
 
 
 
 
 
 
 

Geomechanics and Engineering, Vol. 6, No. 1 (2014) 65-77 
DOI: http://dx.doi.org/10.12989/gae.2014.6.1.065                                                   65 

Copyright © 2014 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7         ISSN: 2005-307X (Print), 2092-6219 (Online) 
 
 
 

 
 
 
 

Analytical solutions for geosynthetic tube resting  
on rigid foundation 

 

Wei Guo 1, Jian Chu 1,2, Shuwang Yan 3 and Wen Nie 1 

 
1 School of Civil and Environmental Engineering, Nanyang Technological University,  

Blk N1, 50 Nanyang Ave, Singapore, 639798 
2 Department of Civil, Construction & Environmental Engineering, Iowa State University,  

328 Town Engineering Building, Ames, IA 50011, USA 
3 Geotechnical Research Institute, School of Civil Engineering, Tianjin University,  

92 Weijin Road, Nankai District, Tianjin, China 
 

(Received November 30, 2012, Revised September 01, 2013, Accepted September 03, 2013) 
 

Abstract.  Geosynthetic tubes inflated with water, clay slurry or sand have been widely used for large dike 
construction in land reclamation projects. In this paper, analytical solutions for geosynthetic tube resting on 
rigid foundation is presented by adopting an approach similar to that presented by Leshchinsky et al. (1996). 
The proposed method allows a quick preliminary design to be made for using a closed-form solution. To 
simplify the analysis, relationships between geometrical parameters and pumping pressure are established 
using numerical method. The analytical solutions were compared with several existing solutions and good 
agreements were achieved. 
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1. Introduction 
 

Geosynthetic tubes inflated with water, clay slurry, sand or waste sludge have been used to 
form dikes or breakwaters. Using this method, a dike can be constructed using either single or 
multiple layers of geosynthetic tubes (Kazimirowicz 1994, Miki et al. 1996, Leshchinsky et al. 
1996, Oh and Shin 2006, Yan and Chu 2010). Geosynthetic tubes have also been adopted for other 
applications such as, increasing the height of existing dams or spillways (Perry 1993), diverting 
water for irrigation (Tam 1997), breakwaters in beach (Alvarez et al. 2007), flood control (Biggar 
and Masala 1998, Fowler 1997, Plaut and Suherman 1998), coastal erosion prevention (Shin and 
Oh 2007), groundwater recharging and control, sediment and industrial sludge dewatering (Worley 
et al. 2008, Yee et al. 2012) and optimization of the water level while maintaining a minimum 
flow over the weir at all times (Sehgal 1996). 

Geosynthetic tubes filled with water or slurry have been analyzed by a number of researchers 
(Silvester 1986, Leshchinsky et al. 1996, Kazimirowicz 1994, Plaut and Suherman 1998, Malík 
2009, Ghavanloo and Daneshmand 2009, Cantré and Saathoff 2010, Chu et al. 2011, Guo et al. 
2011, 2013). However, most of the above solutions require the running of a computer program. 
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This is not convenient for preliminary design where some trial and error processes or parametric 
studies are involved in the selection of the dimensions of the geosynthetic tubes and types of 
geotextiles to be used. 

In this paper, a numerical method, closed-form solution and coefficient method are proposed to 
analyze the geometry parameters of geosynthetic tube by assuming the tensile forces along their 
cross-sectional circumference were constant. Therefore, the proposed solutions are only applicable 
to the impermeable geosynthetic tubes filled with slurry/water. However, it may also be suitable to 
permeable geotextile tubes at the state after the filling and dewatering is completed. The proposed 
method allows a preliminary design to be carried out on geosynthetic tube before more 
sophisticated numerical analyses are carried out if necessary. 
 
 
2. Basic assumptions 

 
The following assumptions were made in deriving the closed-form solutions: 
(1) The geosynthetic tube is sufficiently long to be assumed as a plane strain problem; 
(2) The geosynthetic shell is thin and flexible so that its weight and extension can be 

neglected; 
(3) Frictions between the geosynthetic tube and the fill material, or that between the 

geosynthetic tube and the rigid foundation are neglected; 
(4) The tensile force along the geosynthetic sheet is constant; 
(5) All the geosynthetic tubes are inflated with the same material and no external water 

pressure is applied. 
 

