;,a, =(-4, +0nP,,a, = (-1, +0)nP,,a, = (-1, +O)nP,,
ags = (=4 + 9)ﬁ3§3’ass =(-4+ 6)’741347‘187 = (=4 + H)ESISS’aSS =(—A+ 9)716136

EqIP 23 ) s —il(eyy —e3) s, (60)

Eozlz/isz 6 _il(e33 _813)/16’

o Eozlzﬂaz s —il(e;; —e3) 4,

)

0 Eozlzﬂ'j)m —il(ey _813)/149
)
)

e3) s

e s
@) s
@) s
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5. Discussion

Eq. (59) is the frequency equation of Stoneley waves in a thermo-electro-magneto
non-homogeneous orthotropic granular medium under the influence of gravity and initial stress.
The wave velocity ¢ = b / [ depends on the gravity field, various non-homogeneities of the material
medium and the granular rotations. The Eq. (59) also depends on the particular values of /; and 1,
which means that the general wave form is dispersive in nature.

From Eqgs. (29), (31) and (59), we can conclude that when [ is large, i.e., the wavelength is
small, the effect of gravity is sufficiently small. On the other hand if the wave length of the wave
is large then the effect of gravity is no longer negligible and plays an important role on the
determination of the wave velocity c.

6. Particular cases
(1) If we neglect the gravity field, magnetic field and electric field, we get the wave velocity

equation for Stoneley waves in a non-homogeneous orthotropic thermo granular medium
under the effect of initial stress which is the same equation as Eq. (59) with

n, = 1% - (61)
L AX-BA+DA-EA+C
and, /; are the real roots of the following equation
aD*+a,D" +a\D°® + d,D’ + a.D* + a,D’ + d,D* + a{D +ay =0 (62)
where
a=AL,
ay=AN'+B'L,
ay=A'0'+B'N' +D'L',
ay,=AQ +B'0O'+D'N'+E'L,
a;=AS"+B'Q+D'O'+E'N'+GL' -1IT', (63)
ag=B'S"+D'Q'+E'O'+G'N'-1'U’,
a,=D'S'+E'Q+GO +IN-JT,
ag=E'S"+G'Q0' -JU',
ag=G'S"=JV".
and

ible,, + P,
1¥=@B+2Q4+%l1722gwlyz—@“+%y2—2qJ2+p&2+LE1iJQ+%A,
(64)

E'=-2e,l’ +%, I’:il(me44), J':(meém)(—il3 —%},
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h b3 b2 ) P2
G'Z(e”+2€44+P0)l4—p0b212+l'0°T—ibAlz—l (313"'(;444' 0) ’

L'= (e33 —e; —ey + %) —ibF,, N'=me;; + m(e33 —e; —ey + %) —ibmF,,
0’:—12e44%—12 —12(% —e; —ey +%]+p0b2

+ iab(e33 —e3 —ey + %j +mey; + 2ibI* F, (64)
Q' =-ml’ey; +imabes; — mlz[e44 + %] + pob*m + 2ibF,1*,
S’:(e44 +%jz4 — p,b*1* —ibal* +[e44 +%jib3ap0 —ibF,l*,

7' =il(me, ), U'=iml(me,; ), V' = —il* (me,; ) — alb(me,, )

where A, B', D", E', G, I', J, L', N', O', 0", §', T', U and V' are given by Eq. (64).

2) IfE2=0, Fy=0, My =0 i.e., both the media are elastic and having no thermal fields, then
by using Egs. (15a), (15¢) and (30), we get

il(pyg —mey,) .
n; = 0 3 H 72 (=34
(e +2e4 + Py +(u,)oHj +(&,)0E, )/Ij —2me44/1j (65)

+e, + (02 py 1Py =1 () Hy =17 (£,)0Eq)
and, 4; are the real roots of the following equation

F.
{(613 +2eq+ B+ (1) Ho + (5e)oEg)[e33 —€3 ~ €y +?OHD4

P
+ (e13 +2e,, + P+ (1) Hy +(£,),E; )me33 (e33 —e3—ey,+ ?Oﬂjy (66)

P,
[,Dob2 ~Pey -1 ?Oj (613 +2e4 + By +(1,)o Hg + (Se)oEg)
+ D

P,
+ 2’"2644@33(/30172 _12‘311 _lz(ﬂe)ng _12(5e)0E§)(633 €3 €y "‘70]

and the dispersion equation is
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ilny;— A,
il—n A,

e33ﬂ,§ _91312

+ (lLle)OHg/li
+ (‘c"e)OE‘gﬂG2
+(u)o HilP 2
+(e)EqP A

ilng2—4,
il—nyA,

e s —el’