The above assumptions simulates closely a rubber dam application where water or air is used to 
inflate an impervious tube or a permeable tube filled with sand after it has been completely 
consolidated under the pumping pressure. Some of the above assumptions were also adapted in the 
existing analytical solutions for geosynthetic tubes (Szyszkowski and Glockner 1987, 
Kazimierowicz 1994, Leshchinsky et al. 1996, Plaut and Suherman 1998, Cantré and Saathoff 
2010, Malik and Sysala 2010, Cantré and Saathoff 2010). 
 
 
3. Analytical solutions 

 
As the problem is symmetric, only half of the simplified cross-section of a geosynthetic tube is 

needed as shown in Fig. 1. The geosynthetic tube is assumed to be inflated with only one type of 
liquid or slurry material with a unit weight of γ. The coordinates are set up with x in the vertical 
direction and y in the horizontal direction. The origin of the coordinates is taken as the top point of 
the cross-section. The width of the cross-section is written as B. The height of the geosynthetic 
tube is denoted as H. The contact width with ground surface is presented as b. The tensile force 
along the geosynthetic tube per unit length is denoted as T. The free body diagram of this half 
cross-section is plotted in Fig. 1. Due to symmetric of the cross-section, the of tensile forces 
direction on top and bottom surface are horizontal. The forces acting on horizontal direction only 
involve the hydraulic pressure and the tensile force as shown in Fig. 1. Similarly, the expression of 
tensile force can be derived as shown in Eq. (1). It can be seen that the tensile force along the 
geosynthetic tube is related to the height of the cross-section, the pumping pressure and the unit 
weight of filling slurry 
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An infinite small curve with a length of ds around an arbitrary point S(x, y) can be treated as an 
arc with the center at random point C and radius of r as shown in Fig. 2. Then four geometrical 
equations relating the angle θ and the x and y coordinates are given in Eqs. (2) and (5). 
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A free body diagram for a section from point O to a point S(x,y) on the cross-section is used for 
force equilibrium analysis as shown in Fig. 3. The angle between the tangent direction at point 
S(x,y) and the x axis is denoted as θ. The hydraulic pressure acting internally on this point S(x,y) is 
p0 + γx where p0 is the pumping pressure. For the free-body shown in Fig. 3, the forces equilibrium 
along the horizontal direction is written as Eq. (6). By deriving from Eq. (6), the expression of sinθ 
can be obtained as shown in Eq. (7). 
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Fig. 1 Free body diagram of half cross-section Fig. 2 The free body diagram of infinite unit 
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Fig. 3 Free body diagram of curve OS 
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Deriving from Eq. (7) obtains the solution of the x-coordinate shown as follows (as x> 0, the 
negative result is omitted) 
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Integrating y in Eq. (9) with respect to θ using the boundary condition, θ = 0, y’ = 0, we have 
the y-coordinate of the geosynthetic tube. 
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and 

TpQ 2/1 2
0                              (10a) 

 

where Q is denoted as the factor of pumping pressure. It has no unit. 
Knowing the unit weight of the filling slurry, γ, the pumping pressure, p0, the height, H, or the 

perimeter, L, of cross-section, and combining with boundary conditions x = 0, θ = π/2 and x = H, θ 
= -π/2, the cross-section and tensile force can be calculated. 
 
 

4. Calculation procedure 
 

Eq. (10) contains the first and second elliptic integrals which have no closed-form solutions. A 
computer program was written using the adaptive Runge-Kutta-Merson method (RKM4) to solve 
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Eqs. (1), (7), (8) and (10). The standard programs for the RKM4 method had already been 
introduced by Press et al. (2007), Xu (1995), Christiansen (1970) and Lukehart (1963). The 
calculation was carried out using the following inputs parameters, the unit weight of the slurry, γ, 
the pumping pressure, p0, the height, H, or the perimeter, L. The unknown parameters were 
searched by the trial-and-error method outlined as follows: 

(1) Input the initial parameters: γ, p0, H; 
(2) Calculate the tensile force, T, using Eq. (1) and the factor of pumping pressure, Q, using 

Eq. (10a); 
(3) Calculate sinθ using Eq. (7); 
(4) Solve Eqs. (8) and (10) using the RKM4 method; 
(5) If the perimeter of the geosynthetic tube, L, is taken as an input rather than the height, H, 

the iteration can be done as follows: assume Ht = L/π as the input height to calculate the 
trial length, Lt. If Lt ≠ L, then modify Ht and repeat the calculation until the difference 
between Lt and L is less than 1E-6. 