+ () Ho
+(e)0 Eo i

+ ()0 Ho ' 25
+(eEsl* A

ns—il(ess —e) Ay my —il(e; —e3) Ay

I+ P+
e e
421l ny, 2l n,4,

Eq. (67) is the frequency equation of Stoneley waves in an electro-magneto non-homogeneous
orthotropic granular medium under the influence of gravity and initial stress. The wave velocity ¢
=b /1 depends on the gravity field, various non-homogeneities of the material medium and the
granular rotations. The Eq. (67) also depends on the particular values of 4; and 4, which means
that the general wave form is dispersive in nature. The real part gives the velocity of Stoneley
waves and its imaginary part determines the attenuation of the waves due to granular nature of the
medium.

in,— 1,
il -y,

e33/1§ _e13l2

+ (/ue)OI_I(?—Z
+ (‘g‘e)()Evg//T’BZ

+ (ﬂe)OHglzﬂ_’_‘vz
+ (ge)OEglz/‘T'Sz

7y —il(ey; — 913)13

P+ 2}
€44 —
+2il ny A,

iln,— 4,
il-n,2,
ey el
+ (ﬂe)OHngz
+ (ge)OEg/,T’éll
+ (llle)OI_Iozlzﬂ_q2

+ (82)0E312ﬂ—’42

Ny —il(es3 — 913)24

I+ A}
€44 —
+2il nyA,

electric fields, then by using Egs. (15a), (15¢) and (30), we get

il(pyg —mey,)

" (e +2ey + B+ (ﬂe)ng)/ﬁ‘ —2meyA;

+e +(b2,00 _[Zpo _Zz(ﬂe)ng)

and, /; are the real roots of the following equation

(j=34)

P
[(613 +2ey + B+ (/le)oH(?)(ew €53 €y +70HD4

P
+ {(913 +2ey + B+ (1) H(f )’"333 (633 —ep3 eyt Toﬂlf

=0

17

(67)

3) If==0, Fo=0, My =0, E =0 i.e., both the media are elastic and having no thermal and

(68)

(69)
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| P
(Pob2 ~ley =1 7(]}(613 +2ey + F +(:ue)0H§)
+ D

P
+2mze44e33 (,Dob2 _12311 _Zz(ﬂe)ng )(933 — €3 "€y +70j

L (69)
pob® =17y =1 il (,Dob2 —l%e, +12(/1e)0H§)
+ 2 =0
Lt I (meIS + 008+ m(ﬂe)OH(? )(me44 - Pog)
and the dispersion equation is
ilng— A, iln,— 1, iln,— 2, iln,— 2,
il —ny Ay il—n,A, il -7, il =, A,
e —epl” ey —epl’ e —el’ ey —epl’
+(/Lle)0H§ﬂ§ +(/ue)0H§]’421 +(/ue)0H02—2 +(/ue)0Hngz 0 (70)
+ (/ue)OHglz/,g + (/’le)OH(?Zz/Lzl + (/ue)OHglzﬂ? + (/ue)OHgZZE

ny—il(es; —e) Ay my—il(es; —e) Ay 175 —il(ey; — 613)/?_3 Ny —il(es; _613)24
P+ 2 P+ 2 P+ P+
e e e _ e _
20l my 4 2il A, 12 7, 2l n,7,

Eq. (70) is the frequency equation of Stoneley waves in a magneto non-homogeneous
orthotropic granular medium under the influence of gravity and initial stress.

@4 Ift=E2=0,F=0,My=0,E=0,H=0, P =0, g=0 i.e., both the media are elastic and
having no thermal, electric and magnetic fields, then by using Egs. (15a), (15¢) and (30),
we get

B il(—mey,)
(e + 2e44)/1§ —2meyA; +e + (b*py)

; (=34 (71)

n;

and, /; are the real roots of the following equation
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[(e13 +2ey,+ R ) (es3 €3 €y )]D4

+[(e5 + 24 Jmey; (e s — ey )ID°
(72)
+ [(/0 -1 644) (013 + 264 )+ 2m e ey (pob - lzell)(e33 T3 ey )]D
+ [(Pob - 12644)(p0b - 12611)+ I*(me;5 ) (mey, )]= 0
and the dispersion equation is
ilny— A, iln,— 2, iln,— 2, iln,— 2,
il—ny A, il-n,A, il il -, A,
(633/132 - 61312) (633/1421 - 61312) (633%2 - 61312) (633/1421 - 61312)
=0 (73)
ny—illey =)y 1y —il(ey —e) Ay 7y —ileyy —e3) Ay 77, —il(es; —€3) A,
I+ 2 P+ 7 P+ 23 P+ A7
€44 ) €44 ) €44 _ €44 _
+2il ny A, +2il nyA, +2il 34, +2il nyA,

Eq. (73) is the frequency equation of Stoneley waves in homogeneous orthotropic granular
medium. This result is in complete agreement with the results given by Ahmed (2005).

7. Solution of problem for Rayleigh waves

The stress components in presence of electric, magnetic and thermal field are given by

2 2~
o, = C11”1,x + C13u3’2 +Ap Hy +Ae Ej —ET,

053 = Gty + Cygity , + Mgt Hi + Ae Eg ~ET, (74)
oy = C44(“3,z + “1,z)
where
Cu=Cy=4+2p, Cy=4, Cy=4u,
The problem deals with thermo viscoelastic solid, therefore, the thermal parameters E are
E=(31+2u), (75)
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where ¢, is coefficient of linear expansion of solid.
Substituting Egs. (74), (5), (6) and (4) in Eq. (75); we get

(/1+2lu+P)ul,xx+luul,zz+(ﬂ“+lu+P)M3,xz+W1,x§(ﬂ’+2la+P)+u3,zai(ﬂ“+P)
X X

0 0 on 0 P
— (1) — -F— - \F)—— - 76
+ (u3,x + ul,z)az (/J) pgu3,x 8t (77:) 6t 82 ( ) 7 (ul,zz u3,xz) ( )
2 2 _oT
+ /ueHO (Zul,xx + u3,xz)+ geEO (2ul,xx + u3,xz)_ :‘a = /)ul,tt’
(Fe,)z—(Fe,)x=0, (77)
0 0
(ﬂ’ + 2:”)143,22 + :uu3,xx + (2’ + /u)ul,xz + (u3,x + ul,z )a_(/u)+ ul,x _(]’)
X 0z
0 5 ) P
+ Us . a_(ﬂ’ + 2/”) + (ueHO + geEO Xul,xz - u3,xx)_ E(ul,xz - u3,xx) (78)
z
oT 0
+ (ul,x + Us . )ueHg + 8eE§ (ul,x + u3,z)+ pgul,x - Eg + Fa(ﬂ,x )pu3,tt ’
o0& 5 0
-F—=+ MV —(M)=0 79
MV E+ £ ——(M)=0, (79)
8 0 oM
a?—+AIV (U—FM@)4—62(M5—%U) = =0, (80)
Fa;’ MV? ¢+¢. 6(M) 0, (81)
, Ou, Ous,
where, 4, y are Lame’s constants and A=—+—=u, +u, .
ox Oz ’ ’

Now we assume the non-homogeneity of the granular half-space and co-efficient of friction are
given by
izﬂoemz’ /lzuoemz, pzpoemz, FZFE)emZ, M=M0emz,

(82)
P=Re"™, u,=(u)e", & =(&)e", E=Ee",
where, m, 4o, 1o, po, Fo, Mo, Po, (tte)o, (€2)o » Eo are dimensionless constants.
Inserting Eq. (82) in Egs. (76)-(81), we get
0
(/10 +2uy + F, )ul,xx + Ul o, + (/10 + o + B )u3,xz + a(/lo +2u, + Po)

(83)

0 0 0 on o

tuy, _(ﬂo + Po)+ (”3,x tu, )_(,Uo)_ Pogus, — Iy _(772 )___( )
X Oz ot ot 0z
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+ (:ue)OHg (Zul,xx + u3,xz )+ (ge)OEg (2ul,xx + u3,xz )_ %(ul,zz + u3,xz )_ EO 68_)7; = po“l,w (83)

(&, )b z—(Fg, hx=0, (84)
0 0 )
(/10 + 2!‘0)”3,2 + Hlts o T (/10 + IUO)ul,xz + (u3,x tu )a_(ﬂo ) +u _(/10 ) - _(ul,xz - “3,xx)
X 0z 2
0
+ Us , a_Z(ﬂO + 2lu0)+ (ue )OHg(ul,xz - u3,xx)+ (ge)OEg (ul,xz - uS,xx)+ (ul,x - Z’l3,z) (85)
_oT 0
+ (ue )ng + (ge)oEg + pogul,x - ‘:‘a_ + FO _(77,)5): pO”S,tt’
z ot
F2§+MV§+§ —( 0)=0, (86)
g 2 9 oM, _
o, + MoV (77+w2)+az(w2+77) —"=0 (87)
F%§+MV§’ +¢. 6(M) =0, (88)
T can be calculated from Fourier’s law of heat conduction
oT
pVT=C (v 4) (89)

. . K .
where, K be the thermal conductivity and obeys the law as given by K = K ", p= —% and C, is
Po
the specific heat of the body at constant volume.