 
 

5. Closed-form solutions 
 

As mentioned in above, the Eq. (10) contains the first and second elliptic intervals and thus has 
no closed-form solutions. The equation has to be solved by numerical method. However, by 
making an approximate, it is possible to derive an approximate closed-form solution in a 
closed-form format. In this paper, the following approximation is adopted to solve this problem. 

   sin1sin  QQQQ                     (11) 

A comparison between the real value and the approximation is shown in Fig. 4. It can be seen 
that for Q ≥ 2, the two curves are very close. Therefore, Eq. (11) is applicable when Q ≥ 2. 

By substituting Eq. (11) into Eq. (10) and integrating y with respect to θ using the boundary 
condition of x = 0, y = 0 and θ = π/2, the final geometry equation of the cross-section is written as 
follows 
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The parameters related to geometry such as the width, B, the perimeter, L, and the area, A, of 
the cross-section can be calculated using Eq. (12). B = 2ymax. When y = ymax, dy/dθ = 0 and θ = 0. 
Thus B can be calculated from Eq. (12) for θ = 0 which is re-written as Eq. (13). The contact width 
with ground b is calculated when x = H or when sinθ = -1 or θ = -π/2. Submitting these values into 
Eq. (12), b can be calculated as shown in Eq. (14). Similarly, L can be calculated by Eq. (15). 
Based on Fig. 3, the forces equilibrium on the contact edge between geosynthetic tube and the 
rigid foundation gives γA = N and N = (p0 + γH) b. Then the area of cross-section, A, is calculated 
as shown in Eq. (16). It should be point out that these equations were derived based on the 
approximation shown in Eq. (11). Thus Eqs. (13) to (16) are only applicable when Q ≥ 2.0. 
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Fig. 4 Comparisons between the two equations 
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6. Coefficient methods 
 

The closed-form equations given in Eqs. (13) to (16) are convenient. However, they are only 
applicable when Q ≥ 2.0. To overcome this limitation, a coefficient method is also developed to 
establish some relationships similar to Eqs. (13) to (16) using numerical method. Eqs. (13) and 
(16) reveal that the geometric parameters, B, b, L and A are all related to a function of Q and 
√(2T/γ). Thus Eqs. (13) to (16) can also be written as 
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where CB, Cb and CL are factors related to Q. 
If some relationships between the three geometry factors (B, b, L) and Q can be established, 

then Eqs. (17) to (19) can be used for preliminary design. For this purpose, some parametric 
studies were carried out using the computer program described in Section 3. Relationships 
between CB, Cb and CL and Q are established through the use of the computer program as shown in 
Fig. 5. In developing these charts, the factor of pumping pressure Q was selected in the range of 
1.0 to 10.0 which will satisfy the general case of geosynthetic tube design. The values of the factor 
of pumping pressure (Q) and the three geometry parameters (B, b, L) were also presented in Fig. 6. 
It can be seen that the Q value were separated into 25 intervals. If the calculated Q just equal to the 
endpoint, the value of B, b, L can easily be calculated. However, if the required Q value locates 
between the endpoints, the linear interpolation method can be used by assuming their value are 
linear in the intervals. The calculation procedure can be further simplified using Microsoft Office 

 
 

(a) Q versus CL curve (b) Q versus CB curve 

 

(c) Q versus Cb curve 

Fig. 5 Designing charts method 
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linear interpolation method can be solved automatically by a subroutine, such as micro function 
Excel as shown in Fig. 6. The advantage of using Excel is that the calculation of Q value using 
Qmatch() shown in Fig. 6. Generally, there are two cases of calculation based on the inputs: 

 

(1) When H, γ and p0 are taken as inputs, the calculation can be carried out directly using the 
calculation procedure as shown in Fig. 6. 

(2) When L, γ and p0 are taken as inputs, the “Goal Seek” function in Microsoft Office Excel 
2010 (Menu/Data/What-if Analysis/Goal Seek) can be used to search the value of L to the 
desired magnitude by changing H. 