We introduce displacement potentials in terms of displacement components are given by

U = ¢,x Y. U3 = ¢,z V¥ (90)

Introducing Egs. (82), (90) into Egs. (83)-(88), we get

aV-g, + gy +mB (2. +y )-5T =0, 1)
(«f ~¢ )+méE, =0, 92)
BN~y +gh +s,, + m(ﬂ% + 2ﬂ2w,z)= 0, (93)

—Fy&, + MVE+ Mgmé, =0, (94)
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=5, 4V =Yy =l -V )]=o,
—s'&, + Vi + m¢ =0,
where

PR V0. [l CO R B
Po Po Po M, 2,

Eliminating # from Egs. (93) and (95); we get

(Vz - s’g + m2
ot 0z

j BV -y, + 2o, +mlg, + 28 ¢ sV, )+ msv2(y,)=0

To solve Egs. (91)-(96), we assume that

Blx.z,0)=¢ (),
w(x,z,t)=y, ()",
Ex,2,0)=& (2) "™,
n(x,z,t)=1n ()",

putting Eq. (99) in Egs. (91) and (98), we get
(@*D> - 4)g - By, =0,

(4D*+ BD* + CD* +d'D + E )y, +(E'D* + F') gy =0,
where

i, A=a’l> —b* -2mp*, B=ilg—ilmpB*, A'= > —ibs, B=3mpB* —ilsh,
Z

D=
C' =b(b+if%s")—21*(B* —ibs) + 2m* 3>,
d' = (2 Pm+2B%s'm —ml* B* + mb* + imsbl*),
F'=(—igl’ —glbs' —iml*y* —ms'y* — ms'y*b* + ilgm + ilm*1%).
Therefore the solutions of Egs. (100) and (101) is of the form

Az -A;z
=A.e" B J
¢l = je + je .

vi=Ee" +Fe ™, j=3,4,5

95)

(96)

7

(98)

99)

(100)

(101)

(101a)

(102)

(103)
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where
D*+PD’+PD*+PBD’+PD*+PD+P,=0, (104)
where
3mpB* —imsb
P=—
P —ibs
b lo2b(b + ifs'y — 2120 (B2 — ibs) + 20 m* B — (B — ibs)(a*l? - b* - 2mp?))]
? a*(B? - ibs) ’
(105)
p_ a*(=2p%1 +2B8%s' —ml* f* + mb* +imbl*) — (a*1* —b* = 2mB*)3mB* — imsb)
’ a’ (B> - ibs) ’
_a’E-AC'+BE' P — Ad’ BF' - AE

4 =

(B —ibs) | @B —ibs) ° a*(B® —ibs)

where 4', B', C', D', E', E, F, A, B are given by Eq. (101a).

Further, the constants 4;, B; (j = 3, 4, 5) are related with constants E;, F; respectively by means
of Eq. (100). Equating the coefficients of ¢, ¢ (j = 3, 4, 5) to zero and using Egs. (100) and
(101); we get

Aj :UjEj and Bj =77J.Fj (j=3,4,5), (106)

ilg—ilmpB*
a* At —a’l* +b* +2mp?

77]‘ = (j:3>4a 5)> (107)

Now solving Egs. (93) and (100) for #, and vy, we get
(a1D4 +a,D’ +a,D* +a,D+ as)t//1 - isb(ozzD2 + c16)771 =0 (108)
Now eliminating y, from Eqgs. (95) and (108), we get
[Q1D6+(12D5+‘]3D4+Q4D3+%D2+%D+‘J7]ﬂ:0a (109)
where

q, =a, —isha®, q, =ma, +a, —isba’m, q, = a,(is'b—1*) +a,m + a, —isha, + 2isbl’a’,
q, = a,(is'b—1%) + a;m + a, — isbmag + isbml*a*, (110)
qs = a;(is'b —1*) + aym + as + 2isbl*a, + a’1* (~ish), q, = (is'b—1%)a, + mas +isbml’ay,

q, = as(is'’b—1%)—isbl*a,
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a, :azﬂz, a, :2ma2ﬂ2,
a; =B (—a’l* =b* +2mp*)+ (b> - 1*pH)a’, a, =2mB*(—a’l* +b* +2mpB?), (110)
a; =(b* —1*B*)(~a’l* +b* +2mpB*) +il(g + my*)ilg—ilmpB*), ag, =b*> +2mp* —a’l*.

The solution of Eq. (109) is of the form

A.z —-A.z
m=(Ee" +Fe )6, (111)

where, J; (j = 3, 4, 5) are the real roots of Eq. (94) and 6, =i / bs [f* (3] — I*) + b + (ilg + m i | )
n;+2mp> ;).
Further substituting Eq. (99) into Egs. (92), (94) and (96), we get

(D +m)& —ils, =0, (112a)
(D* +mD+h*)E=0, (112b)
(D> +mD+h*)¢, =0, (112¢)

where, h* = is'b — I
The solutions of Egs. (112b) and (112c¢) are given by

& = Ae” + Aze ", (113)
£, = Be” + B,ze™”, (114)
—m+m* —4n* m+m* —4h* 2
where, o = 5 , b= 5 ,m-—4h">0.

Substituting Eq. (113), Eq. (114) into Eq. (112a), we get
(Ao + Am)e™ + (= A, + mA,))e * = il(B,e™ + B,e ™). (115)

Equating the co-efficients of ¢ and e/ to zero in Eq. (115), we get

iB,_ __ilB,

A = = .
Yatm’ 7 m—f

(116)

Let Ao, 1o, po, Fo, My are the characteristics of layer and A, to, po, Fo, M, are the characteristics
of half-space, also for the lower half-space and description of surface wave propagation &, ¢4, #1,
w1, (1 goes to zero as z — oo, also the non-homogeneity constant m is replaced by constant m for
lower granular half-space also it is assumed that the real parts of (j = 3, 4, 5) are positive.

Thus for lower half-space
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7 @ — 55 Az
$=nFe,
— = Az
l/ll :F‘je ! >
ﬁl—gjfje_i/z’
- il = _z
eﬁzm—_ﬂBze r,
G=Be” (j=3,4,5),
where
M33=M%, M32=M£(77_V21/’)> M31=M%,
0z 0z 0z

2 2 2
033, =C %"' Cy3 % + (C13 - Css)ﬂ"' ﬂeH§V2¢ + AgeE§V2¢ -ET,
ox Oz Ox0z

2
O 28W]—FQZM5

2 2
Oy =—F— oy oy
Oz 0x0z ot

ox® 0%

> O3 = C44(

From the boundary conditions (iii), (v), (vi) and (vii), we get

£=¢=F=F=0

25

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

The other boundary conditions gives the following relations, conditions (xii) and (xiii) are

identities due to Eq. (124).
(xiv) gives
ie., K.E,+KE,+K,E,—KE,~KJE,—KE; =0,
(xv) gives
K, E+KE, +KE;+ K E, +K,E,+KJE; =0,
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(xvi) gives
KoEs+K\E,+ K, Es+ K E,+ K, Ey+ K s E =0,

while condition (xviii) and (xi) is an identity,

(1) gives
K" E, + Ko™ E, + Ky E. + Kye " F, + K,ye *"F, + K, ;e »"F,

=Ky P F, + Kyye "' F, + K, e "' F,
(ii) gives
(il + nyAy)e™" Ey + (il + n,A,)e™ " E, + (il + ngAs)e™" E,
(il —nAg)e ™M Fy + (il = n,A,)e ™" F, + (il + ns A )e " F,
= (il + Ay )e P Fy + (il + Ay e ™ F, + (il + gy )e ="' F,

(iv) gives
ALH AH AsH ~IH —isH ~AsH
0 Ey+0,™E, +0se  Es+05e P+ 0,6 Fy+ 056 T E

=5 M F+ 5,6 F, + 5 M, (125)
(viii) gives
Mo |K ™" By + Ko™ E, + Ko™ By — Kie ™" F, — Kye "' F, - Kye ™" F, |
= My [+ Koo ™ + Ky ™M F|
(ix) gives
" K e Ey+ K E, + K™ By + Kye ™ Fy + Kye ™ F, + Koe " Fy |
= [Re Fy + Ko ™ Fy + Rye ™ |
(x) gives
" Ky By + Ky e E,y + K By + Kyne ™" Fy + Kyye ™ F, + K se " Fy
=Ko U+ Koo ™F, + Kose ' F]
where
2 2 e PN 72 2
K :/11(5_/ — A+l )’ K 2/1_/(51 — A5+l )
K=l + 2022 = 2y 1)+ 201002, K, =7, [ + 2, VB2 - 7 12+ 211, 7, 6)

K=, 420, 2 = 20 )= 20ugn,, Ky =1, |(F + 20, )22 = 7 12]- 200, 7,

Ky =ibFyS, + 2ilpgn A, — (B2 + 12} K .y = ibFyS, + 21ty 7, — (A2 +1°)

~
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Koo =ibFy5, = 2ilugn A, — (B2 +17 ) Ky =ibFy8, = 2ilfHga A, — (A2 +17)

. . _ o (126)
Eliminating E3, E4, Es, F3, F4, Fs, F5, F4, F35 from Eq. (112¢),
We get 9 x 9 determinant, which gives wave-velocity equation

la;| =0, where i,j=1,2,...,9 (127)