 
 
7. Comparisons with existing solutions 
 

In order to verify the accuracy of the proposed methods, the numerical method (NM), the 
closed-form method (CFM) and the coefficient method (CM) are compared with the solutions 
given by Leshchinsky et al. (1996). Leshchinsky et al.’s method (1996) has been coded to a 
computer program (GeoCoPS) by Leshchinsky and Leshchinsky (1996) and calibrated against a 
case by using L = 9 m and γ = 12 kN/m3 as inputs. The same case is used for comparison and the 
results are given in Table 1. The percentage differences between each method proposed in this 
paper and that of Leshchinsky et al. (1996) are given in Table 1. It can be seen that for the NM and 
CM methods, the maximum difference is only 5.89%. The results of tensile force and height of 
cross-section calculated by CFM method have little difference with those from Leshchinsky’s 
results. However, the areas of cross-sections and contact width with ground have large difference 
especially when pumping pressure becomes greater than 34.5 kPa. 

 
 

Fig. 6 Designing charts method (Guo 2012) 
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Table 1 Comparison of the proposed methods with that by Leshchinsky et al. (1996) 
(For L = 9 m, γ = 12 kN/m3) 

p0(kPa) Source 
H (m) B (m) A (m2) T (kN/m) 

Values Diff(%) Values Diff(%) Values Diff(%) Values Diff(%)

4.8 

Leshchinsky 1.80 3.60 5.56 14.60 

NM 1.79 0.56 3.57 0.83 5.35 3.78 13.90 4.79 

CFM 1.73 3.89 4.20 -16.67 4.98 10.43 13.15 9.93 

CM 1.78 1.11 3.57 0.83 5.37 3.42 13.74 5.89 

6.9 

Leshchinsky 2.00 3.64 5.76 18.10 

NM 1.90 5.00 3.49 4.12 5.56 3.47 17.60 2.76 

CFM 1.90 5.00 4.10 -12.64 5.13 10.94 17.48 3.43 

CM 1.89 5.50 3.50 3.85 5.60 2.78 17.21 4.92 

34.5 

Leshchinsky 2.50 3.21 6.45 61.70 

NM 2.40 4.00 3.13 2.49 6.25 3.10 59.80 3.08 

CFM 2.55 -2.00 3.49 -8.72 4.64 28.06 63.63 -3.13 

CM 2.43 2.80 3.13 2.49 6.29 2.48 59.76 3.14 

52.4 

Leshchinsky 2.60 3.13 6.51 87.50 

NM 2.50 3.85 3.06 2.24 6.33 2.76 86.00 1.71 

CFM 2.65 -1.92 3.34 -6.71 4.33 33.49 90.6 -3.54 

CM 2.54 2.31 3.06 2.24 6.44 1.08 85.78 1.97 

103.5 

Leshchinsky 2.70 3.00 6.57 162.00 

NM 2.70 0.00 2.98 0.67 6.40 2.59 159.80 1.36 

CFM 2.75 -1.85 3.50 -16.67 3.89 40.79 165.25 -2.01 

CM 2.68 0.74 2.98 0.67 6.63 -0.91 159.7 1.42 

122.8 

Leshchinsky 2.70 2.96 6.57 189.70 

NM 2.70 0.00 2.96 0.00 6.41 2.44 187.60 1.11 

CFM 2.77 -2.59 3.11 -5.07 3.80 42.16 193.15 -1.82 

CM 2.69 0.37 2.96 0.00 6.55 0.30 187.20 1.32 

 
 

The proposed methods are also compared with that presented by Kazimierowicz (1994) as 
shown in Table 2. The same input parameters as those used in Kazimierowicz (1994) were used in 
the calculation. The same conclusions can be made from this comparison, that is, the solutions by 
the NM and CM methods are close to those by the Kazimierowicz method (1994) and the solutions 
from the CFM method were quite different. 

 
 

8. Parametric studies 
 

Some parametric studies using the numerical method were carried out to investigate the 
influence of different design parameters. In order to use dimensionless parameters, the height and 
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Table 2 Comparison of present method with the results proposed by Kazimierowicz (1994)  
(For L = 3.6 m, γ = 14 kN/m3) 

p0 (kPa) Source 
H (m) b (m) T (kN/m) 

Values Diff. (%) Values Diff. (%) Values Diff. (%)