Eq. (127) gives the dispersion equation of Rayleigh waves for a granular non-homogeneous
medium under the influence of gravity. The velocity of Rayleigh waves is given by the real part of
the equation and attenuation of the waves is due to granular nature of the medium given by
imaginary part of the same equation.
where

a;, = Kle_%H, a, :Kze_ﬂ“H, a;; = K3e_’15H, = Kle%H,
a5 = Kze/hH’ A6 = KaelsH» a7 =g = ayy =0,

ay, = Kse_ﬂ“H, Ay = K6e_/15H, Ay = K7ei3H,

tys = Kye™, ays = K9e/15H: Uy = lpg =l =0,

MH

- H
— 3
ay = Kjge

> d3p = K11e_ﬂ4H, ay3 = Klze_lsHa A3y = K13e/13 )
ays = K14eﬂ4Ha 36 = KlsellsH’ 37 =Gy = U35 =0,

ay =Kig, ap =Ky7, a;3=Kig, ayy =Ky, a45 =Ky, a46 =Ky,

Ay = 1?195 g = I?zoa Qg = 1?20, Ay :EZI’

as, =il + mydy, as, =il +n,A,, as; =il +nsis,

as, =il —ny Ay, ass =il —ny Ay, asg =il —ngAs,

as; =il _’7319 dsg = il_ﬁ4/T4» s = il_ﬁszs’

dg) = O3, gy =04, Agy =05, Ogy =03, dgs =0y, Ugg = Os, dgy = é_‘3> Aeg = _4, Ao :5‘5,
a, =M0emHK1, a, =Moe'”HK2, ary =M0emHK3,

a, =—K M, a5 =-K,Me", a,, =—K,Me"",

ayy =K Moe™ , arg =—K,Moe™, az = —K;Moe™,

ag, = K4e’"H, ag, = Kse'”H, gy = K6e'”H, gy = K7e’"H, Ags = ng'”H, Age = ng'”H,

(128)

_ ¥ mH _  mH _  mH _ mH _ mH _ mH
ag; = Kqe™, agg =Kge' ", agy = Koe", agy =Kjpe", ag, =K e, ag3 = Kppe,

_ mH _ mH _ mH _ mH _  _mH _ r _mH
Aoy = Ki3e™", ags = Ky€™, agg = Kjs€™, a9y = Kj3€™", agg = Kiy€™", ag9 = Kj5€™".

7. Particular cases

Eq. (127) in determinant form gives the wave velocity equation of Rayleigh wave in granular
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non-homogeneous medium under the influence of gravity, clearly from Eq. (127) we find that
wave velocity ¢ =5 /1 not only depends on gravity, temperature ,magnetic field, electric field,
initial stress but also on the non-homogeneity of material.

(1) In the absence of granular rotations, we get

Lt Lt A;=t,

M—-0 s—0 . (129)
ML_t)() Sé)t() Sé‘j—vja (]_37475)9

where

»=——[,5 ( )+b2 (zlg+mi17/2)77j +2mﬂ2fj]

and ¢ are the roots of the equation by using Eq. (94)
where

& B+ (3ma B )6 + bytt + byt + byt + byt +bs =0,

where
b =3’ +2m*a’ f* + b* + 2mp*,
b, = —6ma’ 1> + mb*(a® + B*) + 6m* B* + 2mpB*b?,
=221 +2mﬂ + (@ + OB+ 2m? B a1 + b + 2mp?)
( -1’p )( I* +b*+2mp* )+ll(g+m}/ ) (lg—zlmﬁ ),
by =—2ml* (- a1 + b* + 2mp* )+ (mb* — mi* B°)
+(—a 1> +b*+2mp )+zml(g+m}/2)(ilg—ilm,82)

by =26 — 1252 a1 + b + 2mp? )+ itlg + my? )(i1g— itmp?)]

So Eq. (127) together with relation given by Eq. (129) forms the dispersion equation for the
semi-infinite elastic, isotropic and non-homogeneous medium overlain by a granular layer under
the influence of gravity, magnetic field, electric field and temperature.

(2) In the absence of non-homogeneity, Eq. (127) gives the dispersion equation of Rayleigh
waves for a granular medium under the influence of gravity, magnetic field, electric field
and temperature.

where
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ay =MK,, ar, = MK, a;3 =MK;,
gy ==MoK,, a5 ==MK,, a,s =-MK;,
ap =—K\M,, azg =—K,M,, a;0 =—-K;M,,
ag) = Ky, agy = Ks, ags = K¢, agy = Ky, ags = Ky, ags = Ky, (130)
agy =K, ag =K, ag = K,
ag; = Ky, agy =Ky, a3 =Ky, a9y = Ky3, ags = Kyy, a9 = Kis,
ay; = K3, g5 = Ky, a9y = K5
and rest of a;;’s are same as in Eq. (128).
(3) In the absence of granular rotations and non-homogeneity, we get
Lt Lt Lt A;,=x;,
0 M50 550
Lt Lt Lt (so.)=W., (j=3,4,9),
m—0 M—0 s—0 J J (] )

where

_ o222 2 2, = ilg
Wj__z[ﬂ (xj_l )+b +zlgnj], nj_azxf—azlerbz

and x; are the roots of the equation

a* B2x8 + (@ + )b — 302 B2 5 + ¥
J [ ] J +(b2_12ﬂ2)(b2_12a2)_12g2 J

o - - p) +1*g?]=0

Thus the equation |a;| = 0, where i, =1, 2,..., 9

where a;’s are given by Eq. (130) gives the dispersion equation for the semi-infinite, elastic and

isotropic medium overlain by a granular layer under the influence of gravity.

(4) In the absence of gravity, magnetic field H, = 0, electric field E, = 0, temperature T, =

initial stress Py = 0 and non-homogeneity, we get

(2,22)- 2B b —ib s~ 2ibl’s + by (b—iff’s')> —4b%ss’
T 2% —ibs)

0,
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so by making 73, 174 — 0, the dispersion Eq. (127) reduces to

\b.

U,‘:O, where i,j=1,2,....,9 (132)

where
N _ IoH o MH _ JuH I
s by =—ne™", by =ne s by =—ne™", b5 =bys=b;; =bjg =b;y =0,
_ ~LH _ MH _ -, H _ I H _ -AsH . —AsH
by =rye 77, by =-re”7, by =re s by =—re™7, bys =rse s byg =—1se ,

bz7 = bzs = b29 =0,

b, =ne

~4H _ HH M
s by = 1€, by =re Y,

by =rge
by, =—r;e™", by =re™™ by = e by =byy = by =0,

by ==As, by = A3, by ==Ay, by =y, bys =il, byg =il, by, :/Za by :Zts by =1,
bsy =bsy =bs; =bsy =il, bss = As, bsg =—As, bs; =bsg =il, bs, =_/T5:

61 =bgy =03, bez =bgy =04, bes =bgs =0, bg; :53, by :54, bgy =0,

n=Mor, by ==Mnry, byy =Mr,, by ==Mr,,

75 :b76 =0, b77 =M0’71’ b78 2]‘7072, b79 =0,

(133)

> > >

by, =1y, by =—r3, byy =1y, by =—1y, bys =15 =bgg, by =—15, bgg ==y, byy =5,

by =rs =bgy, byy =bgy =717, bos =73, bog = =1, by; =Fg, bog =77, beg =—15.
and

n=A(0 -2 ) R =5 -+ 1) = a0, - A2 12) R =2, (5, - 72 +17)

2
ry =2ilpy Ay, 1y =2ilpg Ay, vy =2ilpg Ay, 1y = 2ilfg Ay, s zﬂo(zlz _%}
(134)

2

_ b . e e
7, =y0£212 ——2} ro = ibFySy — 1y (22 +17) 7 = ibFy&y — 11 (A2 +17),
B
vy =ibFyS, — g (12 + 12) 7y =ibFy8, — (A2 + 12 ) 1y = 2ilpy Ay, 7y = 2ilTy A

Eq. (132) gives the dispersion equation of Rayleigh waves for a granular medium in the
absence of gravity and non-homogeneity and is in complete agreement with that obtained by
Bhattacharaya (1965).

(5) In the absence of gravity, granular rotations, magnetic field Hy, = 0, temperature 7o = 0,
electric field £y = 0, initial stress Py = 0 and non-homogeneity.
Now using Eq. (132) and (133) into Eq. (134), we get

Lt Lt Lt (ﬁ,ﬂi)z(!z,lz—Z—Z) (135)

m—>0 M-0 50
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Lt Lt Lt (s8,)=—ib

m—>0 M-0 550

Lt Lt Lt (s8,)=0

m—>0 M-0 550

Lt Lt Lt &5 =—-—

m—>0 M—0 550 ﬁz

(135)
b2

Lt Lt Lt rﬁz—y(zzz——zj

m—>0 M—0 s—50 ﬂ

Lt Lt Lt r,=-u

m—>0 M-0 50

Similar results are also holds for lower medium.