17.5 

Kazimierowicz 1.00 0.46 11.80 

NM 0.99 -1.00 0.46 0.00 11.90 0.85 

CFM 1.03 3.06 0.32 -30.22 12.74 7.93 

CM 0.98 -2.00 0.45 -2.17 11.92 1.02 

10.4 

Kazimierowicz 0.90 0.64 6.80 

NM 0.90 0.00 0.65 1.56 6.77 -0.44 

CFM 0.97 7.78 0.46 -27.94 8.30 22.04 

CM 0.92 2.22 0.59 -7.81 7.71 13.38 

4.6 

Kazimierowicz 0.80 0.84 4.00 

NM 0.81 1.25 0.82 -2.38 4.11 2.75 

CFM 0.83 3.75 0.71 -15.48 4.32 8.00 

CM 0.81 1.62 0.81 -3.57 4.18 4.50 

3 

Kazimierowicz 0.70 0.96 2.70 

NM 0.76 8.57 0.89 -7.29 3.03 12.22 

CFM 0.75 7.14 0.85 -11.46 3.09 14.44 

CM 0.74 6.32 0.93 -3.12 3.05 12.96 

 
 
 
width of geosynthetic tubes were normalized using the tube perimeter, L, the pumping pressure 
was normalized using γwL, the tensile force was normalized using γwL2. The same normalization 
method had also been used by Plaut and Suherman (1998), Plaut and Klusman (1999), Plaut and 
Cotton (2005). 

The normalized height versus the normalized pumping pressure curve is shown in Fig. 7. It can 
be seen that the larger the pumping pressure, the higher the cross-section of the tube. However, the 
height does not increase much when the normalized pumping pressure is greater than 0.3. The 
normalized cross-section area versus the normalized height curve is shown in Fig. 8. The 
normalized area increased rapidly with the normalized pumping pressure. However, when the 
normalized pumping pressure is greater than 0.3, it will have little influence on the area of 
cross-section anymore. The normalized tensile force versus normalized pumping pressure is shown 
in Fig. 9. The higher the pumping pressure, the higher the tensile force as expected. To achieve an 
economic design, the smaller the pumping pressure, the smaller the tensile strength required. On 
the other hand, the geotextile bag should be inflated as high as possible to reduce the number of 
bags used to reach the required design height for the dike. Based on Figs. 7-8, it appears that a 
normalized pumping pressure in the range of 0.2 to 0.3 would be desirable. It should be pointed 
out that the normalized tensile force will increase exponentially when the normalized height is 
higher than 0.25 as shown in Fig. 10. As such, the height to the length ratio for a geotextile tube 
should be controlled to be less than 0.25. 
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8. Parametric studies 
 

Some parametric studies using the numerical method were carried out to investigate the 
influence of different design parameters. In order to use dimensionless parameters, the height and 
width of geosynthetic tubes were normalized using the tube perimeter, L, the pumping pressure 
was normalized using γwL, the tensile force was normalized using γwL2. The same normalization 
method had also been used by Plaut and Suherman (1998), Plaut and Klusman (1999), Plaut and 
Cotton (2005). 

 
 

9. Conclusions 
 

In this paper, an analytical method, a closed-form solution and the coefficient method were 
proposed to analyze the geometric parameters of geosynthetic tube by assuming the tensile forces 
along their cross-sectional circumference were constant. It should be pointed out that the proposed 
solutions are only applicable to impermeable geosynthetic tubes filled with slurry/water. However, 
it may also be suitable to permeable geotextile tubes at a state after the filling or dewatering is 
completed. The following conclusions can be drawn from this study. 
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• The proposed analytical solution resolved by numerical method is similar to that presented 
by Leshchinsky et al. (1996). The differences between the results obtained from the 
numerical method and those by Leshchinsky et al. (1996) are less than 6%. 

• A closed-form solution was derived for calculation of geosynthetic tube resting on rigid 
foundation based on an approximation. The closed-form method was only valid when the 
factor of pumping pressure Q = 1 + p0

2/2γT is greater than 2.0. 
• By generating the relationships established by the closed-form solution using the data 

obtained from numerical simulations using the analytical solution, the coefficient method 
was proposed to calculate the geometry parameters of the geosynthetic tube. The coefficient 
method removes the condition for Q to be greater than 2.0. The results from the coefficient 
method were also compared with those from Leshchinsky et al. (1996) and the differences 
are less than 6%. 

• A parametric study was also carried out. The study indicates that the normalized pumping 
pressure p0/(γwL) should be controlled within the range of 0.2 to 0.3 and the normalized 
height H0/L to be controlled to be less than 0.25. 
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