Now using Eq. (135) into Eq. (134), then after some simplification we get 6 x 6
determinantal equation
ld;|=0, where i,j=1,2,...,6, (136)

i ‘
where
2

2
d,, =212,e™", d, = (212 _b JeﬁsH,

2
d13 = —2[},46_14]_[, dl4 = [2[2 —b_]e_}LSHa dlS = dlé = O’

2

2
dy = (212 ) %Jem’ dy, = 2125¢"",

2

2
dyy = [212 —b—JelAH, dy, ==20e™ " dys = dy =0,

dy ==y, dyy ==, dyy =124, dyy, =1, dy; =Z4: dy =1, (137)
d41 =, d42 =—15, d43 =, d44 215, d45 =1, d46 :/15,

, b 2 , b
ds, =21 -—, ds, =21" A5, dsy =21 -—— ds, = =214,

— 2 —
dss = —ﬂ(zl2 —b—z} dy, =212 ).,
Ho s 0
2 b2 2 2 b2
dg, =214y, dg, =21 e dg =212, dg, =21 e

— — 2
de =207, d. = —ﬂ[zﬂ —b—z}
Ho Ho s

Thus Eq. (136) gives the dispersion equation of Rayleigh waves for semi-infinite elastic and



32 Rajneesh Kakar and Shikha Kakar

isotropic medium overlain by granular layer of thickness H in the absence of gravity and
non-homogeneity is in complete agreement with the equation obtained by Ewing et al. (1957).

8. Numerical analysis

The parameters for the material are taken in Table 1.

Numerical results have been obtained graphically to show the effect non-homogeneities and
phase velocity on initial stress and dimensionless wave number on surface waves. Fig. 2 represents
the variation of phase velocity with dimensionless less wave number at different values of initial
stress and other inhomogeneities. The phase velocity of Stoneley wave not only depends on
gravity field but also on the non-homogeneity, magnetic field, electric field, temperature, initial
stress and granular notations of the material medium. Fig. 3 shows the effect of the density on
Stoneley wave determinant with respect to initial stress. It is obvious that Stoneley wave velocity
decreases with an increasing of the various values of the initial stress P also with the wave number.
Fig. 4 is plotted to observe the effect of magnetic and electric field on Stoneley waves velocity
with respect depth. The velocity of Stoneley waves is slowed down in the presence of magnetic

Table 1 Material properties

Ci Ci Cyy Cs3 Po
3
135 GPa 67.9 GPa 22.2 GPa 113 GPa 7500 Kg/m
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Fig. 2 Effect of coupled non-homogeneities (%) on Stoneley waves velocity with respect wave
number keeping initial stress at P =1, P=0.5 and P = 0.1
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Fig. 3 Effect of the density on Stoneley waves determinant with respect to initial stress
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Fig. 4 Effect of the magnetic field and electric field on Stoneley waves with depth

and electric field of the medium. Fig. 5 shows the effect of initial compression on the Rayleigh
Waves, it is obvious that Rayleigh wave velocity decreases with an increasing of the various
values of the initial stress P also with the wave number. Fig. 6 represents the variation of phase
velocity with dimensionless less wave number at different values of initial stress. The three modes
of Rayleigh waves have been plotted at two different values of initial stress i.e., at P =1 and P =
0.1. The value of magnetic field, electric field and temperature is fixed at 0.4 Tesla, 50 V/m and
293 K. It is clear from Fig. 6 as the value of initial compression increases the phase velocity
decreases sharply with dimension less wave number. Fig. 7 is plotted to observe the effect of
various non-homogeneities factor #'in (%) on Rayleigh waves velocity with respect wave number
at P=land P = 0.1. In graph W represents the zero™ level of non-homogeneities. Fig. 8 represents
the effect of depth (dimensionless) on frequency (dimensionless) on Rayleigh wave velocity.
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Fig. 5 Variation of Rayleigh waves velocity respect to initial stress with the various values of
the wave number, H=0.4 Tesla, g=9.8 m/s>, T=293 K, E=50 V/m, granular rotations = 0

2000

1600

Phase Velocity (m/s)

1200 I 1 | L

Dimensionless Wavenumber (kh)

Fig. 6 Variation of Rayleigh waves velocity respect wave number, H = 0.4 Tesla, £ = 50
V/m, T=293K,g=9.8 m/s>, P=1,P=0.1, granular rotations = 0
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Fig. 7 Effect of coupled non-homogeneities (%) on Rayleigh waves velocity with respect wave
number keeping initial stress at P = land P =0.1
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Fig. 8 Variation of Rayleigh waves frequency with respect depth, H = 0.4 Tesla, £ =50 V/m, T =
293 K, g=9.8 m/s>, P=1, P=0.1, granular rotations = 0

9. Conclusions

The frequency equation for surface wave contains terms involving gravity and non-
homogeneity, so the phase velocity of Stoneley and Rayleigh waves not only depend on gravity
field but also on the non-homogeneity, magnetic field, electric field, temperature, initial stress and
granular notations of the material medium.
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